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Abstract. We propose a meta-heuristic algorithm for clustering objects
that are described on multiple incommensurable attributes defined on
different scale types. We make use of a bipolar-valued dual similarity-
dissimilarity relation and perform the clustering process by first finding
a set of cluster cores and then building a final partition by adding the
objects left out to a core in a way which best fits the initial bipolar-valued
similarity relation.

1 Introduction

Clustering is defined as the unsupervised process of grouping objects that are
similar and separating those that are not. Unlike classification, clustering has
no a priori information regarding the groups to which to assign the objects. It
is widely used in many fields like artificial intelligence, information technology,
image processing, biology, psychology, marketing and others. Due to the large
range of applications and different requirements many clustering algorithms have
been developed. Jain [16] gives a thorough presentation of many clustering meth-
ods and classifies them into partitioning [21,20], hierarchical [13,15,29], density-
based [3,30], grid-based [2,27] and model-based methods [9,19]. New graph-based
methods have also been developed in the emerging field of community detection
[10,25,26]. Fortunato [11] covers many of the latest ones.

In this paper we present the GAMMA-S method (a Grouping Approach using
weighted Majority MArgins on Similarities) for clustering objects that are de-
scribed by multiple incommensurable attributes on nominal, ordinal and/or car-
dinal scales. We draw inspiration from the bipolar-valued outranking approach
proposed by [5,6,7] for dealing with multiple criteria decision aid problems. As
such, we assume that the data is extracted in a prior stage, such that each at-
tribute has a clear meaning and expresses a distinct viewpoint for a human agent.
Also, this agent has a clear view on the importance of each attribute when he
compares two objects and what can be considered as a discriminating difference
in their evaluations. For this we first characterize pairwise global similarity state-
ments by balancing marginal similarity and dissimilarity situations observed at
attribute level in order to get majority margins, i.e. a bipolar-valued similarity
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graph. Good maximal cliques in this graph, with respect to a fitness measure, are
chosen as cluster cores and then expanded to form a complete partition. As the
enumeration of all the maximal cliques is well known to be potentially exponen-
tial [23], we develop a special meta-heuristic for dealing with the first step. The
aim of our method is to achieve a partition that will minimize the differences
between the original similarity relation and the relation that is implied by the
clustering result.

2 Dual Similarity-Dissimilarity Modelling

To illustrate the relational concepts of similarity and dissimilarity we first present
a small didactic problem.

Let us consider in Figure 1 a set of objects {a, b, c, d} that are described by
four attributes, one cardinal and three ordinal. We may notice that objects a,
b and c are quite small, while d is significantly larger. On the second attribute
a and b, as well as c and d have the same texture. On the color attribute we
notice some objects are dark, and some are light or we could consider each color
level to be different. This can be perceived differently by anyone who looks at
these objects. On the last attribute, we have the shapes of each object, and we
could consider that object a is different from b but similar to the rest, object
b is similar to both a and c but different from d and c is also different from d.
None of these objects are similar on all attributes, therefore we could consider
two objects to be similar overall if they have similar evaluations on a majority
of attributes. For example objects a and b have close evaluations on three out of
four attributes, therefore they are considered to be globally similar. Objects c
and d have also three attributes out of four on which they are similar. But on the
first attribute, they show a very large difference in evaluations (4 cm compared
to 20 cm). Here, we would rather like to say that we are not sure if they are
similar or not.

Attributes a b c d

Size 2 cm 3 cm 4 cm 20 cm
Texture Smooth Smooth Rough Rough
Color Black Black Gray White
Shape Square Circle Rounded Square Rectangle

a b c

d

Fig. 1. Objects’ evaluations on the four attributes (left) and their schematic repre-
sentation (right, smooth (resp. zigzagged) lines representing the smooth (resp. rough)
texture)

2.1 Pairwise Similarity and Dissimilarity Statements

Let X = {x, y, z, ...} denote a set of n objects. Each object x ∈ X is described
on a set I = {i, j, k, ...} of m attributes of nominal, ordinal and/or cardinal type,
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where the actual evaluation xi may be encoded without loss of generality in the
real interval [mi, Mi] (mi < Mi ∈ R). The attributes may not all be of the same
significance for assessing the global similarity between the objects. Therefore we
assign to the attributes normalized weights wi ∈ [0, 1] s.t.

∑

i∈I

wi = 1, which

can be given by the human agent and depend on his knowledge of the problem
and his perception of the importance of each attribute in the comparison of the
objects.

In order to characterize the marginal pairwise similarity and marginal pairwise
dissimilarity relations between two alternatives x and y of X for each attribute
i of I , we use the functions si, di : X × X → {−1, 0, 1} defined as follows:

si(x, y) :=

⎧
⎪⎨

⎪⎩

+1 , if |xi − yi| � σi;
−1 , if |xi − yi| � δi;
0 , otherwise.

di(x, y) :=

⎧
⎪⎨

⎪⎩

−1 , if |xi − yi| � σi;
+1 , if |xi − yi| � δi;
0 , otherwise.

(1)
where 0 ≤ σi < δi ≤ Mi−mi, ∀i ∈ I denote marginal similarity and dissimilarity
discrimination thresholds. These thresholds are parameters which can be fixed
by the human agent according to his a priori knowledge on the data and may be
constant and/or proportional to the values taken by the objects being compared.
If si(x, y) = +1 (resp. di(x, y) = +1) we conclude that x and y are similar (resp.
dissimilar) on attribute i. If si(x, y) = −1 (resp. di(x, y) = −1) we conclude that
x and y are not similar (resp. not dissimilar) on attribute i. When si(x, y) = 0
(resp. di(x, y) = 0) we are in doubt whether x and y are, on attribute i, to
be considered similar or not similar (resp. dissimilar or not dissimilar). Missing
values are also handled by giving an indeterminate si(x, y) = 0, as we cannot
state anything regarding this comparison.

The weighted similarity and weighted dissimilarity relations between x and y,
aggregating all marginal similarity statements and all dissimilarity statements
are characterized via the functions ws, wd : X × X → [−1, 1] defined as follows:

ws(x, y) :=
∑

i∈I

wi · si(x, y) wd(x, y) :=
∑

i∈I

wi · di(x, y) (2)

Again, if 0 < ws(x, y) � 1 (resp. 0 < wd(x, y) � 1) we may assume that it is
more sure than not that x is similar (resp. dissimilar) to y; if −1 � ws(x, y) < 0
(−1 � wd(x, y) < 0) we may assume that it is more sure that x is not similar (not
dissimilar) to y than the opposite; if, however, ws(x, y) = 0 (resp. wd(x, y) = 0)
we are in doubt whether object x is similar (resp. dissimilar) to object y or not.

Property: The weighted dissimilarity is the negation of the weighted similarity
relation: wd = −ws.

2.2 Taking into Account Strong Dissimilarities

In some cases two objects may be similar on most of the attributes but show
a very strong dissimilarity on some other attribute. In this case the objects
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cannot be considered overall similar or dissimilar. To model this indeterminate
situation, we define a marginal strong dissimilarity relation between objects x
and y with the help of function sdi : X × X → {0, 1} as follows:

sdi(x, y) :=

{
1 , if |xi − yi| ≥ δ+

i ;
0 , otherwise.

(3)

where δ+
i is such that δi < δ+

i � Mi − mi and represents a strong dissimilarity
threshold. Again, this threshold is given by the human agent, in accordance
with his experience concerning the underlying problem. If sdi(x, y) = 1 (resp.
sdi(x, y) = 0) we conclude that x and y are strongly dissimilar (resp. not strongly
dissimilar) on attribute i.

We consider that two objects x and y of X , described on a set I of attributes,
are overall similar, denoted (xS y), if

1. a weighted majority of the attributes in I validates a similarity situation
between x and y and,

2. there is no marginal strong dissimilarity situation observed between x and y.

We formally characterize the overall similarity and overall dissimilarity relations
by functions s, d : X × X → [−1, 1] as follows:

s(x, y) := ∨© (
ws(x, y),−sd1(x, y), · · · ,−sdm(x, y)

)
(4)

d(x, y) := ∨© (
wd(x, y), sd1(x, y), · · · , sdm(x, y)

)
(5)

where, for q ∈ N0, the epistemic disjunction operator ∨© : [−1, 1]q → [−1, 1] is
defined as follows:

∨© (p1, p2, . . . , pq) :=

⎧
⎪⎨

⎪⎩

max(p1, p2, . . . , pq) , if pi � 0, ∀i ∈ {1 . . . q};
min(p1, p2 . . . , pq) , if pi � 0, ∀i ∈ {1 . . . q};
0 , otherwise.

(6)

For two given alternatives x and y of X , if ws(x, y) > 0 and no marginal strong
dissimilarity has been detected, s(x, y) = ws(x, y) and both alternatives are
considered as overall similar. If ws(x, y) > 0 and a strong dissimilarity is detected
we do not state that x and y are overall similar or not, and s(x, y) = 0. If
ws(x, y) < 0 and, a strong dissimilarity is observed, then x and y are certainly not
overall similar and s(x, y) = −1. Finally, if ws(x, y) = 0 is observed conjointly
with a strong dissimilarity, we will conclude that x and y are indeed not overall
similar and s(x, y) is put to −1.

Property: The overall dissimilarity represents the negation of the overall simi-
larity: d = −s.

Following this property, we can now say that two objects which are not similar
according to this caracterization can be called dissimilar.
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2.3 The Condorcet Similarity Graph

We call a Condorcet similarity graph, denoted G(X, s∗), the three-valued graph
associated with the bipolar-valued similarity relation s, where X denotes the set
of nodes and function s∗ : X × X → {−1, 0, 1}, named crisp similarity relation,
weights its set of edges as follows:

s∗(x, y) :=

⎧
⎪⎨

⎪⎩

+1 , if s(x, y) > 0;
−1 , if s(x, y) < 0;
0 , otherwise.

(7)

Figure 2 presents on the left the encoding of the attributes on real scales and the
corresponding thresholds for the example defined at the beginning of this section.
On the right we have the bipolar-valued overall similarity relation s. Notice that
a,b and c are more similar than not to each other, whereas d is surely dissimilar
both from a and b. Besides, d and c appear to be neither similar nor dissimilar.
The corresponding Condorcet similarity graph is shown below. Edges valued
by −1 are not represented and the zero-valued one is dashed. As a Condorcet
similarity graph is always reflexive, we do not represent the loops on the nodes.

Size Texture Color Shape

w 1 1 1 1

a 2 0 0 1
b 3 0 0 3
c 4 1 1 2
d 20 1 2 0

σ 2 0 1 1

δ 4 1 2 2
δ+ 10 - - -

s a b c d

a 1.00 0.50 0.50 -1.00
b 0.50 1.00 0.50 -1.00
c 0.50 0.50 1.00 0.00
d -1.00 -1.00 0.00 1.00

a

b

c d

Fig. 2. Encoding of the attributes (left) and bipolar-valued similarity relation with
associated Condorcet similarity graph (right)

3 Definition of the Clusters

Ideally, a cluster would have all the objects inside it similar to each other and
dissimilar from the rest. In graph theory this may be modeled by a maximal
clique, however, we would also need the maximal clique to be totally disconnected
from the rest of the graph, which on real data will very rarely be the case. Also
there may generally exist a very large number of such maximal cliques, many
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overlapping one with the other. Moon and Moser have shown that, in the worst
case, the number of maximal cliques in a graph can be exponential [23].

Therefore, in a first stage, we propose to select in the Condorcet similarity
graph G(X, s∗) the best set of maximal cliques on the +1 arcs (thus containing
objects that are, on a majority, similar to each other), which may be considered
as cluster cores. In a second stage, we expand these cores into clusters by adding
objects that are well connected to them in such a way that we try to maximize the
number similarity arcs inside each cluster, and minimize the number of similarity
arcs between the clusters.

Let us introduce several fitness measures we will need in the algorithmic
approach. Given a Condorcet similarity graph G(X, s∗) and a set K ⊆ X
of objects, we define, for each x of X the crisp similarity majority margin
smm∗ : X × P(X) → [−n, n] towards the set K:

smm∗(x, K) :=
∑

y∈K

s∗(x, y). (8)

A large positive value of smm∗(x, K) would show that x is similar to the set
K in a consistent manner. A large negative value would mean that x is mostly
dissimilar from K.

We define the profile of a set K by the set of all similarity majority margins
for x ∈ X .

We will consider a cluster to have a strong profile if it contains strongly
positive and/or negative similarity majority margins and reflect this using the
core fitness function f∗

C : P(X) → [−n2, n2] defined as:

f∗
C(K) :=

∑

x∈X

|smm∗(x, K)|. (9)

In Figures 3 and 4 we show how two possible cluster cores could be charac-
terised. The examples show a set of 10 objects {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and a
possible cluster core {1, 2, 3, 4, 5}. On the left we have the crisp similarity relation
between the core and all the objects in the example and its similarity major-
ity margins. On the right we show a representation of the Condorcet Similarity
Graph.

In the first image {1, 2, 3, 4, 5} is well connected to objects 6 and 7, and very
well disconnected from the rest of the objects. Objects 6 and 7 are connected to
4 out of 5 objects in the maximal clique and can be added later to eventually
form a cluster. This can be regarded as a good cluster core. In the second image
the same maximal clique is not consistently connected to all the objects outside.
Each of them is connected to either 2 or 3 objects inside the core, and this is
reflected in the similarity majority margins which take low positive and negative
values. This is regarded as a weaker cluster core.

The core fitness we have defined before tells us how well a maximal clique
will serve as a cluster core. If for a given maximal clique we cannot find a better
one in its vicinity then we can use this one as a core and expand it with objects
that are well connected to it. Therefore, in order to achieve a partitioning of the
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s∗ 1 2 3 4 5 6 7 8 9 10

1 +1 +1 +1 +1 +1 +1 +1 -1 -1 -1
2 +1 +1 +1 +1 +1 +1 -1 -1 -1 -1
3 +1 +1 +1 +1 +1 -1 +1 -1 -1 -1
4 +1 +1 +1 +1 +1 +1 +1 -1 -1 -1
5 +1 +1 +1 +1 +1 +1 +1 -1 -1 -1

smm∗ +5 +5 +5 +5 +5 +3 +3 -5 -5 -5 1

2

3

4

5

9

7

8

6

10

Fig. 3. Well-defined cluster core K = {1, 2, 3, 4, 5}

s∗ 1 2 3 4 5 6 7 8 9 10

1 +1 +1 +1 +1 +1 -1 -1 -1 -1 -1
2 +1 +1 +1 +1 +1 -1 -1 -1 +1 +1
3 +1 +1 +1 +1 +1 -1 +1 +1 -1 -1
4 +1 +1 +1 +1 +1 +1 +1 -1 +1 +1
5 +1 +1 +1 +1 +1 +1 +1 +1 +1 -1

smm∗ +5 +5 +5 +5 +5 -1 +1 -1 +1 -1 1

2

3

4

5

6

7

8

9

10

Fig. 4. Less well-defined cluster core K = {1, 2, 3, 4, 5}

entire dataset we wil detect maximal cliques that correspond to local maxima of
the core fitness measure. To find these local maxima, we define the neighborhood
of a maximal clique as all the maximal cliques that contain at least one object
from it.

Let us define now the fitness an alternative x would have as part of a cluster
K through function f∗ : X × P(X) → [−n2, n2] as:

f∗(x, K) :=
∑

y∈X

s∗(x, y) · smm∗(x, K). (10)

If x is mostly similar to K and compares to the rest of the objects in X mostly
the same as the objects in K then f∗(x, K) will be high.

Finally we define the fitness of a partition, with respect to the crisp simi-
larity relation, as the outcome of the clustering method through f∗

P : O(X) →
[−n2, n2], where O is the set of all possible partitions of X :

f∗
P (K) :=

∑

K∈K

∑

x,y∈K

s∗(x, y) +
∑

K1 �=K2∈K

∑

x∈K1,y∈K2

−s∗(x, y). (11)

As the clustering result will be a partition, we wish to maximize this fitness
function and therefore will use it as the criterion to be optimized.
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4 Clustering Algorithm

The exact algorithmic approach to find the best partition would be to enumerate
all of them and select the one that maximizes the fitness function defined above.
However, this approach is not feasible even for small problems. The number of
partitions for a problem of size n is given by the Bell number for which an upper
bound of

(
0.792·n
ln(n+1)

)n

has been recently given in [4].
Therefore we structure our algorithmic approach in the following four steps:

1. Elicit the thresholds and weights on each attribute from a human agent.
2. Construct the bipolar-valued similarity relation and its associated Condorcet

similarity graph according to this preferential information.
3. Find the cluster cores.
4. Expand the cores and achieve a complete partition.

The first step is not fully covered in this paper, however this parameter elicitation
step is crucial and is one of the distinctive features of our approach. We are
currently exploring this step thoroughly. It is inspired from preference elicitation
techniques used in multiple criteria decision aid to obtain the preferences of the
decision maker (see [24] for a large review of such methods). It should be based
both on a direct induction of the parameters and an indirect one, trying to
exploit holistic judgements of the human actor on the similarity or dissimilarity
of some objects well-known to him.

In the direct elicitation process, the human actor is asked to assign numerical
values to the various discrimination thresholds and the importance weights of the
attributes, according to his expertise or his perception of the underlying data.
Via an indirect process, this information can at any time be complemented by
overall judgements of the human actor on some objects. They can be, among
others, of the following forms :

- I consider that objects a and b are overall similar (or dissimilar);
- I consider that objects a and b are more similar (or dissimilar) than c and d

are.

These judgements are then included as linear constraints on the overall similarity
caracteristic functions in a linear program whose goal is to determine a set
of discrimination thresholds and importance weights in accordance with these
inputs (see [22] for a similar approach in multiple criteria decision aid). Note
again that this step should be carried over only a small sample of the original
dataset.

The second step is straight-forward and derives from the definitions in the
above section.

In the third step, we may use two resolution strategies: exact enumeration of
all the maximal cliques and selection of the fittest ones as potential cluster cores,
or a population-based metaheuristic approach.

For the exact approach we use the Bron-Kerbosch algorithm [8], with the
pivot point improvement from Koch [18]. We then evaluate the fitness of each
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maximal clique and compute the neighbourhood matrix from which we retrieve
the maximal cliques that are the local maxima of the fitness function. As previ-
ously mentioned, the number of maximal cliques in a graph can be exponential
[23], making the use of exact approaches for large or even medium clustering
problems rapidly intractable.

To overcome this operational problem, we use a population-based meta-
heuristic close in structure to evolutionary strategies [28]. As such, the meta-
heuristic contains 4 steps: initialization, selection, reproduction and replacement.
Each individual in the population is a maximal clique in the Condorcet similar-
ity graph. Our aim is to discover all maximal cliques that are local maxima of
our fitness measure.

In the initialization step we, first, iteratively generate maximal cliques that
do not overlap with each other. After each object has been covered by at least
one maximal clique, the rest of the population is then generated randomly.

The selection step has a large number of potential variations. We have opted
after several tests for the rank-based roulette wheel method.

The reproduction step is based on a mutation operator specifically designed
for maximal cliques. The maximal clique that will generate a new individual in
the population is incrementally stripped with a given probability of its objects
and then grown by adding other objects until the property of maximality is
reached. The generated population is of equal size with the old one.

In the replacement step, all maximal cliques in the current population that are
local maxima of the fitness measure, based however on the limited exploration
of their neighborhoods that has been done at previous iterations, are kept in the
new population. The rest of the individuals to be kept are selected at random,
in order to maintain a good exploration of the search space.

The last step orders all the objects that were not included in a core based
on their best fitness to be added to a core. The majority margins heuristic, in
fact, tells us how many relations are in accordance with the decision to add the
object to a particular core, therefore iteratively taking the best pair of object and
core and adding that object to the core is well justified considering our goals to
extract a partition that is in most accordance to the original similarity relation.

5 Results

We would like to present some results on the 2010-11 Times Higher Education
World University Ranking data [1]. The dataset contains 199 universities eval-
uated on 13 separate indicators designed to capture a broad range of activities,
from teaching and research to knowledge transfer. These elements are brought
together into five attributes on scales from 0 to 100: Teaching environment (T),
International mix (I), Industry income (Ind), Research (R) and Citations (C).

We do not wish to rank the universities, as it could be easily misunderstood,
but to find clusters of similar universities according to two persons’ viewpoints.
Let’s consider person A to be a student who is more interested in the teaching
environment and international side of the universities, and let person B be a
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Table 1. Weights extracted to reflect two persons’ viewpoints)

Person T I Ind R C

A 0.31 0.42 0.10 0.10 0.05
B 0.05 0.10 0.10 0.42 0.31

postdoc who is more interested in looking at the research environment charac-
terising each university. For each person we will find the set of clusters which
make most sense according to their viewpoints.

Due to the fact that each attribute is constructed and brought to the same
scale, we take as thresholds σ = 5%, δ = 10%, δ+ = 50% of the scales range for
each attribute. We then select a set of weights in accordance with each person’s
point of view as seen in Table 1.

0

100

T I Ind R C
0

100

T I Ind R C
0

100

T I Ind R C
0

100

T I Ind R C

Fig. 5. Person A cluster box plots

For person A we find 4 clusters for which we present the boxplots of the
objects inside them in Figure 5. We notice how we have grouped together uni-
versities with close evaluations on the second attribute which was deemed as
most important for person A. In the first cluster we find universities with high
evaluations on the International attribute (I), medium-high values in the second,
medium-low in the third, and very low in the last. The Teaching attribute (T)
also differentiates well the clusters, with progressively lower evaluations from the
first to third clusters, while slightly higher on the last.

In the case of the second point of view we find 6 clusters where universities are
grouped together mostly based on the fourth attribute, Research (R), as seen in
Figure 6. Also the last attribute, Citations (C), is well defining for each cluster.

As we wish that the clustering result would contain clusters of objects that
are all similar to each other and dissimilar from the rest, we could model this
by a similarity relation that contains +1 values between objects inside the same
cluster and −1 values between objects in different clusters. To measure the qual-
ity of the results we use the fitness of a partition that we defined in Section 3. We
compute this fitness accroding to the similarity relation defined by each point
of view that we have modeled. We also compare our results to some well-known
algorithms like K-means [20], Single-Link and Complete-Link Agglomerative
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0

100

T I Ind R C
0

100

T I Ind R C
0

100

T I Ind R C
0

100

T I Ind R C

0

100

T I Ind R C
0

100

T I Ind R C

Fig. 6. Person B cluster box plots

Table 2. Fitness of clusterings according to two persons’ viewpoints

Person A POV Person B POV

GAMMA-S for A 0.784 0.707
GAMMA-S for B 0.763 0.853

K-Means 0.710 0.698
SL AHC 0.204 0.213
CL AHC 0.682 0.728

PAM 0.704 0.791

Hierarchical Clustering [15] and Partitioning Around Medoids [17]. For all of
these, we give them as input the number of clusters we have found with our
approach.

We further present some results on a few well-known datasets such as the Iris,
Wines and Breast Cancer datasets from the UCI Machine Learning Repository
[12]. Each of these datasets comes, based on the analysis of some experts on the
corresponding problem, with the set of clusters we should obtain. Therefore a
good criterion for evaluation is the Jaccard Coefficient [14] in order to measure
how close the results of the clustering algorithms are to the desired clusters.

Due to the absence of the experts that proposed the clusters for each problem
we have used σ = 10%, δ = 20% and δ+ = 70% of the value range on each
attribute as thresholds and given equal significance to all attributes. We show,
however, on the Iris dataset which contains 150 objects defined on 4 attributes,
that if such an interaction were possible, we could have extracted a threshold
set that would bring the clustering results of GAMMA-S very close to the clus-
ters that were proposed by the experts. Therefore, with σ1 = 0%, σ2 = 33%,
σ3 = 25%, σ4 = 12% of the value ranges of each attribute and the dissimilarity
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Table 3. Average results on Jaccard Coefficient (standard deviations in brackets)

Algorithm/Dataset Iris Wines Breast Cancer

K-means 0.529 (0.118) 0.461 (0.100) 0.554 (0.130)
SL AHC 0.589 (-) 0.336 (-) 0.531 (-)
CL AHC 0.622 (-) 0.805 (-) 0.588 (-)

PAM 0.712 (0.007) 0.734 (0.000) 0.622 (0.025)
GAMMA-S 0.525 (-) 0.766 (-) 0.539 (0.028)

thresholds higher by 1% the Jaccard Coefficient of the GAMMA-S result would
be equal to 0.878.

Except for our algorithm, we have given the a priori knowledge regarding
how many clusters the outcome should have to the rest. The results come from
running every non-deterministic algorithm 100 times over each instance. For the
first two datasets, due to their small size, we have used the exact approach of
our algorithm.

We notice overall that GAMMA-S performs very well considering the assump-
tions we make. We also notice that if we would be able to extract preferential
information from a person who wants to cluster this data, we would get results
more in accordance with his point of view on the problem. In addition we neither
need to provide commensurable cardinal attributes nor an a priori number of
clusters.

6 Conclusions and Perspectives

We conclude that our clustering method does indeed give consistent results,
however without any requirements on the data, as all kinds of attribute types can
be considered. Furthermore, imprecision, uncertainties and even missing values
can easily be handled by the similarity relation defined in this article. There
are many improvements that could be done to increase the performance of our
approach, which will be explored in the future. At the moment we need to explore
elicitation techniques for the parameters of the model. We also wish to present
more extensive results on datasets on which we could have this interaction with a
real person. The complexity of the algorithm should be improved by fine-tuning
the meta-heuristic, while the final result our method proposes could be further
improved by means of a local search method.
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