ECDA 2013 - Luxembourg

# Mining preferential datasets in MCDA

Alexandru-Liviu Olteanu 1,2

Raymond Bisdorff <sup>1</sup>

1. Université du Luxembourg



2. Institut Télécom, Télécom Bretagne Université Européenne de Bretagne

10<sup>th</sup> of July 2013

#### Contents

1. Data mining and clustering

2. Multiple criteria decision aid

3. Clustering in MCDA

4. Case Study: U.S. Toxic Chemicals Release Practices

5. Conclusions and Perspectives

# Data mining and clustering

Data • many forms;

(measurements, observations, dynamics of processes, text, images, etc.)

large quantities [GANTZ AND REINSEL 2011];
 ≈ 10<sup>21</sup> bytes (100 TB for each person on the planet)

## Data mining

• process that **extracts information** from a data set and **transforms** it into an **understandable structure** for further use;

Data • many forms;

(measurements, observations, dynamics of processes, text, images, etc.)

large quantities [GANTZ AND REINSEL 2011];
 ≈ 10<sup>21</sup> bytes (100 TB for each person on the planet)

### Data mining

• process that **extracts information** from a data set and **transforms** it into an **understandable structure** for further use;



# Multiple criteria decision aid

# Multiple Criteria Decision Aid

- aims at modelling the preferences of decision-makers;
- aids them in reaching certain decisions;

| Objects | Attributes |              |        |  |
|---------|------------|--------------|--------|--|
|         | Price      | Acceleration | Safety |  |
| Car 1   | 18,342     | 30.7s        | good   |  |
| Car 2   | 15,335     | 30.2s        | medium |  |
| Car 3   | 16,973     | 29s          | v.good |  |
| ÷       | :          | :            | ÷      |  |

# Multiple Criteria Decision Aid

- aims at modelling the preferences of decision-makers;
- aids them in reaching certain decisions;

| Alternatives   | Criteria         |                           |          |     |
|----------------|------------------|---------------------------|----------|-----|
| / itternatives | Price \downarrow | Acceleration $\downarrow$ | Safety ↑ | ••• |
| Car 1          | 18,342           | 30.7s                     | good     |     |
| Car 2          | 15,335           | 30.2s                     | medium   |     |
| Car 3          | 16,973           | 29s                       | v.good   |     |
| ÷              | :                |                           |          |     |

# **Modelling preferences**

# Value functions

- aggregate all the criteria into a **score**;
- $(x_i, x_j, x_k, \ldots) \rightarrow U(x);$
- trade-offs between criteria;

# Outranking relations

• x **outranks** y iff:

 x is at least as good as y on a weighted majority of criteria;
 x is not much worse than y on any criterion;

 $\rightarrow x \, S \, y$ 

• similar to voting;

# **Modelling preferences**

## Value functions

- aggregate all the criteria into a **score**;
- $(x_i, x_j, x_k, \ldots) \rightarrow U(x);$
- trade-offs between criteria;

# Outranking relations

- x **outranks** y iff:
- x is at least as good as y on a weighted majority of criteria;
   x is not much worse than y on any criterion;

 $\rightarrow x \, S \, y$ 

• similar to voting;

## Preferential situations

| U(x) = U(y)     | Indifference (I)      | x S y ∧ y S x   |
|-----------------|-----------------------|-----------------|
| U(x) > U(y)     | Strict preference (P) | x S y ∧ y \$ x  |
| $U(x) \ge U(y)$ | Weak preference (Q)   | хSу             |
|                 | Incomparability (R)   | x \$ y ∧ y \$ x |

## **Decision problems**











Alexandru-Liviu Olteanu - Mining preferential datasets in MCDA

## **Decision problems**



## **Clustering in MCDA**

Existing approaches:

- that use similarity measures:
- that use preferential information:

Formally defined using preferential relations in [MEYER, OLTEANU 2013]S

## Multiple criteria decision aid

| Data mining                                                     | MCDA                                                                                                     |  |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| <ul><li> objects + attributes</li><li> similarity</li></ul>     | <ul> <li>alternatives + criteria</li> <li>indifference, strict preference<br/>incomparability</li> </ul> |  |
| • clustering - formally defined<br>using similarity<br>measures | • clustering - formally defined<br>using preferential<br>measures<br>[MEYER, OLTEANU, 2013]              |  |
| • problem size - easily > $10^6$                                | • problem size - rarely > $100$                                                                          |  |

# Clustering in Data mining

• process that groups objects that are **similar** and separates those that are **dissimilar**;

objects that cannot be distinguished are similar;

# Clustering in Data mining

• process that groups objects that are **similar** and separates those that are **dissimilar**;

- objects that cannot be distinguished are similar;
   BUT
- alternatives that cannot be distinguished are indifferent.

## Clustering in Data mining

• process that groups objects that are **similar** and separates those that are **dissimilar**;

- objects that cannot be distinguished are similar;
   BUT
- alternatives that cannot be distinguished are indifferent.

## Clustering in MCDA

• process that groups alternatives that are **indifferent** and separates those that are **not indifferent**;

**Classical clustering** 









# Case Study: U.S. Toxic Chemicals Release Practices

#### The data

- Toxic Chemical Release Practices of facilities in the U.S.;
- > 53,000 facilities reporting over 25 years;
- selected data from 2010 (~ 22,000 reports);
- chemical toxicity information;
- reports containing the release amounts of a chemical;
- reports containing the mitigated amounts of a chemical;

#### The data

- Toxic Chemical Release Practices of facilities in the U.S.;
- > 53,000 facilities reporting over 25 years;
- selected data from 2010 (~ 22,000 reports);
- chemical toxicity information;
- reports containing the release amounts of a chemical;
- reports containing the mitigated amounts of a chemical;

#### The problem

- classifying these practices w.r.t. their quality without knowing the classes a priori;
- PREFERENCES: handling of less toxic chemicals, fewer releases and better mitigation procedures;

#### Structuring the problem



Fictive decision-maker: bipolar-valued outranking relation [BISDORFF 2012];

#### Case Study: U.S. Toxic Chemicals Release Practices

#### Non-relational clustering

- used algorithms from [MEYER, OLTEANU 2013]
- selected one result to illustrate (12 clusters);



#### Case Study: U.S. Toxic Chemicals Release Practices



#### Case Study: U.S. Toxic Chemicals Release Practices



# **Conclusions and Perspectives**

#### **Conclusions:**

- highlighted clustering using preferential information;
- illustrated an application of clustering in MCDA;

#### **Perspectives:**

- further explore clustering in MCDA (different structures);
- methodology for using clustering when eliciting the parameters of a preference model;
- combining similarity-based and indifference-based clustering (2 layers).

# Mining preferential datasets in MCDA

- 1. Data mining and clustering
- 2. Multiple criteria decision aid
- 3. Clustering in MCDA
- 4. Case Study: U.S. Toxic Chemicals Release Practices
- 5. Conclusions and Perspectives

Illustrative example:

| F | i    | j      | k    |
|---|------|--------|------|
| w | 1    | 1      | 1    |
| x | GOOD | MEDIUM | BAD  |
| y | BAD  | MEDIUM | GOOD |

Illustrative example:

| F | i    | j      | k    |
|---|------|--------|------|
| w | 1    | 1      | 1    |
| x | GOOD | MEDIUM | BAD  |
| y | BAD  | MEDIUM | GOOD |

Similarity:

$$x_i \neq y_i \ x_j = y_j \ x_k \neq y_k \rightarrow x_y - dissimilar;$$

Indifference:

$$\left.\begin{array}{l} x_i \succcurlyeq y_i \; x_j \succcurlyeq y_j \; x_k \not \succcurlyeq y_k \to x \text{ outranks y} \\ y_i \not \succcurlyeq x_i \; y_j \succcurlyeq x_j \; y_k \succcurlyeq x_k \to y \text{ outranks x} \end{array}\right\} \to x, y \text{ - indifferent.}$$

### **Comparative analysis**

Measures:

**similarity** measures from the Manhattan distance  $(S_{L_1})$ , the Euclidian distance  $(S_{L_2})$ , from [BISDORFF,MEYER,OLTEANU 2011]  $(S_{THR})$  and **indifference** measure from the outranking relation in [BISDORFF,MEYER,ROUBENS 2007]  $(I_{\tilde{S}})$ ;

### **Comparative analysis**

Measures:

**similarity** measures from the Manhattan distance  $(S_{L_1})$ , the Euclidian distance  $(S_{L_2})$ , from [BISDORFF,MEYER,OLTEANU 2011]  $(S_{THR})$  and **indifference** measure from the outranking relation in [BISDORFF,MEYER,ROUBENS 2007]  $(I_{\tilde{S}})$ ;

Experiment:

- all feasible alternatives on a fixed number of criteria with fixed number of values;
- compared similarity and indifferent measures for all pairs of alternatives;

### **Comparative analysis**

Measures:

**similarity** measures from the Manhattan distance  $(S_{L_1})$ , the Euclidian distance  $(S_{L_2})$ , from [BISDORFF,MEYER,OLTEANU 2011]  $(S_{THR})$  and **indifference** measure from the outranking relation in [BISDORFF,MEYER,ROUBENS 2007]  $(I_{\tilde{S}})$ ;

Experiment:

- all feasible alternatives on a fixed number of criteria with fixed number of values;
- compared similarity and indifferent measures for all pairs of alternatives;

Results:

- in at least 25% cases dissimilar alternatives were in fact indifferent;
- **significant differences** between similarity and indifference.









