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Abstract: Good or bad choices based on a crisp outranking relation cor-

<pond to dominant and absorbent kernels in the corresponding digraph.
n this paper we generalize both concepts to an ordinal valued outranking
~elation. A efficient algorithm for computing these choices is proposed.
Turthermore, we show the formal correspondence between ordinal valued

Soices and kernels in ordinal valued digraphs.
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1. Introduction

In the so-called outranking methods (see Roy and Bouyssou, 1993). the
sreference relation on a set of alternatives is constructed as a pairwise coni-
sarison evaluating the level of credibility of the fact that one alternative
i< at least as good as the other. In the case of a decision problem, where
sossibly a unique alternative has to be selected as the best one, stable and
Lminant subsets have been proposed as good choices (Roy. 1968).

In this paper we shall thoroughly investigate this approach and first, gen-
ralize it in the crisp case to clearly good. bad and ambiguous choices. The
Zormal equivalence of good and bad choices with dominant and absorbent
Lernels in the corresponding outranking digraph is established.

T a second part we generalize clearly good, bad and ambiguous choices to
rdinal valued outranking relations and show the formal link between crisp
“nd valued choices. This result allows us to implement an efficient algorithm
“or computing ordinal valued choices i a practically relevant outranking

Ligraph.

In a last part dominant and absorbent kernels are extended to ordinal
alued ontranking digraphs. The main result of the paper establishes the
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formal equivalence between valued choices and corresponding valued kernels.

2. Choices from crisp binary relations

2.1. On good and bad choices

Let us consider a finite, non empty set of alternatives X and a binary
relation R. If (a.b) € R, a.b € X, we consider that “a is al least as good os
b”. X and R define a directed graph (digraph for short) G = (X. R) where
X represents the sct of vertices and (a.b) is an arc if and only if (0. b) € R.

A choice in G is a non empty subset ¥ of X. Singletons {«}. Yo € X
are called single choices whereas Y = X is called the greedy choice.

A stable choice in G is either a single choice or a choice Y € X such that

Va#beY. (a.b) ¢R.

A dominant choice in G is cither the greedy choice or a choice Y € X
such that Ve € Y. 3b e Y. (b.a) € R.

An absorbent choice in G is either the greedy choice or a choice Y € X
such that Va ¢ Y, 3b € Y. (b.a) € R', i.e. the transpose of relation R.

Definition 1 (Good, bad and ambiguous choices).

Let G be a digraph. A good (bad, respectively) choice is a stable and
dominant (absorbent, respectively) choice in G. An ambiguous choice is a
stable and both, dominant and absorbent choice in G. A clear choice is
either a good or a bad choice which is non ambiguous.

We denote C8°4(G) (C"(@)) the possibly empty set of good (bad)
choices in G.

Consider the following examples of digraphs:

G]:EJ-
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I G;. single choices {a} and {c} are clearly good. respectively bad, whereas
in Gy all single choices are both good and bad together. thus ambiguous.

fact they are equivalent and any choice order is ambiguous. There is no
“ear nor ambiguous choice in G,

In G. choices {a, ¢} and {b, d} are clearly good. respectively bad. whereas
2 Gs. the same are ambiguous and there appears no clear choice. Finally.

1 G {a. €} is a clear good choice whereas {c.d} is a clear bad choice.

2.2. Dominant and absorbent kernels
Any choice ¥ € X can be defined with the use of a subset characteristic
row) veetor Y(-) = (Y(a), Y(b)....) where
1 feeY

Y(a) = . L. Ya€eX. (1)
0 otherwise.

Definition 2 (Dominant and absorbent kernels).
We call dominant kernel a solution Y (if any) of the Boolean system of
< arions:

o R)a) = \/ (Y(B) AR(b.a)) =Y (a) =1~Y(a). foralla€X. (2)
bta

were Y represents the complement of Y, R represents the Boolean matrix

ewiated with relation R, V and A represent respectively “disjunction”™ and

siunction” for the 2-element Boolean lattice B = {0, 1}, and o represents
== =tandard relational composition operator.

e call absorbent kernel a solution Y (if any) of the Boolean system of

s ALIONS:

7-10) = V(R ) AYHD) =V (a) = 1-Y'(a). forallee X. (3)
bh#a

= = Y represents a transposed (column) characteristic vector.
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We denote KY™(G) (K*5(G)) the possibly empty set of dominant {ab-
surbent) kernels in G, i.e. solutions of Equation Systemn (2) (3. respectively).

Proposition 1.

To cach good (bad) choice K € CE**4(G) (CY*N(G)) corresponds a unique
dominant (absorbent) kernel characteristic vector Y e Ko@) (Ka(@)).

Proof. To show the equivalence between a solution Y of Equation Svstem
(2) and a good choice K in G = (X, R). we may rearrange the elements
of the set X in such a way that Y is split into two disjoint parrs: a1
valued part Y5 and a O—valued part Y= Rearranging in the same wav rows
and columns of matrix R, we obtain the following matrix representation of
Equation System (2):

By Rl _ o+
Yi Y& o [ t KRl =Y ¥ (4)
T : - N ARl

Vo Brr Bpw '

It is casily seen that ¥ exactly characterizes a good. ie. stable and
dominant, choice K when and only when, ou the one hand. Ricpe. is 0-
valued, i.e. Yo Ry V Y370 Ry = Y is O-valued. And. on the other
hand. R4 is such that Yy oJ.I?,‘,\.T VYo Rpp = Yizis L-valued. A same
arguiment. applies to the equivalence between bad choices amnd absorbent
kernels. &

Stable and absorbent choices were originally introduced by J. von Neu-
mann and 0. Morgenstern under the name “game solution” in the context
of game theory (v. Neumamn and Morgenstern, 1944). J. Riguet intro-
duced the name “noyau (kernel)” for the von Neumann “game solution”
(Riguet, 1948). This kind of choices was studied by C. Berge in the context
of the Nim game modelling (Berge, 1958. 1970). More results on (absorbent)
kernels, concerning solutions of different games, have been reported by G.
Schmidt and T. Stréhlein (Schmidt and Stréhlein, 1985, 1989). Recently. J.
Bang-Jensen and G. Gutin reviewed the link between kernel-solvability and
perfect graphs (Bang-Jensen and Gutin, 2001).

Stable and dominant choices (dominant kernels) were introduced by B.
Roy in the context of the multicriteria Electre decision aid methods (Roy.
1968, 1985: Roy and Bouyssou, 1993). Ambiguous choices, i.e. both domi-
nant and absorbent choices at the'same time, were proposed by R. Bisdorff
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== potential cluster candidates in the context of multicriteria clustering (Bis-
iorff. 2002a).

The absorbent version of the kernel equations (Equation System 3) was
frst introduced by Schmidt and Stréhlein (1985, 1989) in the context of their
shorough exploration of relational algebra. The dominant version (Equation
Svstem 2) was introduced by Kitainik (1993) and subsequently used by
Sizdorfl and Roubens (1996a. 1996b, 1997).

2.3. Computing good and bad choices from a crisp binary rela-
tion

Finding the sets (if any) of good aud bad choices in a digraph G is an
snumerationally difficult problem (Chvital, 1973). However, if G is acyclic,
s unique clearly bad choice may be computed in polynomial time by a dual
Zx-point algorithm attributed to von Neumann (see Schmidt and Strohlein.
1939). In the context of the Electre decision aid methods, Roy has devel-
“ped a similar algorithm for computing the unigue good choice in G (Roy.
196Y).

Unfortunately. multicriteria aggregation procedures rarely deliver an acyc-
e digraph. In this case, finite domain solvers such as ¢lp(FD) (Codognet
22l Diaz. 1996) and GNU-Prolog (Diaz. 2001) may nevertheless provide an
~tficient tool for extracting kernels from random digraphs of not too large
zder. ie. number of vertices. The key idea is to solve the kernel defining
Equation Systems (2) (resp. (3)) in the associated B = {0.1} computation
‘omain with the help of a constraint enumeration of all possible character-
~tie vector solutions. Efficient dynamic propagation techuiques, based on
‘L specifie kernel defining equations. help keep the set of effectively to he
‘uspected mstantiations rather Himited.

In Table 1 we report summary statistics concerning resolution times of
“Lie dominant kernel equation system for samples of 500 random digraphs
with an average of 26%, 50% and 75% arves defined on 10 to 60 vertices. Un-
er Linux RH 7.2 (keruel 2.4.19) and GNU-Prolog version 1.2.13, we may
ompute, on a 2.0 Ghz Pentium 4 system, the set of good choices in a di-
zraphi of order 50 in less than 3 seconds. That the problem is NP-complete
= noticeable on the nearly exponential growth of the resolution times in re-
‘ation with the number of vertices of the digraph. Kernels in sparse digraphs
sppear to be more difficult to compute for graphs of increasing order.
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Table 1: Computation times for dominant kernels (in milliseconds) in {0.1}-
valued digraphs

nunber of vertices 10 20 30 10 50 60
25% ol arcs on average
min 50 108 215 472 1123
mean 52 112 248 G639 1912 3357
max 56 119 207 8RY 2851 84902
H0%: of arcs on average
min al 111 248 512 1213 2675
mean 53 116 267 G341 LITT 3206
max 5T 120 0 293 846 1918 3866
75% ol arcs on average
nin 50 114 236 527 1020 18G8
meat 53 11T 266 563 1113 20567
max 55 120 280 725 1374 2313

As a set of potential decision alternatives is generally of limited dimen-
sion (less than 50) in the domain of multicriteria decision aid. the oper-
ational performance achieved with the help of the GNU-Prolog FD-solver
appears quite satisfactory. Qutranking relations resulting from a multicri-
teria preference aggregation procedure are, however, rarely crisp in nature.
They generally appear associated with credibility levels (sce Bisdorff, 2002h:
Fodor and Roubens, 1994).

This issue will be investigated in the next Section.

3. Basic credibility calculus for good, bad and ambiguous choices
3.1 L-valued binary relations
We now consider a finite set of alternatives X and a binary relation R
whose credibility is evaluated as follows:

For all a,b € X and m positive integer. R{e.b) belongs to the finite set
L :{coy---1€ma---,Coun} that constitutes a (2m + 1)-element chain ¢y <
... < Cap. R{a,b) may be understood as the level of eredibilily that ~a is al
least as good as b”. We call such a relation an L-valued binary relation (or
shortly L-vbr).

We denote L™ : {Cm.a ceey CQm}a e g {Cm-{—] .- o s c‘.?m}:
L<™ : {cp, - -yCm—1} and LE™ : {cg;. .. sGn}-

If R(a,b) € L>™ we say that the proposition “(e.b) € R is L-true.
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Lowever, R(a,b) € L<™ we say that the proposition “la.b) € R is L-
false. If R(a,b) = ¢, ie. the median level, we say that the proposition
T bl € R” is L-undetermined. L-undeterminedness may be assimilated to

4 of missing velue status (see Bisdorff, 2002a).

We define on L an antitone unary contradiction operator — such that
T = Com—q) fori=0,...2m. If R(a,b) = ¢y, ie. the proposition “a
= ar least as good as b” is more or less true, then its negation, —R(a,b), ie.
= proposition “a is not at least as good as b” is more or less false. L<m
“s represents the order reversed mirror of L2 and the median credibility
“wel ey, appears as the fix point of the - operator.

I order to respect the ordinal character of the credibility calculus, we
wsider that the credibility level of a conjunction (a disjunction, respec-

v of L-valued propositions is given by the “min” (the “max”. respoc-
vl operator defined on L.

“ this setting the classic Boolean lattice B = {0.1} appears as a de-

< worated limit case with no median level defined. We shall designate Ls

“hree-valued limit case {m = 1), which corresponds to a natural bi-

rization of L-valuedness preserving the median, logically undetermined
vl oy (see Bisdorft, 1999).

3.1 Qualification of good and bad choices
We denote G* = (X. R) a digraph with verlices set X and L-valued
~ary relation R. Consider a choice ¥ in GF. In accordance with the crisp
“=- we define following L-valued qualifications of V.
~Le level of stability qualification of Y is defined as
& LY is a single choice,

Milyz, Mgz, {- Ra, b)}  otherwise.
bey a€Y

¥ is considered to be L-stable if AMYY) e L>m,

The level of dominance qualification of Y # X corresponds to

o Capy if'Y is a greedy choice.
AP =

minggy maxpey { R(b. a)}  otherwise.
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V i considered to be L-dominant if AY™(Y) € L7

The level of absorbance qualification of Y # X is equal to

ADS(Y) = Com il Y is a greedy choice. -
Y)=9 . ) (7)
_ minggy maxpey {R{a. b)} otherwise.

Y is considered to be L-absorbent il AM(Y) e L7,

The gualification of Y being a good choice. 1.0

stable and dominant.
corresponds to

ngud D,r) — lllill(&sw(Y), Adnm (Y)) (8)
The qualificition of Y being 2 bad choice, i.e. stable and absorbent.
corresponds to

QP(Y) = min (A% (Y), A (Y)) (9)

The qualification of ¥ being an ambiguous choice. i.e. stable. dominant
and absorbent, is equal to

Qamb (Y) — lllill{ ABLa (Y), Aah:‘.(Y) ) Ad“m % ) } (10)

Definition 3 (Good, bad and ambiguous L-valued choices). =
If Qeod(Y) € L>™, ie YV is L-stable and L-dominant. we accept Y

as an L-good choice. 1f, however, QP(Y) € L7™. ie. Y is L-stable and

I-absorbent, we consider Y as an L-bad choice.

It Qumh(y) £ L>'", Y i

s considered to be L-ambiguous. In addition. if
Qseod(Y) = QY24 (Y), we call Y a clearly L-ambiguous ¢

hoice. If. however.
Qe 5 Qb > ¢, we call Y a more good than bad choice. Tnversely. if
QP(Y) > Q8 (Y) > ¢y, we call Y a more bad than good choice.

Finally, a clearly L-good (L-bad) choice is an L-stable and L-dominant
( L-absorbent) choice which is not L-ambiguous.

We summarize all possible qualifications for choices in a given G in
Figure 1.
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st '
A ()
‘7\\\ v{-‘?;
dom
A () Y no qualification
&
/ &
abs ubs
A Y) A (Y)
<y,
z:’(“ \ >m N
Y: elearly good Y: ambiguous Y: clearly bad Y: no qualification
w < p
H %
ot w= 2
Q o Uy
Y: more good Y: clearly Y: more bad
than bad ambiguous than gowd

Figure 1: Qualification of choices

Furthermore. we denote C8%4(GF) (C*(GE)) the possibly empty set of
L-good (L-bad) choices in GT.

Example 1.

Consider the lollowing graph:
G“:‘ is such that X = {a,b.¢c}. L = {co.c.ca = ¢y 3.4} and R {R(b,a) =
R{c.a) = R(c.b) = ¢z, R(b,¢) = R(e.c) = ¢y. R(a.b) = ¢p}.

G% ; b

IR, e, i

2

a

In Table 2 we show qualifications of all possible choices in GL. All sin-
gletons are L-stable. All choices, except {«}, are L-dominant. All choices.
except {b} are L-absorbent. Therefore. the singleton {b} gives a clearly L-
good single choice whereas {a} gives a clearly L-bad single choice. We may
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Table 2: Qualification ol good and bad choices

choice Asta Adom - Aabs Q[‘:Ootl Qhad Q:lmh

{a} Cq €o Cy Co Cy Cy
{b} ca 3 cy w o
{c¢} cqg oy cq c cq cy
{a. b} (e cq ca € I3 ¢
{a,c} co cy cs o «
{b. ¢} o cy €3 o o €0
{a,b.¢} @ cq Cq e Cu o

notice that {¢} gives an L-ambiguous, but more bad than good single choice.
Possible pair choices, as well as the greedy choice. are neither L-good nor
L-bad, as they all fail the required L-stability condition. Single choice {b}
clearly appears as the best choice recommendation one can deduce from this
valued outranking relation. Deciding, whether {a} or {c} gives the worst
choice, is not immediate and we shall come back later to an argumnent [or
eventually discriminating between these these two choices.

3.2. Computing good and bad L-valued choices

Having to inspect, in a given digraph GF with n vertices. all 27 possi-
ble choices, in order to uncover the sets C5°4(G*) and C*™(G") is not a
satisfactory operational perspective. Fortunately the [ollowing proposition.
relating crisp and L-valued choices, comes to our rescue.

 Let R be an L-vbr. The median-level cut relation RZ™ associated with
R is a crisp relation such that (a,b) € RZ™ if and only il R(a.b) € L™,

The corresponding strict median-level cul relation R7™ is a crisp relation
associated with R such that (a,b) € R™ if and only if R(w.b) € L>™.

Proposition 2 (L. Kitainik, 1993).
Let G" = (X, R) be an L-valued digraph and let GZ™ = (X.R>™) repre-
send the associatled crisp, strict medion-level cul digraph.

CX(GY) C CX(GP™) with 2 € {good. bad}.
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Proof. Consider Y # @ such that AS(y) g >,

AMY) € L™ < min min (= R{a,b)) € L>™
b#a  ab
beyY ey

& Va#beY:R(a.h) € L™ (R(a.b) ¢ LZ™)
& VYa#DEY : (a.b) g RZ™
& Yis astable set in G2™ = (X, R2m),
Finally, A"(Y) € L>™ = ¥ is a stable set in G> since R2™ 3 R
and any stable set in GZ™ is contained i|1_tlm set of all stable sets in >,

£ Consider now ¥ # 0 such that Atlom(yry e pom

ATy S T o il vk R(b.a) e L°™
eZY bey

& VYagY.3dbeY : R(b.a) e L7™
e VagY.3beY :(bh.a)e B>™

< Y is a dominant set in G>,

Using the same argnments,

A™(Y) € L>™ & Y is an absorbent set in G>m,

The proposition is an immediate consequence of the previous results. [

This important result, from an operational point of view. may be strength-
ened when considering L-valued relations without wedian-valued, ie. L-
undetermined or missing, arcs.

Corollary 1.

If R(a.b) # ¢, for all a.b € X, there exists a bijection between -
good and/or L-bad choices in G- = (X, R) and good and/or bad choices in
G>m I (_]:_ R)m}
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Proof. We consider only the case of a cléarly L-good choice ¥ (the other
cases can be treated in the same manner) : AM(Y) g [>m A"‘“"(Y) €
L>m, L\ab’"(}') e [Sm .

APMFI e LP™ & ¥ is 4 stablesat in G2" = @G>
Aty e [P o g a dominant in G>™,

AMN(Y) e [Sm o ¥ is not an absorbent set in G>.

Thus, there is a bijection between clearly L-good choices in G and clearly
good choices in the associated crisp digraph G>™ ' ]

Proposition (2) allows us to implement. Algorithin 1 for computing L-

valued choices,

Algorithm 1 (Computing L-valued choices).

computeValuedChoices(GL = (X, )
step 1: strict median-level cut

F=  eut R above median level ¢,

step 2: enumerating kernels using the FD solver in GN U-Prolog
eosd = good choices from Y o M = T
Chad — bad choices from R>m oyt — T

step 4: computing the qualification of the associated choices
for }' c (good Uchml .
ALY il ey; [Mingz,ey; = R(a, b))
Adamrey @ i ey, Iaxgzqey; R(b,a)]
AMEOE) & Mitlggy; maxyz.ey; Ra, b)]
anml(].-}) . Illill{'_\sm()':‘). _jdom{}"_)]
led()’}) — ]”i“[_.l!ilﬂ(}:_)’jﬂllh{}.})]
Q:«unh(}'r_) = min[Qg“""(}}). Qhad(}.-: )]
output ()"i: ngor[().'i ]_‘ Qhad(y’:}! Q‘"“h(]'} }]
endfor
endcomputeValuedChoices

In Step 1 we compute from R the strict median level cut velation B>
In Step 2 we enumerate, with the help of the FD-Solver in GNU-Prolog.
all dominant and absorbent kernels in G>™ = (X, R>™) and compute the
corresponding sets of good and bad choices.  As the L-good and L-bad
choices in G are necessarily part of these sets, we may reduce, in Step 3.
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Table 3: Outranking relation Ry observed on the set of potential car selec-
tions

R vwge 199t gsax p305  tahg  awdi r18g  alfa
vwge - I ER < T < Co e cu
ridgt | e = Coo Clon Cs2 Cxz Cgo e
ysar C70 (&5 = Cron Cron Ci6 Ry Cy
])305 gy 65 L. =  Cyx (620) Cy. 5y 7]
taly €3 er7 o3 100 = o Cxi) r':“;
wareli «n Cry 61 Cy2 76 - Cyg x0
r18¢ &1} Ci3 C7y (£33 CR2 €70 - €51
ul fu cu 50 4 60 77 P o =

the computation of the L-valued qualifications to the union of the good or
bad choices in G=™.

In order to illustrate Algorithm 1. let us reconsider Example 1 :

G L > b G2 2 b

N AN
: /

In G71 one obtains, as in G¥. two good choices. {b} and {c}. and two bad
choices. {a} and {c}. {a} is a clearly had choice, {b} is a clearly good choice
and {c} is an ambiguous choice. Thus we recover here the results obtained
by inspecting the whole sei. of possible choices (see Table 2).

Example 2 (Perny, 1992).

Eight cars are proposed as decision alternatives: X = {vwge. r9¢i. gser,
p305. tahy. audi. v18g, alfa}. A previous multicriteria decision analysis has
generated the L-valued outranking relation Ry carrying a meaning of “fo
be al least as good as™ shown in Table 3, where L = {¢;| i = 0..100} and
Cip = €5

Step 1 computes from relation Rg the corresponding crisp strict median

level cut relation R, Given the crisp digraph G>% = (X, 359, Step 2
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Table 4: Qualification of L-good and L-bad choices in GV = (X.Ry)

choices Asta pdom Aabs ano(l le«l Qurnh
L-good
{r9gt} Cigo  Crg Cs7  Crg €57 Cs7
{7f‘71-'.fif‘- rl S!I} Cioo Cro €y Cro “n (]
{vwge. audi}  ¢409 Cro o Cro cy cu
L-had
{vwge, ta ha}  cor Co Cry Cy Cyr &1]
{vwge. alfa}l  crg Cy Cyq y C7q “n
{.’/-"'”'-’5} Cioo g Cga Ci6 Cgq oy
{p305} Cigo a2 Cgo Cay Cgo &I}

delivers following sets of goad and bad choices:

I

CH”'"I(G:’;’“) { {r9g1}. {vuwye. r18g}. {vwge, audi} e
CI"“I(G)—'”) = {{p305}. {gsax} {vmge, tahg}. {vwge, alfa} }.

Following Propositions 1 and 2. as well as Corollary 1 (relation Ry doesn’t
contain any L-undetermined arc). we may compute (see Table 4). in Step
3. qualifications of all L-good and L-bad choices in the original digraph

GL = (1\'. RH)

The most qualified good choice is given by single choice {r9gt}. As the
sate alternative also appears to be a more or less qualified bad choice. it
15, however, L-ambiguonus. but more good than bad. Two clearly good. but
less qualified. choices are given by the pairs {vwge. r18¢} and {vwge. audi}.
The proposed ontranking relation reveals furthermore fours different. clearly
more or less L-had choices: {vwge. lahg}. {vwge. al fa}. {gsax} and {p305}.

Let us now extend the crisp kernel equation systems to the L-valued cilse,

4. Relating L-valued choices and kernels

4.1.L-valued dominant and absorbent kernels

The key to the equivalence hetween good and bad choices and the corre-
sponding solutions of Equation Systems (2) and (3) lies in the characteristic
vector representation of the choices (sce Equation 1.

In case of an L-vhr R definéd on a sel, X we nay extend the characteristic
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vector representation of a choice ¥ in the following sense: Y (-) = (f’(a,).
... ) is a row vector such that Ve; € X : ?(a,:) € L = Jeg, vy Giggs o
con } gives the credibility level of the assertion that “elemnent a; is part of
the choice Y. From the semantics of our credibility caleulus follows the
logical denotation below. Va € X:

L7 if more or less a €Y.
Yi{e)€ ¢ L= if more or less a € Y. (11)
Cin if @ € Y is undetermined.
We may thus formulate following L-valued versious of the dominant. resp.

absorbent kernel equation systems. Let G* = (X.R) be an L-valued di-
graph. Va.bh € X:

(YoR)a) = 1}‘;1.){ [min (f’(b).R(b.u))] = -V (a) (12)
(RoY')(a) = max [min (R(a, ). Y'(0)] = =¥Y"(a) (13)

The L-valued composition operator o uses inax’ and 'min’ as disjunction
and conjunction operators. As in the crisp case, we ignore in our computa-
tion the diagonal terms of R. If L = B = {¢y. 1 }. we recover the respective
crisp Equation Systeins.

We denote Yo (GE) (P0G, respectively) the set of solutions from
Equations Systems 12 (13, respectively).

Example 3.

G& = (X.R) is such that X = {a.b.¢}, L = {¢.....cio} with = 5 and
R ={R{a.b) = &}, Rla.c) = co, R(b.a) = s, RB(b,c) = e1p. Rle.a) = 1,
R{c.b) = ey}

The corresponding dominant kernel equation system:

== [l Cy
[Y(@) Y(B) Y(c)] o |6 — ew| = [-Y(a) V() -F()]. (14)

C; gy ==

admits the set of solutions shown in Table 5: Solution ¥j. completely L-
undetermined. doesn’t characterize any choice at all and we may ignore it.
Solutions Y. ¥ and ’f characterize the same single choice {b}. whereas so-
lutions Y and f‘}f‘ characterize the sane single choice {e}. It is worthwhile
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Table 5: Solutions of Equation System 14

solution  Y(a) Y (b) ¥(c)

)E) 5 Cn (#
13 o Cy )
f‘.’ &} Cr Cy
¥ T €1 Cy e
Ya e oy Cy
}—'}f oy €y cr

noticing that both subsets of solutions are organized as chains of more and
more logically determined, we say sharper, solutions. In each chain we con-
sider the maximal solutions, }_’}f and ff{‘. with respect to this denotational
sharpness, to be the actual L-valued dominant kernels we are looking for.

In general, let V, Y b_e two admissible solutions o['Eqnat.io_n Systems (12)
and (13). We say that Y is sharper than Y . noted Y’ g Y ifl Va € X :
either Y(¢) <Y'(a) < ¢, or ¢ <Y'(a) < Y(a).

As obvious from Example 3., relation “x” models in general a partial
order on the sets Y™ and Y2 of solutions of Equation System 12, respec-
tively 13.

Definition 4 (L-valued dominant and absorbent kernels).

We call L-dominant (L-absorbent) kernel a solution (if any) V of Equa-
tion System (12) (resp. (13)) such that V(a) # ¢ for all @ € X and V
is a maximal sharp solution in the set }’“""’(G") (*(G1)) of admissible
solutions.

Taking into account only completely determined (no L-undetermined
components) and efficient, non-dominated (maximal sharpest) solutions is
coberent with the logical semantics of our credibility caleulus. where L-
valued disjunction, modelled with the help of the max-operator. verifies.
as in the crisp case. some kind of L-valued idempotency property. If a
same proposition “e € Y7 is true at credibility levels ¢, 4 or ¢4, with
0 < k.r < m. then the proposition is true at the credibility level of their
disjunction, i.c. max(yp, Cptr)-

We denote Flom(GLy (F2(GL)) the possibly emply set of L-dominant
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Table 6: L-valued kernels in the digraph of Example 1

kernel Y (a) (b ¥ (¢)
L-dominant

}"l‘ Cy Cq Cy

f; 1 ey C3
L-absorbent

i’; Cy & [

7y Co o €4

(L-absorbent) kernels we may find in a given digraph G".

Recousider Example 3: Following Definition 4. solutions _’; and Y7 (sce
Table 5) give the L-dominant kernels in G‘!, Let us denote K the dominant
kernel characterized through Yy. The L-dominant kernel tells us that,
first, “a ¢ K" is true at credibility level ~cy = ¢, —secondly, b € K,”
is true at credibility level cg, and — finally. “c g K7 is true at credibility
level =y = cg. Yy therefore characterizes an L-valued single choice {b}. A
similar computation, involving the corresponding absorbent kernel equation
systems reveals solutions [Y(a) = ¢7.Y(0) = 1. Y(¢) = ¢ 3] and [Y(a) =
e, Y(0) = 1. Y {c) = ¢g] as the L-absorbent kernels in Gq

Let us also reconsider Example 1: As shown in Table 6, the digraph
G; admits the set F&(Gr) = {Y*. Y5} of L-dominant kernels and the
set Frad(Gr) = {Y* Y*} of L-dominant kernels. The L-dominant kernels
confirm that single choice {b} clearly appears as the best choice reconmen-
dation one can deduce from this valued outranking relation. Similarly. the
L-absorbent kernels clearly denote {e} as the worst choice compared with
{a} (see Table 6).

From this last example. we may notice that L-valued kernels and choices
give similar, but not completely identic :al answers with respect to the qual-
ification of good and bad choices in a given L-valued digraph. In the last
part we show the formal correspondence between both.

4.2 Relating L-valued kernels and L-valued choices

Let G = (X, R) be an L-valued digraph. In accordance with the logic al
denotation of the L-valued characteristic vector construction (see Equation
11). we may define the choice Ky associated with a given L-valued kernel
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¥ as follows:

«€ Ky if¥(a) > G

K“.- CX : R
ad K; if =¥ (a) > ¢,

We denote K{Fdom( g3ty (JC(.F“"”(G"‘})_. respectively) the set of good
(bad, respectively) choices we may construct from the corresponding -
valued kernels,

Theorem 1.
With (,y) = {(good, dom), (bad, als) }:

CXG") = K(F¥ (GLy).

The proof of this theorem, requires the following lemumas.

We call w the median polarization operalor for L-valued assertions defined

as follows: .
TP > ¢,
TP ={¢ it P <c,,, (16)
B otherwise.

where P € [ s a proposition evaluated in [,

Lemma 1. Let P.Q € L be two L-valued 'pm]m.s'ition.s:

m(min(P,Q)) = min(w(P), 7(Q)) (17)
m(max(P.Q)) = max(m(P). 7(Q)) (18)
m(~(P)) = =(=x(P)) (19)

(2

=9 = wll) =%
Proof. The tfollowing L-valued truth table establishes Equivalence (17).

P Q min( 42, Q) a(lP) a(Q)  w(min(P. Q) miu(?r{f‘).?r{(})]

L-tvue  Lotrie L-true Coan Com oy C2yy
L-true ¢, Cin oy Crn Cin Coy
L-true L-false  [L-Talse C24n &1 n &7]
Cin L-true i Chy o &7 o0
Coy Crn Cone Cru Cony Conr Cen
Ci L-false ] -false i on o &
L-lalse  [-true L-false oy 2, on n
L-false o, I~[alse n Cin 2 ty

L-lalse  L-false L-false oy cy ) ]
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A similar table establishes Equivalences (18) and (19) whereas Implica-
tion (20) follows immediately from the definitions. O

Let Gt = (X, R) be an L-valued digraph and let 7G* = (X.7R) be the
associated median polavized Ly = {eq, ¢, cop J-valued digraph.

Lemma 2.
C¥(GY) = C*(xG*), =z € {good,bad}.

Proof. The definition of L-good (L-bad) choices only involves the L-valued

logical operators: min, max, — and cquality =. Lemma 1 assures that
operator m is a natural transformation for these operators. O

Let nF¥(G") with = € {dom, abs} represent the set of median polarized
L-dominant or L-absorbent kernels.

Lemma 3.

rFYGY) = F*(«G"). =z € {dom,abs}.
Proof. Same arguments as in the proof of Lemma 2. ]

Proof of Theorem 1.

Consider, first, L-dominant kernels and L-good choices. An immediate
consequence of Lemmas 1, 2 and 3 is that, on the one hand, there exists
a bijection between CE°(G") and C#(rG%). And, on the other hand,
there exists a bijection between 7 F M (G*) and Fiom(rGL).

We just need now to prove that there also exists a bijection between
crood(zGL) and Flom(nGl).

Let ¥ € F4m(zGL). From Definition 4, we know that ¥ must be com-
pletely L-determined, i.e cannot contain any ¢, valued element. Being so-
lution of Equation System 12, therefore, implies that, on the one hand, the
median polarized stability qualification of the choice Y characterized by ¥
must be ¢, valued and, on the other hand. the median polarized dominance
qualification of the choice ¥ modelled hy Y must also be Copy valued. Thus
Y necessarily characterizes an Ls-good choice.
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Inversely. let K € C*Y(xG"). Tf we characterize this choice with the help
of an Ly-valued characteristic vector Y, i such that Y,, (@) = ¢y if e € K and
Vi (@) = ¢y il « € K. we may easily check, that Yy gives a solution of the
dominant kernel delining Equation System. As } i contains by construction
no ¢y-valued element. and such a solution is always maximal sh:up with

respect to Ly, )h gives necessarily an La-dominant kernel in #GE.

Same arguments apply to L-absorbent kernels and L-bad choices. O

Finally. let us show the equivalence between the subset-wise qualification
of choices as introduced in Section 2 and the corresponding clement-wise
qualification provided by the L-valued kernels.

4.3. Element-wise and subset-wise qualification
Let Y be an L-dominant or L-absorbent kernel in a given L-valued di-
graph G*.

Definition 5 (Element-wise qualification of kernels).
The element-wise qualification Q. of Y to be a good or bad choice char-
acterization is defined as follows:

QoY) =min[ min Y(a). min ﬂf’(a.)]

Yl >tm YH{u)<enm

Let Ky denote the choice characterized by the vector Y.

Theorem 2.
With (x.y) = {(dom. good), (abs. bad) }:

VY € FXGE ) : QoY) = Q(Ky).

Proof.  We give the proof for L-dominant kernels and L-good choices. The
absorbent/bad case takes similar arguiments.

Let G bean L-valued digraph supporting a nou empty set of L-dominant
kernels and let ¥ € Flom(GLy pepresent such a kernel. Following Theorem
1 we may suppose that the associated choice K; € csrd(Gly is such that
Q*ﬂ““"(h -) = ¢k with k> 0.
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Let us rewrite the L-dominant kernel (lvhnu_, Equation System 12 using
a similar matrix decomposition as in the proof of Proposition 1:

RJ‘\‘!\' N = ¥
Vi ¥ e [ K "] = [-Yx =¥V (21)
Rgx PBrx g

Y being solution of Equation System 21 and Q”’“"(K -) = Gts imply
thadt

Vo€ K ¢y, <V(a) < Cnpk and Ve @Y e, >Y(a) > ey

Hence, .
VY € Flmn(g!;) . (2'01) < (Jgum] (K“‘.»).

Let us assume that 37 € FOn(GE) such that Q.(Y) < Qg”""(ﬁ'}‘.-) =
Coppg ke

Following Theorem 1 this implies that 3r such that 0 < » < & mul
(rr) Z Cypgr 2 @ € Ky and Y(ﬂ.) Syt K

Now. let ¥* be such that Y*(u) = max (3 (a). (,,,_H) when a € Ky and
Y*(u) = min (}’(r.;) Cin—k) When a ¢ K-

Tt is easily checked that Y* = ¥ and that Q.(V*) = Corniitis

But we obtain. furthermore, that if ¥ is a solution of Equation System
21 then Y* is also a solution of System 21.

This, huwovm contradicts that Y is a maximal shar p solution of Equation

System 21, ie. Y ¢ Flom(gly,

Whence it follows necessarily that Q,,()}) = (Qg"‘"](f{,‘-) for all ¥ €
j:':lmn(GL)_ O

5. Conclusion
In this paper we have, first. introduced clearly good. bad and ambiguous
choices and shown their equivalence with corresponding dominant and/or
absorbent kernels (see Proposition 1).
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In a second part, we have extended these notions to an ordinal valued
setting, with the result that mainly the initially crisp ambiguous choices
are here split into three classes: more good than bad, clearly ambiguous
and more bad than good choices. The median-level cut operation installs a
formal link, shown in Proposition 2, between crisp and valued choices which
allows us to compute rather efficiently the set of all possible good and bad
choices in an ordinal valued outranking graph.

Finally. we have extended the dominant and absorbent kernel defining
equation systems to the ordinal valued case. Main results, Theorems 1 and
2, establish the formal equivalence between valued good and bad choices
and the corresponding valued dominant and absorbent kernels.

Despite this equivalence and contrary to the crisp case, valued kernels.
through their element-wise qualification, deliver a complement information
to the subset-wise qualification of valued choices. An issue which we are still
nvestigating and that we like to reserve for 2 further publication.
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