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Abstract. In the context of Multiple Criteria Decision Aid, a decision-
maker may be faced at any time with the task of analysing one or several
sets of alternatives, irrespective of the decision he is about to make. As
in this case the alternatives may express contrasting gains and losses
on the criteria on which they are evaluated, and while the sets that are
presented to the decision-maker may potentially be large, the task of
analysing them becomes a difficult one. Therefore the need to reduce
these sets to a more concise representation is very important.

Classically, profiles that describe sets of alternatives may be found
in the context of the sorting problem, however they are either given
beforehand by the decision-maker or determined from a set of assignment
examples. We would therefore like to extend such profiles, as well as
propose new ones, in order to characterise any set of alternatives. For
each of them, we present several approaches for extracting them, which
we then compare with respect to their performance.

Keywords: multiple criteria decision aid, descriptive profiles, central
profiles, bounding profiles, separating profiles, outranking relations,
meta-heuristics.

1 Introduction

The field of Multiple Criteria Decision Aid (MCDA) focuses on modelling the
preferences of decision-makers and aims at helping them in reaching certain de-
cisions. This is not an easy task, as the entities that make the object of these
decisions are defined on multiple dimensions and in many cases express con-
trasting gains and losses on them. Many different models have been proposed in
order to reflect the subjective perspective of the decision-maker (DM) over these
entities, or alternatives. Hence we are able to distinguish at least three types of
relations between them [7]: indifference, strict preference and incomparability.

Classically, three well known types of decision problems have been defined in
MCDA [9]: choice, ranking and sorting. The first consists in finding the best al-
ternative, or the set containing the best ones, the second looks to build an order,
partial or weak, over the set of decision alternatives, while the last problem out-
puts an assignment of the alternatives to a predefined set of classes, which may
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be ordered or not. Furthermore, another type of problem, that of clustering, has
begun to receive increasing interest recently, having been specifically redefined
in the context of MCDA [5].

In all of the mentioned MCDA problem types we may be faced at some point
with one or several sets of alternatives, either as a final recommendation or
during the decision aiding process. Due to the multidimensional nature of these
alternatives and the possibility of having large sets, being able to describe them
using concise information becomes very important. In the case of the sorting
problem, the profiles that are used to describe the classes already serve this
purpose, however this is not the case for the other types of problems. We mention
the central profiles [6,1] that are used for sorting into nominal classes, as well as
the delimiting profiles [11,9] for sorting into ordered classes.

In this paper we extend the profiles that have been used in conjunction with
the problem of sorting, as well as we propose new ones, in order to be able to
reduce the information given by one or several sets of alternatives to a more
concise representation. These profiles may then be used in order for the DM
to better understand the sets of alternatives that he is confronted with, while
considering his preferences over them.

We begin by first defining the proposed profiles in Section 2. We consider only
the case where a preference model is based on an outranking relation [8]. In Sec-
tion 3 we first present several exact approaches for extracting these profiles. In
order to deal with complexity issues that would be faced when the sets of alter-
natives are of large cardinality, we especially focus on the use of meta-heuristic
approaches for constructing these descriptive profiles. The proposed approaches
are validated and compared in Section 4 over a large set of benchmarks that
contain increasingly contrasting alternatives. Finally, we conclude with a series
of remarks and perspectives for the presented work.

2 Defining the Profiles

Before defining the profiles we first present the working context. Let X be the
set of all decision alternatives that can be constructed on a set of criteria F =
{1, ..., p}. We denote with A and B two subsets of X and their cardinalities with
n and m. The evaluation of any alternative x ∈ X on any criterion i ∈ F is
denoted by xi.

We consider that the DM’s preferences are modelled using an outranking re-
lation, which we denote with S [8]. For the purpose of formally defining the
profiles, any outranking relation may be considered. While an outranking rela-
tion is used to reflect whether the DM considers an alternative to be at least
good as another, we may additionally use it to express judgements with respect
to the notions of indifference, strict preference or even incomparability [7]. Two
alternatives x and y are thus indifferent if simultaneously x outranks y and y
outranks x. An alternative x is said to be strictly preferred to another alter-
native y when x outranks y and y does not outrank x. These alternatives are
incomparable when neither of them outranks the other.
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We will consider three profiles for characterising one or several sets of alter-
natives. These are the central, bounding and separating profiles.

We define a central profile for a set A as an alternative, real or fictive,
which is indifferent to as many of the alternatives in A as possible. Based on
this definition, a central profile may be used to substitute all the alternatives in
A, due to that fact that the DM considers it indifferent to them, therefore he
cannot distinguish between them.

We model the fitness of a central profile cA with respect to the set A through:

fc(cA, A) =
1

n
· ∣∣{x ∈ A : x I cA}

∣
∣ (1)

The function above is straightforward, giving the proportion of alternatives
in A that are indifferent to the central profile, inside a [0, 1] value range.

When the alternatives in A are mostly indifferent to each other, a central
profile may be able to represent them with a high degree of confidence. However,
if we consider that the alternatives in A have rather contrasting evaluations, a
central profile may not be able to represent them faithfully. For this purpose we
will consider the second type of descriptive profile, the bounding profiles.

The bounding profiles may be seen as the best and worst alternatives in A,
bounding all the rest between them with respect to the preferences of the DM.

We define the upper bounding profile of a set A as an alternative which
is either strictly preferred or indifferent to any alternative in A, but not strictly
preferred by them. In this way we may state that no alternative in A is better
than the upper bounding profile. Similarly, the lower bounding profile of A is
either strictly preferred by any alternative in A, or indifferent to them, therefore
no alternative in A may be said to be worse than the lower bounding profile. We
denote these profiles with b+A and b−A respectively.

When the upper or lower bounding profiles cannot be selected from A we may
proceed to construct them using the following functions to model their quality:

fb+(b+A, A) =
1

n · (n+ 1)
·
(

n · ∣∣{x ∈ A : b+A S x}∣∣+ ∣
∣{x ∈ A : x S b+A}

∣
∣

)

(2)

fb−(b−A, A) =
1

n · (n+ 1)
·
(∣
∣{x ∈ A : b−A Sx}∣∣+ n · ∣∣{x ∈ A : x S b−A}

∣
∣

)

(3)

Each of the two fitness measures counts the number of alternatives from A
that the considered bounding profile outranks in the first term of the sum, but
also the number of alternatives in A that are outranked by it in the second term.

Since an upper bounding profile mainly has to outrank all the alternatives
in A (hence it will be either strictly preferred or indifferent to them), the first
term has been weighted so that it dominates the second. We would also like to
have an upper bounding profile that is indifferent to as many alternatives in A
as possible, therefore the second term is also necessary.

Similarly, the lower bounding profile reverses the importance of the two terms,
as it mainly needs to be outranked by the alternatives in A (hence it will be either
strictly preferred by them or indifferent). Nevertheless, if this first condition is
met, then the lower bounding profile should also outrank the alternatives in A
in order to be indifferent to them.
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Finally, we consider two sets of alternatives, A and B, and a relation of strict
preference of the first over the second. In such a case we may consider defining
a profile that separates the alternatives between the two sets as well as possible.

We define a separating profile between a set A that is strictly preferred
to a set B, as an alternative, real or fictive, which is strictly preferred by the
alternatives in A, or at least indifferent to them, while in turn it is strictly
preferred to the alternatives in B, or at least indifferent to them.

The fitness measure for such a profile is:

fs(sAB,A,B)=
(n+m)

(∣
∣{x∈A :xSsAB}∣∣+∣

∣{x∈B : sABSx}
∣
∣

)

+
∣
∣{x∈A : sAB �Sx}

∣
∣+

∣
∣{x∈B :x�SsAB}

∣
∣

(n+m)(n+m+ 1)
(4)

The first term, which is multiplied with (n+m), counts the number of alter-
natives in A that outrank the separating profile and the number of alternatives
in B that are outranked by it. If all the alternatives in A and B are counted,
then the separating profile is not strictly preferred to any of the alternatives in
A, while none of the alternatives in B are strictly preferred to it. In this case,
the separating profile may be said to have been placed between the two sets of
alternatives. However, we may have certain alternatives from both sets that are
indifferent to the separating profile. In this case the separating profile may not
be considered to properly separate A and B. For this reason we have added the
second term from Equation (4), which counts the number of alternatives from
A that are not outranked by sAB, and the number of alternatives from B that do
not outrank sAB. If this term is also maximized then all the alternatives from A
will be strictly preferred to the separating profile, while all the alternatives from
B will be strictly preferred by it.

3 Algorithmic Approaches to Determine the Profiles

Several approaches to constructing the presented profiles may be considered,
from very simple ones to others that are more complex. Some of them are inde-
pendent of the preference model that is used in order to reflect the perspective
of the DM over the set of alternatives, while others are tailored for a particu-
lar type of outranking relation. We will consider in the case of the latter, the
outranking relation from [2], although the approaches that we will present may
easily be adapted to other outranking relations.

For the selected relations, the “at least as good as” comparisons are charac-
terized for all pairs of alternatives x and y and for all criteria i ∈ F by:

Ci(x, y) =

⎧
⎨

⎩

1 if yi < xi + qi ;
−1 if yi ≥ xi + pi ;
0 otherwise ,

(5)

where 0 ≤ qi (resp. pi ≥ qi) is a constant indifference (resp. preference) threshold
associated with the ith criterion. A weightwi > 0 is associated with each criterion
i, and the overall concordance index C(x, y) is defined as the weighted sum
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of the marginal concordances. A veto threshold vi for each criterion i is also
introduced in order to invalidate the outranking in case a very large difference
of evaluations on at least one criterion is detected in favour of the overall less
preferred alternative. Consequently, an alternative x outranks an alternative y
(xS y) iff C(x, y) > 0 and yi − xi < vi ∀i ∈ F .

3.1 Exact Approaches

One of the simplest approaches is to select an existing alternative based on how
well it performs with respect to the considered fitness measures. For instance a
central profile is selected as follows:

cA = argmax
x∈A

fc(x,A). (6)

Not only will such an approach be very fast, but it will also give the DM a
result with which he is familiar, as the profiles are real alternatives.

Nevertheless, profiles that are selected from the existing alternatives may not
always be of good quality, considering the fitness measures we have proposed.
This may easily be imagined for sets containing very contrasting alternatives.

Another simple and quick approach for building these profiles is to construct
them directly from the evaluations of the alternatives. In the case of a central
profile we may consider a simple mean operator as follows:

cAi =
1

n

∑

x∈A

xi,∀i ∈ F. (7)

This approach is only suited when the criteria are defined on quantitative
scales, however we may use a median operator when confronted with ordinal
scales.

In the case of bounding profiles, since the upper bounding profile should
mainly outrank the alternatives in A, while the lower bounding profile should
mainly be outranked by them, we may use the max and min operators:

b+Ai = max
x∈A

xi,∀i ∈ F, b−Ai = min
x∈A

xi,∀i ∈ F. (8)

A separating profile may be given as the mean between the central profiles of
the two sets:

sABi =
1

2

( 1

n

∑

x∈A

xi +
1

m

∑

x∈B

xi

)

,∀i ∈ F. (9)

While these approaches for building central, bounding or separating profiles
are simple and fast, nothing guarantees that they will find a good result with
respect to the fitness measures defined in Section 2.

A third approach is to usemathematical programs that model the outrank-
ing relations between alternatives to extract the central, bounding or separating
profiles which are optimal with respect to the fitness measures defined in Section
2. We have considered an extension of the work of [4], which may be used to
model the outranking relation presented earlier in this section, in order to de-
termine the optimal profiles in an exact way. However, due to complexity issues,
such an approach quickly becomes impractical when considering larger sets of
alternatives. As we will consider such cases for the empirical validation of the
presented algorithmic approaches in Section 4, we do not elaborate further on
the topic of using a mathematical program.
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3.2 Meta-heuristic Approach

An alternative to finding an optimal central, bounding or separating profile is to
perform a trade-off between the quality of the profile and the time required by
the approach in order to find it. Hence, we may use meta-heuristic approaches
[10], which find results that are close to the optimal one in a fraction of the time
required by exact approaches.

In our case, any single-solution meta-heuristic may be used. We present the
outline of these approaches below [10]:

Algorithm 1. Single-solution meta-heuristic

Input: Initial solution s0.
1: t = 0;
2: while not Stopping criterion satisfied do
3: N(st) = Generate(st); /* Generate candidate solutions from st */
4: st+1 = Select(N(st)); /* Select a solution to replace the current one */
5: t = t+ 1;
Output: Best solution found.

The initial solution may either be constructed randomly, or may be guided
towards a good solution. In our case we will be using the first approach of
selecting an existing alternative that maximizes the considered fitness measure.

The neighbours of the current solution will be those that contain an evaluation
change on only one criterion. This change will be either the smallest increase or
the smallest decrease of the evaluation, which would change the way in which
the profile compares on a particular criterion to the alternatives that it tries to
describe. We motivate this by the desire to be able to explore the search space
from one neighbouring solution to the next, without performing large changes
to a profile, which may lead us to miss potentially better intermediate solutions.

The selection of the new solution generally depends on the actual type of
meta-heuristic used. Nevertheless, in many cases the neighbouring solutions are
evaluated based on the fitness measure and then a selection procedure is ap-
plied. However, it may be the case that assessing the fitness of all neighbouring
solutions, or even constructing them, will increase the execution time of the ap-
proach. In such cases, certain heuristics may be used to assess the quality of
each change on the current solution. We will propose in what follows different
heuristic measures for each of the three types of profiles that have been defined
in this paper. The outranking relation which we use here is the one defined in
the beginning of this section. Note that similar heuristics can be given for other
definitions of the outranking relation.

We begin with the heuristic for increasing the evaluation of a central profile
on a particular criterion i ∈ F , considering the alternatives in set A:

hc(cA, i) =
∣
∣{x∈A : xi − cAi>qi ∧ cA � Ix}∣∣−∣

∣{x∈A : xi − cAi<−qi ∧ cA � I x}∣∣ (10)

Since the central profile should be indifferent to the alternatives in A, the
heuristic in Equation (10) may be seen as a voting procedure where each al-
ternative in A votes in favour of increasing the evaluation of cA on criterion i,
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in disfavour, or refrains from voting. This is reflected by the two terms in this
equation. The first term counts the number of alternatives which have an eval-
uation higher than that of cA by more than the qi threshold. This means that
those alternatives are not considered indifferent to cA on criterion i. Moreover,
those alternatives are preferred to it, therefore, from their perspective, the eval-
uation of cA should be increased in order for them to become indifferent. The
second term counts in a similar way the alternatives from whose perspective the
evaluation of cA on criterion i should be decreased. The alternatives which are
already indifferent with cA on criterion i do not require an increase or decrease in
the evaluation of cA Furthermore, the alternatives in A that are already overall
indifferent to cA do not take part in this process, even if their evaluations on
criterion i are not indifferent to that of cA, as this would not increase the fitness
of the central profile. The heuristic is valued in the [−n, n] interval.

The heuristic of decreasing the evaluation of cA on criterion i is −hc(cA, i).
In Figure 1 we illustrate the way in which the heuristic works, considering a

set containing only four alternatives.

Fig. 1. Detailing the heuristic for changing cA for a set A of 4 alternatives

In this example we consider a set A = {x, y, z, t} of four alternatives and their
central profile cA. We consider that none of these alternatives are at this point
overall indifferent to cA, therefore they all take part in the voting process. It is
evident that the evaluation of cA should be increased, as two alternatives from
A are in favour of this change, one is against and another refrains from voting,
therefore giving a positive value to the heuristic measure. However, we would
only add to the evaluation of cA the smallest amount which changes at least one
of the comparisons between it and the alternatives in A. The first alternative, x,
would require cA to be increased by an amount that brings the first dotted line
below the evaluation of x on i just above it. This amount is xi − cAi − pi + ε,
where ε > 0 and ε � 1, as in this case x would become only weakly preferred
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to cAi. However, this amount can be seen to be larger than the amounts that
would be required in order for the other alternatives compare differently to cA,
therefore we will not increase cAi by this amount. The use of ε is necessary
following the definition of the outranking relation. The smallest amount that
would impact the way in which at least one alternative compares to cA on i is
equal to yi−cAi−qi, which would make y become indifferent to cA on criterion i,
while all the other alternatives will remain in the same state as before. Therefore
the increase of cAi would be this amount.

Having a positive fitness value for the heuristic in Equation (10) does not
imply that we would increase its evaluation. All the operations of both increasing
and decreasing the evaluations of cA on all criteria, characterised through the
described heuristic measure, are used in the meta-heuristic approach.

We continue with the heuristic functions for increasing the evaluations of the
bounding profiles on a particular criterion in Equations (11) and (12).

hb+(b+A, i)=n·∣∣{x∈A : xi − b+Ai>qi ∧ b+A �S x}∣∣−∣
∣{x∈A : xi − b+Ai<−qi ∧ x �S b+A}

∣
∣ (11)

hb−(b−A, i)=
∣
∣{x∈A : xi − b−Ai>qi ∧ b−A �S x}∣∣−n·∣∣{x∈A : xi − b−Ai<−qi ∧ x �S b−A}

∣
∣ (12)

We find that these heuristics are defined similarly to the one for a central
profile. The first term from both counts the number of alternatives that do not
outrank each profile but have an evaluation that is above that of the profile by
more than the indifference threshold. In this case the evaluation of the profile
should be increased so that it would outrank the considered alternatives on
criterion i. Similarly, in the second term the alternatives that are not outranked
by the bounding profiles and that have their evaluations lower by more than the
indifference threshold require the evaluations of the profiles to be decreased. The
two terms are weighted so that one of them dominates the other, as is the case
with the fitness measures for these profiles.

Finally, we present the heuristic for increasing the evaluation of a separating
profile, considering the two sets A and B:

hs(sAB, i)=(n+m)·
(∣
∣{x∈B : xi−sABi>qi ∧ sAB �S x}∣∣−∣

∣{x∈A : xi−sABi<−qi ∧ x �S sAB}
∣
∣

)

+
∣
∣{x∈B : xi−sABi>−qi ∧ x S sAB}

∣
∣−∣

∣{x∈A : xi−sABi<qi ∧ sAB S x}∣∣ (13)

The first term counts the alternatives from B that require the evaluation
of sAB on i to be increased in order for it to outrank them, while the second
term counts the alternatives from A that require that this evaluation is lowered
in order for them to outrank the separating profile. These terms are weighted,
as they account for the most important part of the definition of a separating
profile. The following two terms account for the alternatives in B that require
an increase in the evaluation of sAB, and those from A that require a decrease.

4 Empirical Validation

In order to be able to compare the performance of the proposed approaches for
extracting each type of profile, we have generated a large number of problem
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instances containing one or two sets of alternatives. We have fixed the size of
these sets of alternatives to 50, making them very difficult for a DM to analyse
directly.

4.1 Constructing the Benchmarks

The alternatives are defined on a number of 11 criteria which are valued on
ratio scales in the interval [0, 1]. This number has been chosen in order for
the alternatives to resemble those from real problems that are considered to
be difficult, but also allowing us to construct very diverse ones. In order to
model a wide range of potential problems, we also generate the evaluations of
the alternatives in each set so that they are increasingly contrasting. A total of
ten generators are used, which we denote alphabetically from A to J . While the
first builds each alternative using a normal distribution centred at the median
level on every criterion, the following four randomly pick for each alternative
normal distributions that are increasingly spaced apart. The following generators
are the same as the first five except that very good and very bad performance
evaluations are additionally inserted. For each alternative, two distinct criteria
are randomly picked and with a 50% probability the evaluation on the first
criterion is maximized, while with the same probability the evaluation on the
second criterion is minimized. Using each generator we have built 5 problem
instances.

The perspective of a fictive DM on these sets of alternatives is modelled using
the outranking relation from [2]. The criteria have been given equal importance
weights as we are not dealing with real decision problems, but also due to the fact
that by reducing the significance of certain criteria in favour of others we reduce
the impact that they would have on the way in which the alternatives compare
to each other. By maintaining the criteria importance weight the same for all of
the criteria, we are assuring that the benchmarks have the highest diversity in
their structures as possible. The discrimination thresholds are selected so that
evaluations that are generated using the same normal distribution are in a high
percentage indifferent. Only one veto threshold is used, which is set to three
quarters of the value range, making veto situations appear very rarely inside the
instances constructed using the first five generators.

4.2 Results

For each of the 50 problem instances that we have generated, we have constructed
the central, bounding and separating profiles using the three approaches pro-
posed in this paper. The approaches of selecting existing alternatives and that
of constructing them from the evaluations of the alternatives in the sets have
been executed only once on each benchmark, as they are deterministic.

In the case of the meta-heuristic approaches, we have selected a simulated
annealing implementation [3]. The initialisation step is given the solution of
the first of the previous approaches, while the cooling rate is fixed so that the
algorithm will run at most for one minute. This limit has been set in order to
simulate real-life conditions where the approaches of constructing these profile
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need to quickly output good results. Furthermore, a strategy using restarts had
been additionally applied. This approach has been executed 50 times over each
benchmark in order for the results with respect to the average fitness of the
profiles to be significant.

The average fitness of the three types of profiles, as well as the standard
deviations, where relevant, are presented for each of the ten types of benchmarks
in Figure 2.

A B C D E F G H I J

40

60

80

100

Central profiles

A B C D E F G H I J

97

98

99

100

Bounding profiles

A B C D E F G H I J
80

90

100

Separating profiles

Selecting existing alternatives

Constructing from evaluations

Meta-heuristic approach

Fig. 2. Average fitness of the central, bounding and delimiting profiles

Certain conclusions may be drawn for the results of finding any type of profile.
First of all, we notice that the approaches find profiles that are less fit with
respect to the considered fitness measures as we tackle problems instances that
contain increasingly contrasting alternatives. This is seen through the decrease
in fitness from the first type of benchmarks up to the fifth, as well as from the
sixth and up to the last. The two sets of benchmarks resemble strongly each
other, except that in the case of the second set we have added large performance
gains or losses for certain alternatives in the sets.

Secondly, we may notice that the approaches of building the profiles using sim-
ple operation on the evaluations of the alternatives in each set generally perform
poorer than all the rest. A few exceptions occur when constructing bounding
profiles, where the proposed approach is always able to build an upper bounding
profile that outranks all the alternatives in the set and a lower bounding profile
that is outranked by them. Any fitness results that are above these highlight
the fact that we have constructed bounding profiles that come closer to the
alternatives in the set, i.e. indifferent to them.
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The meta-heuristic approaches improve on the results given by the approach
of selecting an existing alternative from the dataset. The largest improvements
may be seen to occur for the approach of constructing a central profile, however
this is due to the nature of the fitness measure. Nevertheless, in this case we are
able to improve the results of the approach of selecting an existing alternative
by as much as 10%.

For the other types of profiles the fitness measures model two objectives,
the first dominating the other, and thus improvements over the less important
objective are less visible. Nevertheless, when the first objective is maximized
the second one becomes also very important. This is especially the case for the
bounding profiles, which we additionally want to become indifferent to as many
of the alternatives in the set as possible. We find that in this case the first
approach is already performing quite well for the first types of benchmarks, and
the meta-heuristic is not able to improve on its results.

Finally, in the case of the separating profiles, the meta-heuristic approach
performs quite well, for certain benchmark type being able to find separating
profiles that are strictly preferred by the alternatives in the first set and strictly
preferred to the alternatives in the second set.

5 Conclusions and Perspectives

In this paper we have proposed three types of profiles that may be used in order
to describe one or several sets of alternatives. Two of these profiles, the central
and separating profiles, have been extended from the context of the problem of
sorting, while the bounding profiles are new. Through them we are able to reduce
one or two sets of alternatives to a condensed representation, which would aid
a DM in understanding and dealing with these sets as a whole, especially when
we are dealing with a large number of alternatives inside them. The definitions
of these profiles make their use very intuitive.

For each of the three types of profiles we have presented three approaches
for constructing them, which we have tested over a large number of benchmarks
holding various difficulties. The results show that in most cases the approach
of selecting an existing alternative performs quite well, however using a meta-
heuristic we are able to find even better results. Furthermore, the approaches
of constructing the profiles using simple operations over the evaluations of the
alternatives in the sets in general perform worse than the others.

Although we have considered the use of a mathematical program in order to
find the optimal central, bounding or separating profiles, due to the size of the
sets of alternatives such an approach became highly impractical.

We would like to consider in the future extending these profiles for other defi-
nitions of outranking relations as well as additionally considering the credibility
degrees that are normally associated with them.

We envision the use of these profiles mainly in the problem of clustering in
MCDA [5]. As clustering may be seen as an exploratory data analysis technique,
being able describe clustering results over large sets of alternatives, using a
considerably smaller set of central, bounding or separating profiles, would greatly
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enhance the exploration and understanding of the original dataset. Furthermore,
these profiles could also be used in conjunction with the problems of choice and
ranking, provided that large groups alternatives are generated as results to these
problems. Finally, being able to summarize the information given by a set of
alternatives may additionally aid in a process of eliciting the preferences of a
DM over large sets of alternatives. We will explore these topics in the future.
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