

Multiple Criteria Decision Aid

- aims at modelling the preferences of decision-makers;
- aids them in reaching certain decisions;

Alternatives	Criteria						
	Price 🗸	Acceleration \downarrow	Safety ↑	•••			
Car 1	18,342	30.7s	good				
Car 2	15,335	30.2s	medium				
Car 3	16,973	29 s	v.good				
÷	:						

Introduction

Descriptive profiles for sets of alternatives in MCDA

Olteanu, Meyer and Bisdorf

Modelling preferences **Modelling preferences** Outranking relations (S) Value functions (U) Value functions (U) • each alternative receives a score; • each alternative receives a score; • alternatives are compared • U(x) =aggregated criteria • U(x) =aggregated criteria pair-wisely: evaluations of x; evaluations of x; 1) is x at least as good as y on a weighted majority of criteria? • trade-offs between criteria; • trade-offs between criteria; 2) is x not much worse than y on any criterion? • similar to voting;

		< □		▶ ◀ ☰ ▶ 글 ∽ ू ↔ <mark>TELECC</mark> Bretag	M		< □		ト 4 匡 ト 匡 - 夕 Q C ^{TELECOM} Bretagne
page 5	Olteanu, Meyer and Bisdorff	Descripti	ve profiles for sets	of alternatives in MCDA 📑 🌋 🚻	page 5	Olteanu, Meyer and Bisdorff	Descripti	ve profiles for sets	of alternatives in MCDA 📑 🌋 🕅
国務部計 Int	roduction								
Introduction		Finding the profiles			Introduction		Finding the profiles		Conclusions and perspectives

E

590

Modelling preferences

Value functions (U)	Outranking relations (S)						
 each alternative receives a score; U(x) = aggregated criteria evaluations of x; trade-offs between criteria; 	 alternatives are compared pair-wisely: 1) is x at least as good as y on a weighted majority of criteria? 2) is x not much worse than y on any criterion? similar to woting: 						
Preferential situations							
$\begin{array}{ll} U(x) = U(y) & \mbox{Indif}\\ U(x) > U(y) & \mbox{Strict pre}\\ U(x) \ge U(y) & \mbox{Weak pre}\\ & \mbox{Incompa} \end{array}$	ference (I) $x Sy \land y Sx$ ference (P) $x Sy \land y \ x x$ ference (Q) $x Sy$ rability (R) $x \ y \land y \ x x$						

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Descriptive profiles for sets of alternatives in MCDA

Main typologies of problems

Alternatives

Ξ

ヘロト 人間 ト 人造 ト 人造 ト

TELECOM Bretagn

Main typologies of problems

Main typologies of problems

TELECON

Introduction

Decision Aiding process

Decision Aiding process

		< ⊏		▶ ◀ 壹 ▶ 壹 ∽ � ? <mark>TELECOM</mark> Bretagne			< □	□▶ ∢ 🗗 ▶ ∢ 🗄	▶ ◀ Ē ▶ Ē ∽ ू ↔ <mark>TELECOM</mark> Bretagne
page 7	Olteanu, Meyer and Bisdorff	Descripti	ive profiles for sets	of alternatives in MCDA 🛛 🗮 🌋 🕅	page 7	Olteanu, Meyer and Bisdorff	Descripti	ve profiles for sets	of alternatives in MCDA 🛛 🗮 🌋 🕅
三選択日 れ	troduction				「遊園田」 Int	troduction			
Introduction					Introduction				Conclusions and perspectives

Decision Aiding process

Motivation

・ロト・日本・日本・日本・日本・日本

▲ロト ▲ @ ト ▲ ≧ ト ▲ ≧ ・ ⑦ � @ <mark>TELECOM</mark> Bretagne TELECOM Bretagne

Bind Defining the profiles

Finding the profiles

Finding the profiles

Approximative approach

Meta-heuristic

- single solution meta-heuristic:
 - start from an initial solution:
 - iteratively change it until a stop criterion is met;
- tested simulated annealing:
 - ability to escape local optima;
 - relatively easy to tune (cooling schedule);
 - may use restarts;

Olteanu, Meyer and Bisdorf

Olteanu, Meyer and Bisdorff

- used the outranking relation S from [Bisdorff, Meyer, Roubens 07] with only one veto threshold;
 - proposed a heuristic for the algorithm.

Heuristic

Experiments description:

- constructed a series of 50 benchmarks:
 - 50 alternatives:
 - 11 criteria;
 - [0, 1] ratio scales;
 - 10 classes of difficulty $(\mathcal{A} - \mathcal{J})$;

- considered a fictive DM:
 - outranking relation S from [Bisdorff, Meyer, Roubens 07] with only one veto threshold;
 - equally significant criteria;
 - indifference, preference and veto thresholds:
 - median cut ($\lambda = 0.5$);
- executed all the approaches (except linear programs > 60 min) (50 executions over each benchmark, 10 seconds each);
- compared results w.r.t. the fitness measures.

Results

《曰》《圖》《臣》《臣》

E

page 18

TELECOM

590

Olteanu, Meyer and Bisdorff

Results

Results

TELECOM

page 22

Results for central profiles using a valued indifference relation

Conclusions

- selecting an alternative is generally better than constructing one from mean, max or min evaluations;
- meta-heuristic provides significant improvements over exact approaches for central profiles (over 5% even when using the credibility of the indifference relation);
- improvements for bounding and separating profiles are not so visible (modelling the two objectives);
- using min and max evaluations for bounding profiles maximizes the first set of objectives → should only model the second (which brings the profiles closer to the alternatives);

Olteanu, Meyer and Bisdorff

200

Conclusions and perspectives

Conclusions and perspectives

Perspectives

page 23

Perspectives

°°°°°°

0°0°

00

)0° 00'

9

- further investigation into bounding and separating profiles and the representation of their fitness;
- finding the optimum result for each benchmark;
- inclusion of the veto in the heuristic;
- easy extension of using the weights in the heuristic;
- application for describing clustering results.

Perspectives

Conclusions and perspectives

Conclusions and perspectives

Perspectives

Perspectives

Perspectives

