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In some versions of this proess, the preferene (outranking) relation is a valued(or fuzzy) one. The value attahed to an ar (a, b) may express for instanethe degree with whih a is preferred to b, a redibility index assigned to thepreferene of a over b, et. In the perspetive of generalizing to valued relationsthe methods used for hoosing among a �nite set of alternatives on the basis ofrisp ({0, 1}-valued) relations, one an think of a generalization of the notionof kernel of valued graphs or relations.As is usual when studying valued (fuzzy) ounterparts of notions that have �rstbeen introdued for ordinary (risp) sets, there are several ways of generalizingthe notion of kernel. The main goal of this paper is to explore the relationshipbetween various natural de�nitions of kernels for valued graphs and see alsohow they relate to kernels of risp graphs. Our analysis is restrited to �nitegraphs.In setion 2, we reall the de�nitions of kernels in the risp ase, relating mainlythe set-theoreti de�nition (in terms of independent, dominant or absorbent,non-empty subset) and the algebrai one by means of the so-alled kernelequation system. Note that we onsider two sorts of kernels, the dominant andthe absorbent one, that are just dual of one another in the sense that theabsorbent kernels of a graph are the dominant kernels of the graph obtainedby reversing the orientation of the ars of the original one.Setion 3 introdues a valuation of the ars by degrees belonging to an orderedset L; this set is equipped with a negation (an antitone one-to-one operation).If L ontains an odd number of elements, there is an element that is equal toits negation; this plays the role of an undetermined level �0� that may be usedfor instane for oding lak of information, like a missing ar in the graph. Onedistinguishes the levels of L that are above �0� (positive) and those below �0�(negative). We then assume a graph with ars assigned a value in L. If L hasa � `0�, we may suppose, without loss of generality, that the graph is omplete,assigning the value 0 to the missing ars. This graph is also a valued relationand we use indi�erently both terminologies.The �rst idea for generalizing kernels, is to ut the relation above 0, yieldinga risp relation or graph, and to make pro�t of the set-theoreti de�nition ofthe kernels of the obtained risp graph. We all suh kernels L-independent,dominant (or absorbent) hoies, reserving the term �kernel� for the solutionsof the kernel equation system. A variety of �degrees of quali�ation� are de�nedand assoiated to these subsets; they may be interpreted as haraterizing theirquality as a set of good alternatives (for dominant subsets) or as a set of badalternatives (for absorbent subsets). We show that L-independent, dominant(resp. absorbent) hoies an be de�ned alternatively by means of their degreeof quali�ation as a set of good (resp. bad) alternatives.2



The generalization of the kernel equation system yields solutions, i.e. kernels,that are valued (fuzzy) sets. We identify a subset of solutions, the maximallysharp ones, and we show in setion 4 that they orrespond to the set of L-independent dominant (or absorbent) hoies that were initially de�ned. Theproof�using �xpoint argument�is onstrutive, enabling to �nd the L-valuedkernels starting from the independent dominant (or absorbent) hoies. Thedegree of sharpness of the former is shown to be equal to the degree of goodness(or badness) of the latter. From a theoretial point of view, this is rathersatisfatory sine the various generalizations of the kernel lead to essentiallythe same notion, though in a non-trivial way, as the reader will see. Oneshould add that there are perspetives, using L-valued kernels, to ontributeto methods for hoosing among a set of alternatives, but suh developmentsare left for another publiation.2 Kernels of risp binary relations2.1 Independent dominant and absorbent hoiesIn this setion, we onsider a �nite set X = {a, b, c, d, . . .} of alternativesendowed with a binary relation R . This relation is interpreted as a preferenerelation; we do not assume any partiular property, suh as transitivity, of
R ; the preferene may thus result from the aggregation of multiple attributeinformation through some kind of a majority rule or aording with some formof a onordane-disordane priniple like they are implemented for instanein the Eletre methods (Roy, 1968; Roy and Bouyssou, 1993).We denote by a R b the fat that the pair (a, b) belongs to the relation R ; wephrase a R b as �a is preferred to b� (this not exluding that b may also bepreferred to a; R is not supposed to be an asymmetri relation).The set X endowed with the relation R an also be viewed as a diretedgraph (digraph, for short) G = (X, R) where X represents the set of vertiesand (a, b) is an ar of the graph if and only if (a, b) ∈ R.It has been suggested in the Eletre I method (Roy, 1969) to use inde-pendent dominant subsets of X as potential good hoie if the relation R isayli.De�nition 1 (Independent dominant and absorbent hoies).A hoie set in the digraph G = (X, R ) is a non empty subset Y of X.An independent hoie or independent subset in G is a hoie set K ⊆ X suh3



that ∀a 6= b ∈ K, (a, b) 6∈ R .A dominant hoie or dominant subset in G is a hoie set K ⊂ X suh that
∀a 6∈ K, ∃ b ∈ K, (b, a) ∈ R .An absorbent hoie or absorbent subset in G is a hoie set K ⊂ X suh that
∀a 6∈ K, ∃ b ∈ K, (a, b) ∈ R .Example 1. The graph G1 = (X1, R 1), where X1 = {a, b, c, d} and R 1 =
{(a, b), (a, c), (a, d), (b, c), (b, d)} is illustrated in �gure 1. There is a uniqueindependent dominant hoie (�good hoie�) that is the singleton {a}; theunique independent absorbent hoie (�bad hoie�) is {c, d}.
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b c

dFigure 1. Graph of the preferene relation in example 1Example 2. The graph G2 = (X2, R 2), where X2 = {a, b, c, d} and R 2 =
{(a, b), (b, c), (c, d), (d, a)} is illustrated in �gure 2. In this example, {a, c} and
{b, d} are two independent hoies that are both dominant and absorbent.
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dFigure 2. Graph of the preferene relation in example 2If a relation R is ayli, then it has a unique dominant (resp. absorbent)hoie. If, in addition, the relation is transitive, it is a partial order and theset of alternatives that have no predeessor (resp. suessor) in the graph formsan independent dominant (resp. absorbent) hoie. The above existene anduniqueness property is a motivation for hoosing among the alternatives thatbelong to the independent dominant hoie. In ase one aims at eliminating�bad� alternatives, a symmetri argument would lead to hoosing them in theindependent absorbent hoie set, again for ayli digraphs. We loose suhan appealing interpretation in ase R is not ayli, as we an see in example2 above. 4



2.2 Dominant and absorbent kernelsWe now introdue an algebrai de�nition of a independent dominant (resp.absorbent) hoie. Eah subset K ⊆ X is assoiated its harateristi (row)vetor Y : X → {0, 1} with
Y (a) =







1 if a ∈ K

0 otherwise. (2.1)for all a ∈ X.De�nition 2 (Dominant and absorbent kernels).A dominant kernel (Bisdor� and Roubens, 1996a) is a harateristi vetor Ythat is a solution of the following system of Boolean equations:
(Y ◦ R )(a) = ¬Y (a), for all a ∈ X, (2.2)where Y ◦ R is the max min produt of the Boolean matries Y and R , i.e.

(Y ◦ R )(a) = max
b6=a

min (Y (b), R (b, a)), for all a ∈ Xand ¬ is the ordinary negation, i.e. ¬Y (a) = 1−Y (a). The system of equations(2.2) reads more expliitly as:
max
b6=a

min (Y (b), R (b, a)) = 1 − Y (a), for all a ∈ X. (2.3)We all absorbent kernel a harateristi vetor Y , solution of the system ofBoolean equations: for all a ∈ X,
(R ◦ Y t)(a) = max

b6=a
min (R(a, b), Y (b)) = ¬Y (a) = 1 − Y (a), (2.4)where Y t denotes the transposed (olumn) harateristi vetor.We denote Kdom(G) (Kabs(G)) the possibly empty set of dominant (resp. ab-sorbent) kernels in G, i.e. the solutions of the system of equations (2.2) (resp.(2.4)).Proposition 1.The set of independent dominant (resp. absorbent) hoies of X endowed withthe relation R ) is the set of dominant (resp. absorbent) kernels ofG = (X, R ).Proof. Let K be a non-empty subset of X and let Y be the harateristivetor of K. We denote by YK (resp. Y

K
), the part of vetor Y orrespondingto alternatives in K (resp. out of K). We split similarly the binary matrix5



R representing the relation R into four parts RKK , R
KK

, R
KK

, R
KK

; for in-stane RKK orresponds to the ases R(a, b) in whih both a and b belong to
K; the three other parts are de�ned similarly. The system of equation (2.2) isrewritten as

[YK Y
K

] ◦







RKK R
KK

R
KK

R
KK





 = [Y K Y
K

]. (2.5)One veri�es easily that vetor Y exatly haraterizes a subset K that isindependent and dominant if and only if the above system of equations issatis�ed. A similar argument applies to independent absorbent hoies andabsorbent kernels.In the sequel we shall use indi�erently the terms �independent dominant (resp.absorbent) hoies� and �dominant (resp. absorbent) kernels�.2.3 Historial noteFollowing the observation that the independent absorbent hoie in an ayligraph orresponds to the kernel of the assoiated Grundy funtion, Riguet(1948) introdued the name �noyau� (kernel) for suh a hoie set. (Absorbent)kernels were in the sequel extensively studied by Berge (1958, 1970) in the on-text of modeling the Nim game. More results on (absorbent) kernels, onern-ing solutions of di�erent games, have been reported by Shmidt and Ströhlein(1985, 1989). Reently, Bang-Jensen and Gutin (2001) reviewed the link be-tween kernel-solvability and perfet graphs.Internally stable and dominating hoies, i.e. dominant kernels were originallyintrodued by J. von Neumann and O. Morgenstern under the name �gamesolution� in the ontext of game theory (von Neumann and Morgenstern,1944). B. Roy proposed the same onept in the ontext of the multiriteriaEletre deision aid methods (Roy, 1968, 1985; Roy and Bouyssou, 1993).Ambiguous hoies, i.e. both dominant and absorbent hoies at the sametime, were proposed by Bisdor� (2002a) as potential luster andidates in theontext of multiriteria lustering.In the general (non-oriented) theory of graphs, kernels appear under the nameof independent dominating sets in Haynes et al. (1998). Our oriented dominant(resp. absorbent) version is there identi�ed as an �inside (resp. outside) semi-dominating set� or sometimes more simply as an �inkernel� (resp. �outkernel�).The absorbent version of the kernel equation system (2.4) was �rst introduedby Shmidt and Ströhlein (1985, 1989) in the ontext of their thorough explo-ration of relational algebra. The dominant version (equation system 2.2) was6



introdued by Kitainik (1993) and subsequently used by Bisdor� and Roubens(1996a,b); Bisdor� (1997).3 Kernels in valued digraphs3.1 L-valued binary relationsLet X be a �nite set of alternatives and R̃, a valued binary relation on X.We assume that the values assigned by R̃ to eah pair of alternatives belongto a �nite ordered set L : {c0, c1, . . . , cM} with c0 < c1 < . . . < cM . The value
R̃(a, b) ∈ L is often interpreted as the degree of redibility of the assertion�a is preferred to b�(or �a is at least as good as b�). We all suh a relation a
L-valued binary relation (or shortly L-vbr).The set L is endowed with a negation operator ¬ that maps ci onto cM−i forall i = 0, . . . , M . This operator has a �xpoint cm i� M is equal to 2m, with
m a positive integer. Bisdor� (2002a) has forefully argued that one shouldtake M an even number in pratie; the median redibility level cm is theninterpreted as a logially undetermined value; it may enode a missing ar. Inase M is odd the negation has no �xpoint at all and there is thus no logiallyundetermined value. From now on, for notational simpliity, we map the set Lmonotonially onto the following sets of integers, endowed with their naturalorder:

−m,−(m − 1), . . . ,−1, 0, 1, . . . , m − 1, m if M = 2m

−m,−(m − 1), . . . ,−1, 1, . . . , m − 1, m if M = 2m − 1;
(3.1)we use or not the value 0 depending on whether |L| is odd or even, respetively;in ase |L| is odd (i.e. M = 2m = |L| − 1), the �median redibility level� cmis mapped onto 0. Sine this mapping is an order isomorphism, the operators

max and min an be seen as ating indi�erently on L or its image on theintegers; moreover, the negation operator ¬ on L orresponds with taking theopposite of an integer in the image set. We heneforth identify L with the setsof integers de�ned in (3.1), endowed with their natural order and the negationoperator, whih is just �taking the opposite�. We de�ne the subset of positivelevels L>0 (resp. negative levels L<0) as being the set of positive integers
{1, 2, . . . , m} (resp. negative integers {−m, . . . ,−1}); the set of nonnegativelevels L≥0 (resp. nonpositive levels L≤0) is de�ned as the omplement of L<0(resp. L>0). Of ourse, there is no di�erene between L>0 and L≥0 (or between
L<0 and L≤0) unless |L| is odd (i.e. M is even); in the latter ase, the di�ereneonsists of the median redibility level �0�. In the sequel, for x ∈ L, we shallwrite x > 0 (resp. < 0,≥ 0,≤ 0) for x ∈ L>0 (resp. L<0, L≥0, L≤0).7



Interpreting the elements of L as truth values or logial levels, as suggested byBisdor� (2002a), leads to all the elements of L>0, �true levels� and those of
L<0, �false levels�. If R(a, b) > 0 we ould say that the proposition �(a, b) ∈ R�is L-true. If, on the ontrary, R(a, b) < 0, the proposition �(a, b) ∈ R� is
L-false. If R(a, b) = 0, i.e. the median level, we say that the proposition�(a, b) ∈ R� is L-undetermined. The redibility level of a onjuntion (resp.a disjuntion) of L-valued propositions is obtained by using the �min� (resp.the �max�) operator de�ned on L.Two simple speial ases of L are the following. If L has only two elements, weget bak to the lassial Boolean lattie L2 = {c0, c1} = {−1, 1}; c0 or−1 is thesymbol for �false�, while c1 or +1 is the symbol for �true�. The three-valuedlattie L3 (M = 2m = 2) orresponds to the ase in whih −1 represents�false�, 0 represents a logially undetermined level and +1 represents �true�.3.2 Independent dominant or absorbent hoies in a L-valued graphWe denote by GL = (X, R) a omplete L-valued digraph with vertex set X; anar (a, b) of GL is assigned the value R(a, b). The simplest way of generalizingthe notions of independent dominant (resp. absorbent) hoie in GL is throughusing a ut. De�ne the appliation τ mapping the lattie L onto the Booleanlattie L2 as follows: the set of levels L>0 are all mapped onto +1 (�true�) whilethe levels of L≤0 are all mapped onto −1 (�false�). This appliation extends toa transformation of the L-valued graph GL = (X, R) into the ordinary graph
τG = (X, τR); (a, b) is an ar of the relation τR i� R(a, b) > 0; otherwise,there is no ar (a, b) in the graph τG.De�nition 3 (Independent dominant or absorbent hoies in GL). The set
K ⊆ X is an independent dominant (resp. absorbent) hoie in GL = (X, R)if it is an independent dominant (resp. absorbent) hoie in τG = (X, τR).Note that with this de�nition an independent dominant (resp. absorbent)hoie in GL = (X, R) is an ordinary subset of X and not a �fuzzy� subset of
X.Using the values in L, we an de�ne various L-valued quali�ation degreesattahed to any non-empty subset K of X.De�nition 4 (Degrees of quali�ation of hoies). Let K be a non-emptysubset of X. The degree of independene of the hoie K is de�ned as

∆ind(K) =







m if |K| = 1 ,
min b6=a

b∈K

mina∈K{¬R(a, b)} otherwise. (3.2)8



K is onsidered to be L-independent if ∆ind(K) > 0.The degree of dominane of a hoie K orresponds to
∆dom(K) =







m if K = X,

mina6∈K maxb∈K {R(b, a)} otherwise. (3.3)
K is onsidered to be L-dominant if ∆dom(K) > 0.The degree of absorbene of a hoie K is equal to

∆abs(K) =







m if K = X,

mina6∈K maxb∈K {R(a, b)} otherwise. (3.4)
K is onsidered to be L-absorbent if ∆abs(K) > 0.The quali�ation of K as being an independent and dominant hoie orre-sponds to

Qi−dom(K) = min(∆ind(K), ∆dom(K)). (3.5)The quali�ation of K as being an independent and absorbent hoie, orre-sponds to
Qi−abs(K) = min

(

∆ind(K), ∆abs(K)
) (3.6)De�nition 5 (Potentially good and bad hoies). The set K ⊆ X is a po-tentially good hoie if Qi−dom(K) ∈ L>0, i.e. if K is L-independent and L-dominant. The set K ⊆ X is a potentially bad hoie if Qi−abs(K) ∈ L>0, i.e.if K is L-independent and L-absorbent.We denote by Cp−good(GL) (respetively Cp−bad(GL)) the (possibly empty)set of potentially good (respetively potentially bad) hoies in GL. The or-respondene between potentially good hoies (resp. potentially bad hoies)and independent dominant (resp. absorbent) hoies of GL (de�nition 3) is notentirely straightforward due to the possible existene of the �undetermined�median level 0.Proposition 2 (L. Kitainik, 1993).Let GL = (X, R) be an L-valued digraph and let τG = (X, τR) be its assoi-ated risp digraph. We have:

Ci−dom(GL) ⊆ Kdom(τG)and
Ci−abs(GL) ⊆ Kabs(τG).Proof. Consider K 6= ∅ suh that ∆ind(K) ∈ L>0.9



∆ind(K) ∈ L>0 ⇔min
b6=a

b∈K

min
a∈K

(¬R(a, b)) > 0

⇔∀a 6= b ∈ K : R(a, b) < 0

⇒∀a 6= b ∈ K : (a, b) 6∈ τR

⇔K is an independent hoie in τG = (X, τR).Consider now K 6= ∅ suh that ∆dom(K) > 0.
∆dom(K) ∈ L>0 ⇔min

a6∈K
max
b∈K

R(b, a) > 0

⇔∀a 6∈ K, ∃ b ∈ K : R(b, a) > 0

⇔∀a 6∈ K, ∃ b ∈ K : (b, a) ∈ τR

⇔K is a dominant set in τG.Using the same arguments,
∆abs(K) > 0 ⇔ K is an absorbent set in τG.The proposition is an immediate onsequene of the previous results.From the �rst part of the previous proof (independene), it learly appearsthat the sets Cp−good(GL) and Kdom(τG) may be di�erent only if R(a, b) takesthe logially undetermined value 0; there may indeed exist sets K ⊆ X that areindependent dominant hoies of τG but have a quali�ation Qi-dom(K) equalto 0. A similar remark holds for independent absorbent hoies. The follow-ing orollary establishes the preise orrespondene between potentially good(resp. potentially bad) hoies and independent dominant (resp.absorbent)hoies in τG (whih are also the dominant (resp. absorbent) kernels in τG,as established in proposition 1).Corollary 1.The set of potentially good (resp. potentially bad) hoies in GL = (X, R) isthe set of independent dominant (resp. absorbent) hoies K in τG = (X, τR)for whih Qi-dom(K) > 0, i.e. suh that R(a, b) 6= 0 for all a, b ∈ K.10



Proof.Consider the �rst part of the proof of proposition 2. We have
∆ind(K) ∈ L>m ⇔ K is an independent set in τGi� R(a, b) 6= 0 for all a, b ∈ K. The rest of the proof follows that of proposition2.Example 3. The following example (see �gure 3) has been suggested byBernard Roy (Lausanne, 1995; see Bisdor� (2000)). Let GL be suh that X =

{a, b, c}, L = {−5, . . . , 0, . . . , 5} and R : {R(a, b) = −5, R(b, a) = R(c, a) =
R(c, b) = 1, R(b, c) = R(a, c) = 5}.

a

b

c1

5

1

1

5

Figure 3. Graph of the preferene relation in example 3Table 1Degrees of quali�ation of all hoies in example 3hoie ∆ind ∆dom ∆abs Qi−dom Qi−abs

{a} 5 −5 1 −5 1

{b} 5 1 −5 1 −5

{c} 5 1 5 1 5

{a, b} −1 5 1 −1 −1

{a, c} −5 1 5 −5 −5

{b, c} −5 1 5 −5 −5

{a, b, c} −5 5 5 −5 −5Table 3 shows the degrees of quali�ation for all hoies in GL. All single-tons are L-independent. All hoies, exept {a}, are L-dominant and all are
L-absorbent, exept {b}. Therefore, the singletons {b} and {c} give poten-tially good single hoies whereas {a} and {c} give potentially bad singlehoies. Choies onsisting of pairs, as well as the hoie onsisting of X, areneither potentially good nor potentially bad, as they all lak the required
L-independene ondition. Although the relation R often takes the undeter-mined value 0, Cp−good(GL) = Kdom(τG) and Cp−bad(GL) = Kabs(τG).11



One may argue that the indies Qi−dom and Qi−abs an be used to selet a�good hoie� among several possible ones; for instane, in example 3, one seesfrom table 3 that {b} is a more onvining potentially good hoie than {c}sine {c} is also a potentially bad hoie. We refer the reader to Bisdor� andRoubens (2004) for further developments of this idea.Proposition 2 suggests a way of omputing the �good hoies� (and the �bad�ones) of L-valued graphs: ompute the independent dominant hoies of τG;then verify, by omputing their degree of independene ∆ind and hekingwhether ∆ind > 0, that they are potentially good hoies.3.3 L-valued dominant and absorbent kernelsWe now address the generalization of the kernel equation systems (2.2) and(2.4). Choies and kernels of L-valued relations an be de�ned as fuzzy sets;the degree of membership of an element a of X to suh a set belongs to theset L.A harateristi vetor Ỹ of a fuzzy subset of X is an appliation from X onto
L, i.e. a row vetor [Ỹ (x), x ∈ X]. If Ỹ is to be interpreted as a hoie anddepending on the ontext, Ỹ (a), for any a ∈ X, may be interpreted as thedegree of truth or the redibility of the assertion �element a belongs to thehoie Ỹ �. Values of Ỹ (a) above 0 are interpreted as meaning that a tendsmore to belong to Ỹ than not; the onverse interpretation holds when Ỹ (a) isbelow 0; Ỹ (a) = 0 represents an undetermined situation.It is rather straightforward to extend the kernel equation systems (2.2) and(2.4) to the ase in whih R is L-valued and we aept solutions that are
L-valued. These equations beome: for all a ∈ X:

(Ỹ ◦ R)(a) =max
b6=a

[

min
(

Ỹ (b), R(b, a)
)]

= ¬Ỹ (a) = −Ỹ (a), (3.7)
(R ◦ Ỹ t)(a) =max

b6=a

[

min
(

R(a, b), Ỹ (b)
)]

= ¬Ỹ (a) = −Ỹ (a). (3.8)Applying the negation operator to the above equations yields the followingformulation that will be used in the sequel:
Ỹ (a) = min

b6=a
[max(−Ỹ (b),−R(b, a))], ∀a ∈ X (3.9)

Ỹ (a) = min
b6=a

[max(−R(a, b),−Ỹ (b))], ∀a ∈ X. (3.10)12



We denote by Ydom(GL) (resp. Yabs(GL)) the set of solutions of equationsystem 3.7 (resp. 3.8).Example 4. Consider GL = (X, R) with X = {a, b, c}, L = {−5, . . . , 0, . . . , 5}(M = 2m = 10) and R = {R(a, b) = −3}, R(a, c) = 4, R(b, a) = 1, R(b, c) =
5, R(c, a) = 2, R(c, b) = 3} (see �gure 4).
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Figure 4. Graph of the preferene relation in example 4The orresponding dominant kernel equation system is:
[

Ỹ (a) Ỹ (b) Ỹ (c)
]

◦















- −3 4

1 - 5

2 3 -  =
[

− Ỹ (a) − Ỹ (b) − Ỹ (c)
] (3.11)Its solutions are shown in table 2. Solution Ỹ0 is ompletely L-undetermined;Table 2Solutions of Equation System (3.11). The starred solutions are maximally sharp.solution Ỹ (a) Ỹ (b) Ỹ (c)

Ỹ0 0 0 0

Ỹ1 −1 1 −1

Ỹ2 −1 2 −2

Ỹ ∗
3 −1 3 −3

Ỹ4 −1 −1 1

Ỹ ∗
5 −2 −2 2it doesn't haraterize any hoie at all and we may ignore it. If we applythe operator τ to the fuzzy harateristi vetors, solutions Ỹ1, Ỹ2 and Ỹ ∗

3yield the same risp hoie {b}, whereas solutions Ỹ4 and Ỹ ∗
5 yield the samerisp hoie {c}. Note that both subsets of solutions are organized as hainsof more and more logially determined solutions, i.e. oming inreasingly loseto the values −5 and +5 that represent the maximal degree of falseness andtruth, respetively. In eah group of solutions, we shall fous on the maximalsolutions, Ỹ ∗

3 and Ỹ ∗
5 , with respet to this determinateness.13



We formalize the remarks made about the example into preise de�nitions. Weall an L-funtion any L-valued funtion de�ned on X. We mainly onsider
L-funtions Ỹ suh that Ỹ (a) 6= 0, for all a ∈ X; the set of suh L-funtionsis denoted by L0 .De�nition 6 (Sharpness). Let Ỹ , Z̃ be two funtions in L0 . We say that Ỹis at least as sharp as Z̃, whih we denote by Z̃ 4 Ỹ , i�, for all a ∈ X, either
Ỹ (a) ≤ Z̃(a) < 0 or 0 < Z̃(a) ≤ Ỹ (a). The asymmetri part ≺ of 4 isde�ned as follows: a ≺ b i� a 4 b and not b 4 a.The �sharpness� relation ≺ is a partial order (asymmetri and transitive rela-tion) on the set of L-funtions in L0 .To eah funtion Ỹ in L, we assoiate a risp subset of X, whih we denoteby K

Ỹ
and de�ne by:

K
Ỹ

= τ Ỹ = {a ∈ X suh that Ỹ (a) > 0}. (3.12)We all K
Ỹ
the strit median ut hoie assoiated with K

Ỹ
.For any L-funtion Ỹ ∈ L0 , the degree of sharpness Qsharp(Ỹ ) of Ỹ is de�nedas:

Qsharp(Ỹ ) = min( min
a∈K

Ỹ

Ỹ (a), min
a6∈K

Ỹ

−Ỹ (a)). (3.13)This index interprets as a degree of sharpness of Ỹ sine we have
Ỹ 4 Z̃ ⇒ Qsharp(Ỹ ) ≤ Qsharp(Z̃). (3.14)Of ourse, we may have Qsharp(Ỹ ) ≤ Qsharp(Z̃) and neither Ỹ 4 Z̃ nor Z̃ 4 Ỹ .De�nition 7 (L-valued dominant and absorbent kernels).We all L-dominant (resp. L-absorbent) kernel a L- valued harateristi ve-tor Ỹ that satis�es the following three onditions:

• Ỹ is a solution of equation system (3.7) (resp. (3.8));
• it is maximal with respet to the sharpness relation 4 in the set Ydom(GL)(resp. Yabs(GL)) of admissible solutions of (3.7) (resp. (3.8)), i.e. there is noother solution Z̃ suh that Ỹ ≺ Z̃;
• it belongs to L0 , i.e. Ỹ (a) 6= 0, for all a ∈ XWe denote by Fdom(GL) (resp. Fabs(GL)) the (possibly empty) set of L-dominant (L-absorbent) kernels of GL.Revisiting example 4, we have Ỹ ∗

3 and Ỹ ∗
5 (see Table 2) as L-dominant kernelsof GL; defuzzyfying Ỹ ∗

3 using the operator τ yields τ Ỹ ∗
3 = {b}. In a similarway, we get τ Ỹ ∗

5 = {c}. Those sets are the two dominant kernels of τG.A similar omputation, using the orresponding absorbent kernel equation14



systems yields the solutions [Y (a) = 2, Y (b) = −1, Y (c) = −2] and [Y (a) =
−4, Y (b) = −4, Y (c) = 4] as the L-absorbent kernels in GL.In example 3, the digraph GL admits the set F i−dom(GL) = {Ỹ ∗

1 , Ỹ ∗
2 } of L-dominant kernels and the set Fbad(GL) = {Ỹ ∗

3 , Ỹ ∗
4 } of L-absorbent kernels(see table 3). Applying the operator τ to these L-valued kernels yields thehoie sets that were already obtained for example 3 in setion 3.2.Table 3

L-valued kernels in the digraph of Example 3kernel Ỹ (a) Ỹ (b) Ỹ (c)

L-dominant
Ỹ ∗

1 −1 5 −5

Ỹ ∗
2 −1 −1 1

L-absorbent
Ỹ ∗

3 1 −1 −1

Ỹ ∗
4 −5 −5 5From the latter example, it appears that L-valued kernels and potentially goodor potentially bad hoies of a valued graph are strongly related. In the nextsetion, we show the formal orrespondene between those notions.4 Relating L-valued kernels and potentially good and bad hoiesIn this setion, we shall only deal with the �dominant ase�; our results extendmutatis mutandis to the �absorbent ase�. It is easy to establish a link betweena subset of solutions of the dominant kernel equation system (3.7) and a subsetof dominant kernels of τG that we de�ne below.De�nition 8 (Determined solutions of the dominant kernel equation system).A solution Ỹ of the dominant kernel equation system (3.7) is said determinedif it belongs to L0 i.e. Ỹ (a) 6= 0, for all a ∈ X. We denote by Ydom

0 (GL) theset Ydom(GL) ∩ L0 of determined solutions of (3.7).De�nition 9 (R -determined subsets). A subset K of X in the valued graph
GL = (X, R) is R -determined if R(a, b) 6= 0 for all a, b ∈ K.Lemma 1. If Ỹ belongs to L0 and is a solution of the dominant kernelequation system (3.7), then τ Ỹ = K

Ỹ
is a R -determined dominant kernel of

τG. 15



Proof. Using the fat that Ỹ is a solution of the dominant kernel equationsystem, we apply τ to both sides of (3.7), yielding
−τ Ỹ (a) = max

b6=a
[min(τ Ỹ (b), τR(b, a))],whih is exatly (2.2) with Y = τ Ỹ . It remains to be proven that K

Ỹ
is

R -determined. Assume that there are a, x ∈ K
Ỹ
with R(a, x) = 0. Sine Ỹbelongs to L0 by hypothesis, Ỹ (a), Ỹ (x) > 0. Using the �negative form� (3.9)of the kernel equation system, we have for that partiular a ∈ K

Ỹ
:

0 < Ỹ (a) ≤ max(−Ỹ (x),−R(x, a)) = 0,a ontradition.4.1 A useful transformationThe elements of Ydom
0 (GL) i.e. the determined solutions of the dominant kernelequation system an be viewed as the �xpoints of a transformation T thatoperates on L0 .De�nition 10 (The transformation T ). The transformation T maps a fun-tion Ũ ∈ L0 , onto T Ũ de�ned by:

T Ũ(a) = min
x 6=a

max(−Ũ(x),−R(x, a)), ∀a ∈ X.The �xpoints of T in L0 are the solutions of (3.9) or, equivalently, of (3.7),sine
T Ũ = Ũ ⇔ Ũ(a) = min

x 6=a
max(−Ũ (x),−R(x, a)), ∀a ∈ X.Lemma 2. If K is a R -determined dominant kernel of τG and Ũ ∈ L0 issuh that K

Ũ
= K, then T Ũ ∈ L0 and K

T Ũ
= K. Moreover, for all a ∈ K

Ũ
,we may ompute Ũ(a) as follows:

T Ũ(a) =

(

min
x 6=a; x∈K

Ũ

−R(x, a)

)

∧

(

min
x 6∈K

Ũ

max(−Ũ(x),−R(x, a))

) (4.1)and for all a 6∈ K
Ũ
, we have:
T Ũ(a) = min

x∈K
Ũ

max(−Ũ(x),−R(x, a)) (4.2)Proof. If a ∈ K, T Ũ(a) > 0 beause 16



• for x ∈ K, R(x, a) < 0 and thus, for x ∈ K, max(¬Ũ(x),−R(x, a)) =
−R(x, a) (this also proves that(4.1) is equivalent to (3.9), for a ∈ K);

• for all x 6∈ K, max(−Ũ(x),−R(x, a)) ≥ −Ũ(x) > 0.If a 6∈ K, T Ũ(a) < 0 beause there is x ∈ K suh that R(x, a) > 0; for suhan x, max(−Ũ(x),−R(x, a)) < 0 and hene Ũ(a) < 0. Moreover, for all x notin K, max(−Ũ(x),−R(x, a)) > 0, hene (4.2) is valid.Corollary 2. Let Ỹ ∈ L0 . The funtion Ỹ is a solution of equation system(3.9) (or equivalently of (3.7)), i� Ỹ satis�es
Ỹ (a) =

(

min
x 6=a; x∈K

Ỹ

−R(x, a)

)

∧

(

min
x 6∈K

Ỹ

max(−Ỹ (x),−R(x, a))

)

, (4.3)for all a ∈ K
Ỹ
, and

Ỹ (a) = min
x∈K

Ỹ

max(−Ỹ (x),−R(x, a)), (4.4)for all a 6∈ K
Ỹ
.Proof.

[⇒] Lemma 1 indiates that τ Ỹ = K
Ỹ
is a R -determined dominant kernelof τG; therefore Ỹ ful�lls the hypotheses of lemma 2 yielding the result.

[⇐] We prove that K
Ỹ
is a R -determined dominant kernel of τG. In view of(4.3) and the fat that Ỹ (a) > 0 whenever a ∈ K

Ỹ
, we dedue that R(x, a) < 0for all a, x ∈ K

Ỹ
. Similarly, for all a 6∈ K

Ỹ
, we dedue from Ỹ (a) < 0 andequation (4.4) that there exists at least one x in K

Ỹ
suh that R(x, a) > 0.Heneforth, K

Ỹ
is a R -determined dominant kernel of τG. Using the fat that

K
Ỹ
is a kernel of τG, lemma 2 yields that T Ỹ an be omputed using (4.1)and (4.2); by hypothesis, Ỹ satis�es (4.3) and (4.4); therefore Ỹ is a �xpointof T , hene Ỹ belongs to Ydom

0 (GL).4.2 Obtaining a L-dominant kernel from a R -determined dominant kernelof τGWe use transformation T to obtain a L-dominant kernel from a R -determineddominant kernel of τG. The main result we need is the fat that T respetsthe relation �at least as sharp as� on any subset of L-funtions Ỹ suh that
τ Ỹ is a R -determined dominant kernel.Lemma 3. Let K be a R -determined dominant kernel of τG and Ũ , Ṽ ∈ L0be suh that K

Ũ
= K

Ṽ
= K and Ũ 4 Ṽ . Then T Ũ 4 T Ṽ .17



Proof. For any a ∈ K,
T Ṽ (a) =

(

min
x 6=a; x∈K

Ṽ

−R(x, a)

)

∧

(

min
x 6∈K

Ṽ

max(−Ṽ (x),−R(x, a))

)

.Sine the funtions min and max are nondereasing and for all x 6∈ K,
−Ṽ (x) ≥ −Ũ(x), we get T Ṽ (a) ≥ T Ũ(a).For any a 6∈ K, T Ṽ (a) = minx∈K

Ṽ
max(−Ṽ (x),−R(x, a)). Sine the funtions

min and max are nondereasing and for all x ∈ K, −Ṽ (x) ≤ −Ũ(x), we get
T Ṽ (a) ≤ T Ũ(a).Starting from the harateristi funtion of a R -determined dominant kernelof τG and applying iteratively T to this funtion, one obtains, after a �nitenumber of iterations, an element of Ydom

0 (GL)that is at least as sharp as anyother element Ỹ of Ydom
0 (GL)suh that K

Ỹ
= K.Proposition 3. Let K be a R -determined dominant kernel of τG and Ũ ∈ L0be de�ned by Ũ(a) = m if a ∈ K and −m otherwise. For some �nite integer

n, T nŨ = T n+1Ũ and Z̃ = T nŨ is an element of Ydom
0 (GL)suh that K

Z̃
= K;we have furthermore Ỹ 4 Z̃ for all element Ỹ of Ydom

0 (GL)with K
Ỹ

= K.Proof. The funtion Ũ de�ned in the proposition belongs to L0 . Sine, bylemma 2, K
T Ũ

= K
Ũ
, it is obvious from the de�nition of Ũ that T Ũ 4 Ũ .Applying lemma 3, we get T i+1Ũ 4 T iŨ , for all i. Due to the �niteness of Land X, there is a �nite number n suh that T n+1Ũ is not stritly less sharpthan T nŨ , whih means that T n+1Ũ = T nŨ . For suh a n, Z̃ = T nŨ is anelement of Ydom

0 (GL). It is moreover a maximal element w.r.t. the relation
4 in the subset of elements Ỹ of Ydom

0 (GL)suh that K
Ỹ

= K. Let Ỹ besuh an element. We have T Ỹ = Ỹ and Ỹ 4 Ũ . Applying lemma 3, we get
T nỸ 4 T nŨ , whih means that Ỹ 4 Z̃.It was not evident at �rst sight that, for all R -determined dominant kernels
K of τG, there are solutions Ỹ of (3.9) with K

Ỹ
= K. It was not evident eitherthat the set of solutions Ỹ of (3.9) with K

Ỹ
= K, when non-empty, admits aunique maximally sharp element. Putting together lemma 1 and proposition 3,we establish the existene of a bijetive orrespondene between R -determineddominant kernels of τG and determined L-dominant kernels of GL.Theorem 1. K is a R -determined dominant kernel of τG i� there is a de-termined L-dominant kernel Ỹ suh that K

Ỹ
= K. This L-dominant kernel isunique. 18



4.3 Quali�ation of a dominant kernelThere is a link between the quali�ation Qi-dom(K) of a dominant kernel Kof τG and the sharpness quali�ation of all elements Ỹ of Ydom
0 (GL)suhthat K

Ỹ
= K. We �rst prove that the degree of sharpness of an element of

Ydom
0 (GL)is not larger than the quali�ation of the orresponding R -determineddominant kernel.Lemma 4. If K is a R -determined dominant kernel of τG, any determinedsolution Ỹ of the kernel equation system (3.7) is suh that the hoie K

Ỹ
= Kin τG veri�es:

Qsharp(Ỹ ) ≤ Qi-dom(K) (4.5)Proof. Assume thatQsharp(Ỹ ) > Qi-dom(K). Let Qsharp(Ỹ ) = r and Qi-dom(K) =
k, with r > k > 0. The quali�ation Qi-dom(K) = k is equal either to −R(b, a)for some a, b ∈ K or to maxx∈K R(x, y), for some y 6∈ K.In the former ase, using (4.3), we get r ≤ Ỹ (a) ≤ −R(b, a) = k, a ontradi-tion.In the latter ase, there is a ∈ K suh that R(a, y) = maxx∈K R(x, y) =
k. Therefore, for all x ∈ K, R(x, y) ≤ k. Using (4.4), we have Ỹ (y) =
minx∈K

Ỹ
max(−Ỹ (x),−R(x, y)). For all x ∈ K,−Ỹ (x) ≤ −r ≤ −k ≤ −R(x, y) †† ;therefore Ỹ (y) ≥ −k. But, by de�nition of Qsharp(Ỹ ), Ỹ (y) ≤ −r hene

−r ≥ Ỹ (y) ≥ −k, a ontradition.We �nally prove that the sharpness of the L-dominant kernel Ỹ orrespondingto a R -determined dominant kernel K is equal to the quali�ation of K.Theorem 2. For any R -determined dominant kernel K, the L-dominantkernel Z̃ orresponding to K is suh that Qsharp(Z̃) = Qi-dom(K).Proof. In view of lemma 4, it su�es to prove that Qsharp(Ỹ ) ≥ Qi-dom(K).Let Qi-dom(K) = k, with k > 0. De�ne the L-funtion W̃ ∈ L0 as
W̃ (a) =











k if a ∈ K

−k if a 6∈ K.By lemma 2, TW̃ belongs to L0 and K
TW̃

= K
W̃

= K. Using (4.1) and (4.2),
†† obtained applying the negation − to Ỹ (x) ≥ r ≥ k ≥ R(x, y)19



we show that W̃ 4 TW̃ . Indeed, for a ∈ K,
TW̃ (a) =

(

min
x 6=a;x∈K

W̃

−R(x, a)

)

∧

(

min
x 6∈K

W̃

max(−W̃ (x),−R(x, a)) ≥ k

)

,and, for a 6∈ K,
TW̃ (a) = min

x∈K
W̃

max(−W̃ (x),−R(x, a))

= max(−k, min
x∈K

W̃

−R(x, a))

≤−k.Remember the de�nition of Ũ ∈ L0 that was used in proposition 3: Ũ(a) = mif a ∈ K and−m otherwise. We have W̃ 4 Ũ and, using lemma 3, T iW̃ 4 T iŨ ,for all i = 1, 2, . . .. Sine, for some n, T nŨ = Z̃, the L-dominant kernelorresponding to K, we have:
W̃ 4 T nW̃ 4 T nŨ = Z̃and, using (3.14), Qsharp(W̃ ) = k ≤ Qsharp(Z̃).4.4 RemarksThe above results prompt the following remarks.(1) The undetermined value 0, when suh a value appears in the set L, playsa speial role and has to be arefully dealt with. In lemma 2 for instane,if we either drop the restrition that the dominant kernel K of τG is a

R -determined one or that Ũ(x) 6= 0 for all x ∈ X, we an no longermake sure that T Ũ(a) > 0 for all a ∈ K. This means that the trans-formed harateristi funtion T Ũ would not satisfy K
T Ũ

= K
Ũ
. Sinewe are interested in determined solutions of the kernel equation system,we did not pay attention to undetermined solutions, and orrelatively, weonsidered only the R -determined dominant hoies of τG.(2) Throughout this paper, we have assumed that both the set X and the set

L are �nite. Our results extend without di�ulty to the ase in whih Lis in�nite, while the set X of alternatives remains �nite. In suh a ase,the number of values taken by the relation R is at most |X| × (|X| − 1);let m denote the maximum of |R(a, b)|, for a, b ∈ X; the onstrution ofa �xpoint of T as desribed in proposition 3 remains valid, sine T Ũ willonly take values also taken by R or their opposite, hene a �nite subsetof L. In ase the number of alternatives X is in�nite and L is an interval20



of the real numbers (for instane the interval [−1, 1]), the onstrutionof the �xpoint as in proposition 3 still works but the onvergene mighttake an in�nite number of steps.5 ConlusionThis paper aims at exploring the relationship between independent dominant(resp. absorbent) hoies and solutions of the kernel equation system in thease of valued relations. We have shown that there is a one-to-one orrespon-dene between L-dominant (resp. L-absorbent) kernels of a valued graph andthe (R -determined) independent dominant (resp. absorbent) hoies of thestrit median ut digraph τG. Furthermore, starting with an independentdominant (resp. absorbent) hoie of τG, the tehnique of proof provides away of building the orresponding L-dominant (resp. L-absorbent) kernel asthe �xpoint of a transformation. This has an important onsequene from thealgorithmi point of view: �nding L-valued kernels is not more di�ult than�nding the kernels of a risp graph. Indeed, starting with a (R -determined)kernel of τG and applying the transformation (de�nition 10) at most m|X|times yields the �xpoint. Of ourse, this does not make the determination ofthe L-valued kernels an easy task sine we know that �nding all kernels ofa risp relation is a omputationally hard problem (this was proven by V.Chvátal; see Garey and Johnson (1979), p.204).Theorem 2 also has interest in its own: the degree of sharpness of a L-dominantkernel Ỹ is equal to the degree of potential goodness Qi−dom of the assoiatedrisp kernel K
Ỹ
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