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Data mining and clustering
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Data mining and clustering

Data e many forms;
(measurements, observations, dynamics of processes, text, images, etc.)

e large quantities [GanTz AND REINSEL 2011];
~ 102! bytes (100 TB for each person on the planet)

Data mining
e process that extracts information from a data set and
transforms it into an understandable structure for further use;
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Data mining and clustering

Data e many forms;
(measurements, observations, dynamics of processes, text, images, etc.)

e large quantities [GanTz AND REINSEL 2011];
~ 102! bytes (100 TB for each person on the planet)

e process that extracts information from a data set and
transforms it into an understandable structure for further use;
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Multiple criteria decision aid
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Multiple criteria decision aid

Multiple Criteria Decision Aid

e aims at modelling the preferences of decision-makers;
e aids them in reaching certain decisions;

. Attributes
Objects i i
Price Acceleration Safety
Carl 18,342 30.7s good
Car 2 15,335 30.2s medium
Car 3 16,973 29s v.good
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Multiple criteria decision aid

Multiple Criteria Decision Aid

e aims at modelling the preferences of decision-makers;
e aids them in reaching certain decisions;

. Criteria
Alternatives _ _
Price | ‘ Acceleration | ‘ Safety 1 ‘
Carl 18,342 30.7s good
Car 2 15,335 30.2s medium
Car 3 16,973 29s v.good
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Multiple criteria decision aid

Modelling preferences

Value functions Outranking relations

e aggregate all the criteria into
a score;

o (Xiy Xj, Xy .-.) — U(x);

e trade-offs between criteria;
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e x outranks vy iff:

1) x is at least as good as y on a
weighted majority of criteria;

2) x is not much worse than y on any
criterion;

— xSy

e similar to voting;




Multiple criteria decision aid

Modelling preferences

Value functions Outranking relations

e aggregate all the criteria into e x outranks vy iff:

a score; 1) x is at least as good as y on a
weighted majority of criteria;

o (Xiy Xjy Xks - ) — U(x); 2) x is not much worse than y on any
criterion;

e trade-offs between criteria; Gy

e similar to voting;

Preferential situations

U(x) = U(y) Indifference (l) xSy AySx

U(x) > U(y) Strict preference (P) xSy Ay$x

U(x) > U(y) Weak preference (Q) xSy
Incomparability (R) xSy Ay8x
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Multiple criteria decision aid

Decision problems

Choice Sorting Ranking
©o @ O (@
° ®o| |0
o~ ;.’, od |o8q [°q o~ °>°>o>g
o 2°0° °°8 &
Cl>C2 > C3
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Multiple criteria decision aid

Decision problems

Choice Sorting Ranking
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Clustering in MCDA

Existing approaches:

B that use similarity measures:

m that use preferential information:

Formally defined using preferential relations in [MeyERr, OLTEANU
2013]s
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Multiple criteria decision

Data mining

MCDA

e objects + attributes }
e similarity

e clustering - formally defined }
using similarity
measures

e problem size - easily > 10° }
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e alternatives + criteria

e indifference, strict preference
incomparability

e clustering - formally defined
using preferential
measures

[MEYER, OLTEANU, 2013]

e problem size - rarely > 100




Clustering in MCDA
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Clustering in MCDA

Clustering in Data mining

e process that groups objects that are similar and separates those
that are dissimilar;

B objects that cannot be distinguished are similar;
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Clustering in MCDA

Clustering in Data mining

e process that groups objects that are similar and separates those
that are dissimilar;

B objects that cannot be distinguished are similar;
BUT

B alternatives that cannot be distinguished are indifferent.
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Clustering in MCDA

Clustering in Data mining

e process that groups objects that are similar and separates those
that are dissimilar;

B objects that cannot be distinguished are similar;
BUT

B alternatives that cannot be distinguished are indifferent.

Clustering in MCDA

e process that groups alternatives that are indifferent and
separates those that are not indifferent;
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Clustering in MCDA

Classical clustering

dissimilar
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Clustering in MCDA

Classical clustering Non-relational clustering

. S . S . N strict preference 7 S
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Clustering in MCDA

Classical clustering Non-relational clustering

. S . S . N strict preference 7 S
I \ G \ ’ \ —_— ’ \
1 o 1 dissimilar 1 e 1 o 1 1 [ 1
|‘ similar '. —— |‘ similar '. |‘ indifferent '. St”Ct‘ preference |‘ indifferent '.
\ . . . \ + incomparable ’

~ 4 ~ 4 ~ ’ — ~ 4

~__- ~__- ~o_- ~ -

l’ =
' \
ce ]
’(e‘e“ o
- e
, ~ ‘(,‘-9
. s og
’ \ PN
o v 1 A
\ indifferent 4 incomparable ' 1
\ ] R [N ’
\ s Strieg =~
N . Prer,
Se=” e’&‘/) -~
Ce , .
1 1
\ /
~ -’

Alexandru-Liviu Olteanu - Mining preferential datasets in MC



Clustering in MCDA

Non-relational clustering

Classical clustering
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Case Study: U.S. Toxic Chemicals Release
Practices
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Case Study: U.S. Toxic Chemicals Release Practices

The data

Toxic Chemical Release Practices of facilities in the U.S.;

> 53,000 facilities reporting over 25 years;
selected data from 2010 (~ 22,000 reports);

chemical toxicity information;

reports containing the release amounts of a chemical;

reports containing the mitigated amounts of a chemical,
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The

Case Study: U.S. Toxic Chemicals Release Practices

data

Toxic Chemical Release Practices of facilities in the U.S.;
> 53,000 facilities reporting over 25 years;
selected data from 2010 (~ 22,000 reports);

B chemical toxicity information;

B reports containing the release amounts of a chemical;

B reports containing the mitigated amounts of a chemical,

The

problem

classifying these practices w.r.t. their quality without knowing the
classes a priori;

PREFERENCES: handling of less toxic chemicals, fewer releases
and better mitigation procedures;
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Case Study: U.S. Toxic Chemicals Release Practices

Structuring the problem

Objectives Criteria Attributes

Cancer Indicator

Y . .
% Y Chronic Indicator
1 Acute Indicator
3 1
3

Environmental Indicator

Air Release Amount

Water Release Amount

Release Amounts Land Release Amount

wl—

Underground Injection Amount

Off-site Release Amount

Recycled Amount

Amount sent to POTWs

Amount Converted to Energy

Treated Amount




Case Study: U.S. Toxic Chemicals Release Practices

Non-relational clustering

B used algorithms from [MEYER, OLTEANU 2013]

B selected one result to illustrate (12 clusters);

Cluster sizes

Ki| 2%
Ka | 1,429
Fitness (%) Kz | 1,632
fur | 80.0 K, |6,237
fur | 62.7 Ks | 2,973
fmin| 0.0 Ko | 167
fr | 64.0 Kr | 1316
fr | 55.2 Ks | 2,615
fmin | 0.0 ® :((9} 1,688
10 540
Ki1| 3,518
K12 ‘ 356
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U.S. Toxic Chemicals Release Practice

Central Profile 1 Central Profile 12
Toxicity Toxicity Release Mitigated Toxicity Toxicity Release Mitigated
. for the for the
for Humans ¢ Amounts Amounts for Humans ' Amounts Amounts
Environment Environment
Cancer || Environment |[[] Air Recycled Cancer || Environment Air Recycled
0 1 0 171k 1 1 . 740k 0
Chronic Water POTWs Chronic Water POTWs
0 v 0 0 1 v 2.9k 0
Acute Land Energy e * 0 Acute Land Energy
0 0 0 0 0 0
Underground Treated Underground Treated
0 0 0 121k
Y — Y —
Off-site Off-site
0 | 0 |

98% 97%
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als Release Practices

R’y Ry R3 Ry Rs5
i e [’ | VA T TE [ "A | VA i e A [va] [ [ e [ A [ via [ T BT 0 T T
0 1 0 171061 0 1 10 630000 0 1 1 0 0 0 0 15 1 0 794 118508 0 0 1 3189
0 00 0 60 0 0 0 1 0 0 0 32 0 1 00
0 0 0 0 5 0 0 0 66 0 0 0 0 15093 0 1 8294 0
00 0 0 0 1 0 0 0 0 [
0 1719 0 0 1055 25
98% 69% 91% 89% 99% 92%
9,594 6,128 5,001
Rz Rg Ry Rio Ry 12
T [ TE [ ’a [ via i I 2N (3T 2 N T T I N TN I N T I T N T
0 1 223 30 00 35 0 00 51000 0 T 1 500 GOSS00 T 0 0 0 T 1 740501 0
0 250 0 1 0 0 1 0 0 1 0 0 0 0 0 1 2970 0
0 0 0 0 0 1034 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1000000 0 0 0 0 0 121200
384 0 0 0 1 0
98% 99% 94% 95%, 99% 97%
Ks Ko Kn D
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Conclusions and Perspectives
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Conclusions and Perspectives

Conclusions:

B highlighted clustering using preferential information;

B jllustrated an application of clustering in MCDA,;

Perspectives:

® further explore clustering in MCDA (different structures);

B methodology for using clustering when eliciting the parameters of a
preference model;

B combining similarity-based and indifference-based clustering
(2 layers).
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Thank you!

Mining preferential datasets in MCDA

1. Data mining and clustering

2. Multiple criteria decision aid

3. Clustering in MCDA

4. Case Study: U.S. Toxic Chemicals Release Practices

5. Conclusions and Perspectives
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Illustrative example:

F i J k
w 1 1

Ir GOOD MEDIUM BAD

Y BAD MEDIUM GOOD
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Illustrative example:

F i J k
w 1 1

Ir GOOD MEDIUM BAD

Y BAD MEDIUM GOOD

Similarity:

Xi £ Yi Xj = Yj Xk # yk — %y - dissimilar;

Indifference:

Xi = Vi Xj = Yj Xk ¥ Yk — X outranks y
— x,y - indifferent.
Yi % Xi Yj = Xj Yk = X — y outranks x
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Comparative analysis

Measures:

® similarity measures from the Manhattan distance (Si,), the
Euclidian distance (Si,), from [Bisporrr,MEYER,OLTEANU 2011] (Syyr)
and indifference measure from the outranking relation in
[B1sDORFF,MEYER,ROUBENS 2007] (|§);
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Comparative analysis
Measures:
® similarity measures from the Manhattan distance (Si,), the
Euclidian distance (Si,), from [Bisporrr,MEYER,OLTEANU 2011] (Syyr)

and indifference measure from the outranking relation in
[BISDORFF,MEYER,ROUBENS 2007] (|§);

Experiment:

B 3|l feasible alternatives on a fixed number of criteria with fixed
number of values;

B compared similarity and indifferent measures for all pairs of
alternatives;
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Comparative analysis

Measures:

® similarity measures from the Manhattan distance (Si,), the
Euclidian distance (Si,), from [Bisporrr,MEYER,OLTEANU 2011] (Syyr)
and indifference measure from the outranking relation in
[B1sDORFF,MEYER,ROUBENS 2007] (|§);

Experiment:

B 3|l feasible alternatives on a fixed number of criteria with fixed
number of values;

B compared similarity and indifferent measures for all pairs of
alternatives;

Results:

B in at least 25% cases dissimilar alternatives were in fact indifferent;

B significant differences between similarity and indifference.
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