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Data mining and clustering

Data • many forms;
(measurements, observations, dynamics of processes, text, images, etc.)

• large quantities [Gantz and Reinsel 2011];
≈ 1021 bytes (100 TB for each person on the planet)

Data mining

• process that extracts information from a data set and
transforms it into an understandable structure for further use;
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Multiple criteria decision aid

Multiple Criteria Decision Aid

• aims at modelling the preferences of decision-makers;
• aids them in reaching certain decisions;

Objects
Attributes

Price Acceleration Safety · · ·
Car 1 18,342 30.7s good · · ·
Car 2 15,335 30.2s medium · · ·
Car 3 16,973 29s v.good · · ·

...
...

...
...
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Multiple criteria decision aid

Multiple Criteria Decision Aid

• aims at modelling the preferences of decision-makers;
• aids them in reaching certain decisions;

Alternatives
Criteria

Price ↓ Acceleration ↓ Safety ↑ · · ·
Car 1 18,342 30.7s good · · ·
Car 2 15,335 30.2s medium · · ·
Car 3 16,973 29s v.good · · ·

...
...

...
...
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Multiple criteria decision aid

Modelling preferences

Value functions

• aggregate all the criteria into
a score;

• (xi , xj , xk , . . .) → U(x);

• trade-offs between criteria;

Outranking relations

• x outranks y iff:

1) x is at least as good as y on a
weighted majority of criteria;
2) x is not much worse than y on any

criterion;
→ x S y

• similar to voting;

Preferential situations

U(x) = U(y) Indifference (I) x S y ∧ y S x

U(x) > U(y) Strict preference (P) x S y ∧ y 6S x

U(x) > U(y) Weak preference (Q) x S y

Incomparability (R) x 6S y ∧ y 6S x
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Multiple criteria decision aid

Decision problems

Choice RankingSorting

C1 C2 C3

Clustering in MCDA

Existing approaches:

� that use similarity measures:

� that use preferential information:

Formally defined using preferential relations in [Meyer, Olteanu

2013]

s
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Clustering in MCDA
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Clustering in MCDA

Clustering in Data mining

• process that groups objects that are similar and separates those
that are dissimilar;

� objects that cannot be distinguished are similar;

BUT

� alternatives that cannot be distinguished are indifferent.

Clustering in MCDA

• process that groups alternatives that are indifferent and
separates those that are not indifferent;
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Clustering in MCDA

similar similar
dissimilar

Classical clustering

indifferent strict preference

strict preference

incomparable

indifferent

Non-relational clustering

indifferent
strict preference

stric
t preference

incomparable

Relational clustering

indifferent
strict preference

stric
t preference

incomparable

Ordered clustering
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Case Study: U.S. Toxic Chemicals Release
Practices
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Case Study: U.S. Toxic Chemicals Release Practices

The data

� Toxic Chemical Release Practices of facilities in the U.S.;

� > 53, 000 facilities reporting over 25 years;

� selected data from 2010 (∼ 22, 000 reports);

� chemical toxicity information;
� reports containing the release amounts of a chemical;
� reports containing the mitigated amounts of a chemical;

The problem

� classifying these practices w.r.t. their quality without knowing the
classes a priori;

� PREFERENCES: handling of less toxic chemicals, fewer releases
and better mitigation procedures;
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Case Study: U.S. Toxic Chemicals Release Practices

Structuring the problem

� Fictive decision-maker: bipolar-valued outranking relation [Bisdorff 2012];
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Case Study: U.S. Toxic Chemicals Release Practices

Non-relational clustering

� used algorithms from [Meyer, Olteanu 2013]

� selected one result to illustrate (12 clusters);

Fitness (%)

f ∗NR 80.0

fNR 62.7

f min
NR 0.0

f ∗R 64.0

fR 55.2

f min
R 0.0

Cluster sizes

K1 296

K2 1,4291,429

K3 1,6321,632

K4 6,2376,237
K5 2,9732,973

K6 167

K7 1,3161,316

K8 2,6152,615

K9 1,6881,688

K10 540

K11 3,5183,518

K12 356
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Case Study: U.S. Toxic Chemicals Release Practices
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Case Study: U.S. Toxic Chemicals Release Practices

D
2,044

B
5,001

C
6,128

A
9,594
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Conclusions and Perspectives
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Conclusions and Perspectives

Conclusions:

� highlighted clustering using preferential information;

� illustrated an application of clustering in MCDA;

Perspectives:

� further explore clustering in MCDA (different structures);

� methodology for using clustering when eliciting the parameters of a
preference model;

� combining similarity-based and indifference-based clustering
(2 layers).
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Thank you!

Mining preferential datasets in MCDA

1. Data mining and clustering

2. Multiple criteria decision aid

3. Clustering in MCDA

4. Case Study: U.S. Toxic Chemicals Release Practices

5. Conclusions and Perspectives
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Annex

Illustrative example:

Similarity:

xi 6= yi xj = yj xk 6= yk → x,y - dissimilar;

Indifference:

xi < yi xj < yj xk 6< yk → x outranks y

yi 6< xi yj < xj yk < xk → y outranks x

}
→ x,y - indifferent.
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Annex

Comparative analysis

Measures:

� similarity measures from the Manhattan distance (SL1 ), the
Euclidian distance (SL2 ), from [Bisdorff,Meyer,Olteanu 2011] (Sthr)
and indifference measure from the outranking relation in
[Bisdorff,Meyer,Roubens 2007] (IS̃);

Experiment:

� all feasible alternatives on a fixed number of criteria with fixed
number of values;

� compared similarity and indifferent measures for all pairs of
alternatives;

Results:

� in at least 25% cases dissimilar alternatives were in fact indifferent;

� significant differences between similarity and indifference.
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Annex

U1

U4

U8

U9

U11

U12

L1

L2 L3

L4

L5

L6

L7

L8 L9 L10 L11

L12

U2

U10

U3 U5 U6

U7

Alexandru-Liviu Olteanu - Mining preferential datasets in MCDA 26/28



Annex

Alexandru-Liviu Olteanu - Mining preferential datasets in MCDA 27/28



Annex

Alexandru-Liviu Olteanu - Mining preferential datasets in MCDA 28/28


	Data mining and clustering
	Multiple criteria decision aid
	Clustering in MCDA
	Case Study: U.S. Toxic Chemicals Release Practices
	Conclusions and Perspectives

