
Computing linear rankings from trillions of
pairwise outranking situations

Raymond Bisdorff1

Abstract. We present in this paper a sparse HPC implementation
for outranking digraphs of huge orders, up to several millions of deci-
sion alternatives. The proposed outranking digraph model is based on
a quantiles equivalence class decomposition of the underlying mul-
ticriteria performance tableau. When locally ranking each of these
ordered components, we may readily obtain an overall linear rank-
ing of big sets of decision alternatives. For the local rankings, both,
Copeland’s as well as the Net-Flows ranking rules, appear to give the
best compromise between, on the one side, the fitness of the over-
all ranking with respect to the given global outranking relation and,
on the other side, computational tractability for very big outranking
digraphs modelling up to several trillions of pairwise outranking sit-
uations.

1 Pre-ranked sparse outranking digraphs

When the preference learning community seams now well armed for
tackling big preferential data [1], the multiple criteria decision aid
community, and especially the one based on the outranking approach,
still essentially tackles decision aid problems concerning only tiny or
small sets of decision alternatives [2].

Challenged by the computational performances of the preference
learning algorithms, we present in this paper a sparse approximate
model of a given outranking digraph, which allows us, via HPC fa-
cilities, to efficiently rank very big sets of decision alternatives. Our
starting point is the methodological consideration that an outranking
digraph –the association of a set of decision alternatives and an out-
ranking relation (see [3])– is, following the methodological require-
ments of the outranking based decision aid approach (see [4], [5],
necessarily associated with a corresponding multiple criteria perfor-
mance tableau. Such a tableau shows a given set of potential decision
alternatives that are evaluated on a given coherent family (see Roy
[3]) of weighted performance criteria.

In this paper we are going to use the preferential information deliv-
ered by such a given performance tableau2 for linearly decomposing
big sets of decision alternatives into ordered quantiles equivalence
classes. This decomposition will lead us to a pre-ranked, sparse ap-
proximate model of an outranking digraph.

1 University of Luxembourg, Faculty of Science, Technology and Communi-
cation, Computer Science and Communications Research Unit/ILIAS, url:
http://leopold-loewenheim/bisdorff/ .

2 Due to space limits we are not going to discuss here the actual elaboration
of a performance tableau. We refer instead the reader to our recent book
[2].

1.1 Showing the performance tableau
Strong motivation for trying to linearly rank a set of decision alterna-
tives stems from the desire to show the corresponding performance
tableau from a decision aiding perspective. Consider, for instance,
the performance tableau showing the service quality of 12 commer-
cial cloud providers graded by an external auditor on 14 ordinal, in-
commensurable performance criteria (see Wagle et al. [6]).

Example 1 (Service quality of commercial cloud providers).

Legend: 0 = ’very weak’, 1 = ’weak’, 2 = ’fair’, 3 = ’good’, 4 = ’very good’,’NA’ =

missing data.

Each row shows the ordinal grades that the auditor has pro-
vided for the respective cloud provider. Notice by the way the
constant grades on some criteria and the many missing data. It
is not evident to discover in this list who might be the poten-
tially best performing cloud provider. The same performance tableau
may better be linearly ranked from the best to the worst perform-
ing providers; ties, the case given, being resolved lexicographically.

The grades observed on each criterion appear optimistically gath-
ered in 5-tile equivalence classes. With 10 grades in the best quintiles
class (80%−100%), provider ’MS’ appears here to be best perform-
ing, followed by provider ’Ela’. The criteria usually do not have the

http://leopold-loewenheim/bisdorff/

same weight in the decision problem. They appear ranked here in de-
creasing order of the ordinal correlation index3 observed between the
presentation ranking and the marginal criterion one.

This ranked presentation of a performance tableau is, without
doubt, very useful for a decision aiding purpose, even more if the
set of decision alternatives becomes bigger. But, how to rank now
a big performance tableau gathering the evaluations of thousands or
even millions of decision alternatives? The Copeland ranking rule,
used for ranking the cloud providers above, is based on net crisp out-
ranking flows which requires to compute the in- and out-degree of
each node in the corresponding outranking digraph. When the order
n of the outranking digraph now becomes big (several thousand or
millions of decision alternatives), this ranking rule will require the
handling of a huge set of n2 pairwise outranking situations.

Yet, it is evident that, when facing such a big set of decision al-
ternatives, the 20% best performing alternatives will for sure outrank
the 20% worst performing ones. In a big data case, it may hence
appear unnecessary to compute the complete set of the pairwise out-
ranking situations among all decision alternatives. We shall therefore
present hereafter a pre-ranked, sparse approximate model of the out-
ranking digraph, where we only keep a linearly ranked list of quan-
tiles performance classes with local outranking content.

1.2 Quantiles sorting of a performance tableau
To do so, we propose to decompose the given performance tableau
into k ordered quantiles equivalence classes. Let X be the set of n
potential decision alternatives evaluated on a single real performance
criterion. We denote x, y, ... the performances observed of the poten-
tial decision alternatives inX . We call quantile q(p) the performance
such that p% of the observed n performances in X are less or equal
to q(p). The quantile q(p) is determined by the sorted distribution of
the observed performances in X .

We consider a series: pk = k/q for k = 0, ...q of q + 1
equally spaced quantiles limits like quartiles limits: 0, .25, .5, .75, 1,
quintiles limits: 0, .2, .4, .6, .8, 1, or deciles limits: 0, .1, .2, ..., .9, 1.
The upper-closed qk quantiles class corresponds to the interval
]q(pk−1); q(pk)], for k = 2, ..., q, where pq = maxX x and the first
class q(p1) =] − ∞; q(p1)] gathers all data below q(p1). We call
q-tiles a complete series of k = 1, ..., q upper-closed qk quantiles
classes. Similarly, the lower-closed qk quantiles class corresponds
to the the interval [q(pk−1); q(pk)], for k = 1, ..., q − 1, where
p1 = minX x and the last class q(pq) = [q(pk−1);+∞[gath-
ers all data above q(pk−1). We will in the sequel consider by default
upper-closed quantiles.

If x is a measured performance on a single criterion, we may hence
distinguish three sorting situations: x 6 q(pk−1)≡ ’the performance
x is lower than the qk class’; x > q(pk−1) and x 6 q(pk) ≡ ’the
performance x belongs to the qk class’; x > q(pk) ≡ ’the perfor-
mance x is higher than the pk class’. The relation < being the dual
of >, it will be sufficient to check that both, q(pk−1) 6> x, as well as
q(pk) > x, are verified for x to be a member of the k-th q-tiles class.

The multiple criteria extension of this single criterion q-sorting
works as follows. Let F = {1, ...,m} be a finite and coherent fam-
ily of m performance criteria 4 and let x and y be two evaluation
vectors on F . For each criterion j in F , we suppose the perfor-
mances to be measured on a real scale [0;Mj], supporting an in-
difference discrimination threshold indj , a preference discrimina-

3 Extended Kendall τ index, see Bisdorff 2012 [7].
4 Coherent means here: universal, minimal and preferentially consistent wrt

marginal preferences (see Roy 1991, 1993 [3, 8] and Bisdorff 2002 [5]).

tion threshold prj and a veto discrimination threshold vj such that
0 6 indj < prj < vj 6 Mj . The marginal evaluation of x
on criterion j is denoted xj . Each criterion j in F carries further-
more a rational significance weight wj such that 0 < wj < 1.0 and∑

j∈F wj = 1.0.
In the bipolar outranking approach (see Bisdorff 2013 [9]), every

criterion j ∈ F characterizes onX a marginal double threshold order
>j with the following semantics (see Fig. 1):

r(x >j y)
def
=

+1 if xj − yj > −indj
−1 if xj − yj 6 −prj
0 otherwise.

(1)

r(x >j y) = +1 signifies that x is performing at least as good as
y on criterion j, r(x >j y) = −1 signifies that x is not performing
at least as good as y on criterion j, and r(x >j y) = 0 signifies
that it is unclear whether, on criterion j, x is performing at least as
good as y. Each criterion j contributes thus, in the following way, the

Figure 1. Characteristic function of marginal ’at least as good as’ relation
jj

j

j j jx − y

+1

0

−1

r(x >= y)

−pr

−ind

significancewj of his marginal “at least as good as” characterization
r(x >j y) to the global characterization r(x > y):

r(x > y)
def
=
∑
j∈F

[
wj · r(x >j y)

]
, (2)

where: r(x > y) > 0 signifies that x is globally performing at
least as good as y; r(x > y) < 0 signifies that x is not globally
performing at least as good as y; and, r(x > y) = 0 signifies that
it is unclear whether x is globally performing at least as good as y.

From an epistemic point of view, we say that evaluation x outranks
evaluation y, denoted (x % y), if a significant majority of criteria
validates a global outranking situation between x and y, i.e. (x > y)
and no veto (denoted (x 6≪ y)) is observed on a discordant crite-
rion. Similarly, evaluation x does not outrank evaluation y, denoted
(x 6% y), if a significant majority of criteria invalidates a global out-
ranking situation between x and y, i.e. (x 6> y) and no counter-veto
(denoted (x 6≫j y)) is observed on a concordant criterion j [9].
Veto characteristics on a criterion j (denoted (x≪j y)) are defined
as follows:

r(x≪j y)
def
=

+1 if xj − yj 6 −vj
−1 if xj − yj > vj

0 otherwise.

(3)

If we furthermore set r(x ≫j y)
def
= r(x 6≪j y), veto and counter-

veto situations will be codual one to another.
Now, a global bipolar outranking characteristic r(x % y) is de-

fined as follows:

r(x % y)
def
= r(x > y) >

(
>j∈F

[
r(x 6≪j y)

])
.5 (4)

In particular: r(x % y) = r(x > y) if no considerable large positive
or negative performance differences are observed; r(x % y) = 1 if
r(x > y) > 0 and >j∈F [r(x ≫j y)] = 1; and, r(x % y) = −1 if
r(x > y) 6 0 and >j∈F [r(x≪ y)] = 1.

For k = 1, ..., q, let qk denote a multiple criteria quantiles class,
and let q(pk−1) =

(
q1(pk−1), q2(pk−1), ..., qm(pk−1)

)
denote its

lower limits, and q(pk) =
(
q1(pk), q2(pk), ..., qm(pk)

)
its cor-

responding upper limits. Alternative x belongs to multiple criteria
quantiles class qk if the corresponding lower limits q(pk−1) do not
outrank, whereas the upper limits q(pk) do outrank the multiple
criteria performances of x. The membership characteristic function
evaluating if of alternative x belongs to quantiles class qk may be
readily assessed as follows:

r(x ∈ qk)
def
= min

[
− r
(
q(pk−1) % x

)
, r
(
q(pk) % x

)]
(5)

In our bipolar characteristic calculus, logical conjunction is indeed
implemented via the min operator, whereas logical negation is im-
plemented by changing the sign of the r values (see [4, 5, 9]).

Formula 5 gives us now the essential tool for implementing our
q-tiles sorting algorithm.

The multicriteria (upper-closed) q-tiles sorting algorithm

Input: a set X of n decision alternatives with a performance
tableau on a family of m criteria and a set Q = {q1, ...,qq}
of k = 1, .., q empty multiple criteria quantiles classes.
For each object x ∈ X and each quantiles class qk ∈ Q
1. r(x ∈ qk) ← min

(
− r(q(pk−1) % x), r(q(pk) % x)

)
2. if r(x ∈ qk) > 0 add x to q-tiles class qk

Output:Q

The complexity of the q-tiles sorting algorithm is in O(nmq), i.e.
linear in the number of decision alternatives (n), criteria (m) and
quantiles classes (q). AsQ represents a partition of the criterion per-
formance measurement scales, there is a potential for run time opti-
mization.

We may compute a didactic example with the help of our DI-
GRAPH3 collection of Python modules. 6

Example 2 (Python session with DIGRAPH3 resources)
1 >>> from randomPerfTabs import RandomPerformaceTableau
2 >>> t = RandomPerformanceTableau(numberOfActons=50,

... seed=5)
3 >>> from sparseOutrankingDigraphs import\

... PreRankedOutrankingDigraph
4 >>> pr = PreRankedOutrankingDigraph(t,quantiles=5)
5 >>> pr.showSorting()
--- Sorting results in descending order ---
]0.8 - 1.0]: [a16, a2, a24, a32]
]0.6 - 0.8]: [a01, a02, a06, a09, a10, a13, a16, a18,

a22, a25, a27, a28, a31, a32, a36, a37,
a39, a40, a41, a43, a45, a48]

]0.4 - 0.6]: [a01, a03, a04, a05, a07, a08, a09, a10,
a11, a12, a13, a14, a15, a17, a18, a20,
a26, a27, a29, a30, a33, a34, a35, a38,
a42, a43, a44, a45, a46, a47, a49, a50]

]0.2 - 0.4]: [a04, a11, a12, a17, a19, a21, a23,
a29, a34, a42, a46, a47, a50]

] < - 0.20]: []

5 > denotes the symmetric or epistemic disjunction operator. If φ and ϕ de-
note two propositions, r(φ > ϕ) will be max(r(φ), r(ϕ)) if both r(φ)
and r(ϕ) are positive; min(r(φ), r(ϕ)) if both r(φ) and r(ϕ) are nega-
tive; and 0 if r(φ) and r(ϕ) are of opposite signs.

6 Tutorials for programming with the DIGRAPH3 Python3 re-
sources (see [10]) may be found on this site: http://leopold-
loewenheim.uni.lu/docDigraph3/ .

In Lines 1 and 2 we import a random performance tableau gener-
ator class and construct a sample ‘RandomPerformanceTableau’ in-
stance called t. In Lines 3 we import the ‘PreRankedOutrankingDi-
graph’ class and in Line 4 we construct a 5-tiles sorting digraph
called pr. Line 5 shows the actual contents of the quintiles perfor-
mance classes we obtain with this random performance tableau in-
stance. Notice the seed=5 argument in Line 2 which makes the ran-
dom experiment repeatable.

As made evident with this example of 5-tiling, useful formal prop-
erties of our q-tiles sorting algorithm are the following:

1. Coherence: Each decision alternative is always sorted into a non-
empty subset of adjacent q-tiles classes. For instance, alternative
’a16’ is sorted into the best (]0.8− 1.0]) and second best quintiles
class (]0.6 − 0.8]). In the limit, a not yet evaluated alternative
would appear sorted in all five quintiles classes.

2. Uniqueness: If no indeterminate outranking situation is being ob-
served (r() 6= 0), a decision alternative is sorted into exactly one
single quantiles class. This is the case, for instance, with alter-
native ’a24’ which is solely sorted into the best quintiles class
(]0.8− 1.0]).

3. Separability: The quantiles class limits q(pk) being given, the
sorting result for each alternative x may be computed indepen-
dently of the other alternatives’ sorting results. Similarly, the con-
tent of a quantiles class qk may be computed independently of the
other classes’ contents.

The last property will give us later on access to efficient parallel
processing of class membership characteristics r(x ∈ qk) for all
x ∈ X and k = 1, ..., k .

1.3 A pre-ranked sparse approximation of the
global outranking relation

Following the coherence property above, we may compute for each
alternative x in X a lower and an upper q-tiles sorting limit. The
lower limit is determined by the one of its lowest q-tiles class whereas
the upper limit is determined by the one of its highest q-tiles class.

Reconsidering the quintiles sorting result of Example 2, we may
observe, for instance, a decomposition ofX into seven quantiles per-
formance classes:
>>> pr.showDecomposition()
--- quantiles decomposition in decreasing order---

c1.]0.8-1.0]: [a24]
c2.]0.6-1.0]: [a16,a22, a32]
c3.]0.6-0.8]: [a02, a06, a25, a28, a31, a36, a37,

a39, a40, a41, a48]
c4.]0.4-0.8]: [a01, a09, a10, a13, a18,

a27, a43, a45]
c5.]0.4-0.6]: [a03, a05, a07, a08, a14, a15, a20,

a26, a30, a33, a35, a38, a44, a49’]
c6.]0.2-0.6]: [a04,’a11, a12, a17, a29, a34, a42,

a46, a47, a50]
c7.]0.2-0.4]: [a19, a21, a23]

Alternative ’a24’, for instance, is sorted into the qantiles class
]0.8 − 1.0], whereas, alternative ’a16’ is sorted into the quantiles
class]0.6− 1.0].

The q-tiles sorting result leaves us hence with a partition of the
set of decision alternatives into more or less refined quantiles per-
formance classes. These classes may furthermore be linearly ranked
from best to worst by following three potential ranking strategies:

1. Optimistic: In decreasing lexicographic order of, first, the upper
and, secondly, the lower quantile;

2. Pessimistic: In decreasing lexicographic order of, first, the lower
and, secondly, the upper quantile;

http://leopold-loewenheim.uni.lu/docDigraph3/
http://leopold-loewenheim.uni.lu/docDigraph3/

3. Average: In decreasing lexicographical order of, first, the average
of the lower and upper quantile, and secondly, the upper quantile.

Practical experiments with ranking given performance tableaux,
like the one in Example 1 above, suggest that the ’average’ ranking
strategy gives the most convincing result when indeterminate out-
ranking situations and/or missing data are observed.

In view of the partition Pq = {c1, ..., ck} of the set X of decision
alternatives, ranked from the best to the worst, we may define as
follows the characteristic function of what we will call a pre-ranked
sparse or q-tiled outranking relation, denoted 'q :

r(x 'q y)
def
=

+1, if

[
x ∈ ci ∧ y ∈ cj ∧ i < j

]
−1, if

[
x ∈ ci ∧ y ∈ cj ∧ i > j

]
r(x %|ci y) , otherwise.

(6)

Relation %|ci denoting the restriction of the global outranking rela-
tion to the component ci, r(x 'q y) = r(x %|ci y) only when x
and y do appear in the same component ci. The corresponding out-
ranking digraph, denotedG(X,'q), is called a pre-ranked or q-tiled
outranking digraph.

Depending on the number q of quantiles used in the q-tiles sorting
algorithm, a more or less refined pre-ranking is obtained. In the limit,
when, on the one hand, only one single component c1 = X is ob-
served, we recover the standard outranking relation %. On the other
hand, when q is high and n singleton quantiles classes are obtained,
we directly recover a linear ranking of the decision alternatives.

Reconsidering the performance tableau of Example 2, concerning
a set of 50 decision alternatives, we show below a map of the stan-
dard outranking relation % (see Fig. 2. left side) versus a map of the
corresponding pre-ranked outranking relation '5 (see Fig. 2. right
side).

Figure 2. Map of standard % outranking relation (left) versus correspond-
ing pre-ranked, sparse approximate '5 outranking relation (right) 8

8 Fig. 2. symbols legend: > ≡ outranking for certain; + ≡ more or less out-
ranking; ’ ’ ≡ indeterminate; - ≡ more or less outranked; ⊥ ≡ outranked
for certain.

The 5-tiled outranking relation of Example 2 shows indeed seven
ordered components with a minimal cardinality of 1 (component c1)
and a maximal cardinality of 14 (component c5). The outranking fill
rate of the pre-ranked '5 outranking relation, i.e. the actual remain-
ing part in '5 of the complete standard outranking relation % (see
Fig. 2), amounts here to 18%. And the ordinal correlation index (see
[7]) between the standard (%) and the pre-ranked ('5) outranking
relation, denoted τ(%,'5) is, in this case, +0.75.

2 Computing linear rankings from a pre-ranked
sparse outranking digraph

The previous quantiles sorting result represents in fact a first step
in the construction of a global linear ranking of all given decision
alternatives.

2.1 Heuristic linear closures of pairwise
outranking situations

To linearly rank indeed the complete set X of decision alternatives,
we still need to locally rank without ties the k components ci ⊆ X
for i = 1, ..., k. To do so, we will rely on the component-wise
restricted pairwise valued outranking situation characteristics, i.e.
r(x %|ci y) for all x, y in ci. We denote G|ci the restriction of the
standard outranking digraph to the subset ci of decision alternatives.

The component-wise ranking algorithm

1. Input: the outranking digraph G(X,'q), a partition Pq =
{c1, c2, ..., ck} of k linearly ordered decreasing parts of X ob-
tained by the q-tiles sorting algorithm, and an empty listR.

2. For each performance class ci ∈ Pq:

if #(ci) > 1:
Rk ← locally rank ci in G|ci with Copeland’s rule
(if ties, render the concerned alternatives in alphabetic order)

else: Rk ← ci

append Rk toR
3. Output:R

The complexity of the component-wise ranking algorithm is lin-
ear in the number k of components resulting from a q-tiles sorting.
Concerning the compexity of the local ranking procedure, we know
that outranking relations do only exceptionally show linear rankings.
Usually, they do not even render complete or, at least, transitive par-
tial relations (see Bouyssou and Pirlot 2005 [11]). Three heuristic
ranking rules appear most suitable here for our purpose –Copeland’s,
Net-flows’ and Kohler’s rule– all three of complexity O(#(ci)

2) on
each restricted outranking digraph G|ci . In case of ties (very simi-
lar evaluations for instance), the local ranking procedure will render
these alternatives in increasing alphabetic ordering of their identity
keys.

However, the three considered ranking rules do not deliver rank-
ings of a same quality as we show in Fig. 3 below. We may notice, in-
deed, that the quality of the linear rankings obtained with Copeland’s
or the Net-Flows ranking rule on a sample of 100 outranking di-
graphs of order 250 is much better (median correlation with % around
+0.8 [7]) when compared with Kohler’s rule (median correlation
with % around +0.6 only). As Copeland’s ranking rule is the sim-
plest to implement, we will by default use this ranking rule in the
sequel.

Figure 3. Sample of hundred 10-tiled outranking graphs of order 250

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

O
rd

in
a
l
co

rr
e
la

ti
o
n
 i
n
d

e
x

Ranking rule

Fitness of ranking rules

Copeland net flows Kohler

2.2 Fitness of the linear ranking result
The fitness of our pre-ranked sparse versus the standard outranking
digraph model may be appreciated when comparing both the ordinal
quality of the linear ranking result obtained from a standard versus
the result obtained from a 50-tiled pre-ranked outranking relation.
We consider a sample of 100 random performance tableaux gather-
ing 500 decision alternatives evaluated on 21 incommensurable per-
formance criteria. The 50-tiles pre-rankings give on average around
38 (sd. 7.6) performance classes, with a minimum of 32 and a max-
imum of 67 components, leading to an average diagonal outranking
fill rate of around 3% (sd: 0.4%). Concerning the ordinal correla-

Figure 4. Standard versus 50-tiled pre-ranked sparse outranking model

tion (see [7]) between the standard outranking relation and our linear
ranking result, we may notice in Fig. 4 that the correlation is around
+0.88 (sd: 0.007) when the Copeland ranking is constructed from
the global outranking relation, and around +0.83 (sd: 0.009), when
it is constructed from the 50-tiled sparse outranking relation. The
pre-ranking step, hence, does apparently not deteriorate significantly
the quality of the ranking result.

Notice furthermore in Fig. 4 that the ordinal correlations are, both
times, augmenting with the epistemic determination index of the
standard outranking relation (see [7]). It is indeed evident that the
quality of any linear ranking result essentially depends on the actual

performance evaluations. When, on the one hand, they are very simi-
lar or there are many missing data and/or vetoes, the asymmetric part
of the outranking relation will appear weakly determined. All poten-
tial ranking rules will deliver rankings that are more or less weakly
correlated with the corresponding outranking relation. On the other
hand, if the evaluations show a clearly determined alignment of the
decision alternatives, the outranking relation will appear strongly de-
termined, and all potential ranking rules will produce more or less
highly correlated linear rankings.

2.3 Multithreading the q-tiles sorting & ranking
procedure

When tackling big performance tableaux, evaluating thousands or
even millions of decision alternatives, we absolutely need to speed up
the computations with multiple parallel threading HPC implementa-
tions. This is readily made possible by the separability property of
the pairwise outranking approach.

Relying indeed on this property when sorting each alternative into
its respective quantiles performance classes, the q-tiles sorting algo-
rithm may be safely split into as much parallel processing threads as
there are parallel processing units available. Notice that a high num-
ber of parallel processing units, sharing a same CPU memory, will
consequently need a very big memory. Furthermore, the component-
wise ranking procedures, being all local to a diagonal component ci,
may as well be safely processed in parallel threads on each restricted
outranking digraph G|ci .

Along these ideas, we have specially adapted our DIGRAPH3 com-
puting resources9 in order to run our q-tiles sorting & ranking algo-
rithms on the HPC clusters of the University of Luxembourg (see
[12]). The computations reported here were operated on the gaia-80
node, a Delta D88x-M8-BI, 8 * Intel Xeon E7-8880 v2 @ 2.5 GHz
machine equipped with 120 single threaded processing cores and a
shared CPU memory of 3 TB.

The multithreaded versions of our algorithms are implemented
with the help of the Python3.5 multiprocessing module10 and
our DIGRAPH3 collection of Python3 modules [10]. We use, for in-
stance, the following generic algorithmic design for implementing
parallel local ranking procedures.

Generic approach for parallel processing of the local rankings
from multiprocessing import Process, active_children

class Thread(Process):
def __init__(self, threadID, localComp)

Process.__init__(self)
self.threadID = threadID
self.localComponent
...

def run(self):
... Copeland ranking
... of self.localComponent
...

nbrOfJobs = number of // CPUs
for job in range(nbrOfJobs):

... pre-threading tasks per job
print(’iteration = ’,job+1,end=" ")
splitThread = Thread(job, localComponent, ...)
splitThread.start()

while active_children() != []:
pass

print(’Exiting parallel threads’)
for job in range(nbrOfJobs):

... post-threading tasks per job

In Table 1 we show run times of linear ranking constructions both,
from a standard % outranking relation and, from a pre-ranked, sparse
approximate 'q outranking relation.

9 See the documentation of the DIGRAPH3 resources FSTC/ILIAS
Decision Systems Group, University of Luxembourg. http://leopold-
loewenheim.uni.lu/docDigraph3 .

10 See https://docs.python.org/2/library/multiprocessing.html .

http://leopold-loewenheim.uni.lu/docDigraph3
http://leopold-loewenheim.uni.lu/docDigraph3
https://docs.python.org/3.5/library/multiprocessing.html

Table 1. Comparing the standard and pre-ranked sparse approach11

digraph % relation 'q relation
order run time τ(>,%) run time τ(>q ,%)

1 000 6” +0.88 4” +0.83
2 000 15” +0.88 9” +0.83
2 500 27” +0.88 14” +0.83

If the speed gain for order 1 000 is 33%, we already reach nearly
50% acceleration with order 2 500. Notice that the quality, in terms
of the correlation index with the gobal outranking relation, of the
linear ranking result appears to be independent of the actual order,
namely +0.88 for the standard, resp +0.83 for the pre-ranked out-
ranking relation.

These excellent run times encouraged us to furthermore develop
specific cythonized12 C versions of our DIGRAPH3 Python modules
in order to tackle pre-ranked outranking digraphs with sizes up to
five trillions (5 × 1012) of pairwise outranking situations (see Table
2). For the biggest instances, we generate a random 3 decision objec-

Table 2. HPC performance measurements for big data
'q outranking relation q fill run

order size rate time

10 000 1× 108 150 0.64% 13”
15 000 2.25× 108 200 - 22”
25 000 6.25× 108 300 - 39”
50 000 2.5× 109 500 0.58% 2’

100 000 1× 1010 900 0.22% 5’
1 000 000 1× 1012 1100 0.05% 1h17’
1 732 051 3× 1012 1500 0.04% 3h09’
2 236 068 5× 1012 1600 0.03% 4h50’

tives performance tableau with 13 incommensurable criteria and 5%
missing data.13 For 1 000 000 alternatives (input data size = 1.4 GB)
we thus obtain (see Table 2), with a 1 100-tiles pre-ranking, 13 547
diagonal components with a minimal size of 10 and a maximal size
of 1 150 alternatives, leading to a fill rate of 0.05%. To linearly rank
this huge digraph of size 1012 we need, on the gaia-80 machine with
120 parallel processing cores, in total about 1 hour and 17 minutes.

Notice that the choice of the number q of quantiles is of cru-
cial importance for our computations as it influences both the run
times of the q-tiling as well as that of the local rankings. If q is rela-
tively small, there will be less components, making on the one hand,
the q-tiles sorting procedure quicker. Yet, some components might
in consequence show much larger cardinalities, which make, on the
other hand, these local ranking procedures quadratically slower. If q
is chosen larger, q-tiling will get linearly slower. Yet, the local rank-
ings might get much quicker in case there appear less components
of larger cardinalities. Best overall run times are obtained in practice
with a number q of quantiles that makes the q-tiling procedure take
approximately the same run time as the local rankings.

Finally, we estimated the quality of such huge linear ranking, de-
noted >q , by sampling the ranking quality on sub-digraphs of order
1 000 for instance. Here we recovered in fact, by the vertu of the
LLN, an average sampled correlation result we have already noticed
in Table 1 , namely τ(%, >q) ; +0.83, with a standard deviation
diminishing with the growth of the number of samples we take into

11 Legend: τ(>,%), resp. τ(>q ,%) show the ordinal correlations between
the corresponding linear ranking results, denoted >, resp. <q , and the
given standard outranking relation %.

12 Cython: C-extensions for Python: http://cython.org/ .
13 On generating random performance tableaux. See Tutorials of the DI-

GRAPH3 ressources .

account. This result confirms again that, given the same random per-
formance tableau generator, the quality of our ranking does not de-
pend on the actual order and size of the outranking digraph.

Conclusion
We present in this paper a sparse, approximate outranking di-
graph model coupled with a two steps ranking algorithm based on
quantiles-sorting & local-ranking procedures. Ranking results ob-
tained with this outranking digraph model fit well with those given
by a standard outranking digraph. Furthermore, separable quan-
tiles sorting and local ranking procedures offer effective multipro-
cessing capacities. Efficient scalability allows, hence, the linearly
ranking of very big performance tableaux gathering up to mil-
lions of evaluations. Good perspectives for further optimization with
cython C implementations and HPC ad hoc tuning are given. All
Python and cython HPC modules are freely available for further
developments on the git repository of the DIGRAPH3 resources:
http://github.com/rbisdorff/Digraph3 .

Acknowledgments. The author would like to thank the UL-HPC
administration team for their helpful and competent assistance in the
fine tuning of our HPC work. The anonymous reviewers, with their
pertinent comments and suggestions, also much helped enhancing
content and readability of this paper.

REFERENCES
[1] N. Japkowicz and J. Stefanowski (2015). Big Data Analysis: New Algo-

rithms for a New Society. Springer-Verlag Berlin Heidelberg, Studies
in Big Data, 329 pages.

[2] R. Bisdorff, L.C. Dias, P. Meyer, V. Mousseau and M. Pirlot (Eds.)
(2015). Evaluation and decision models with multiple criteria: Case
studies. Springer-Verlag Berlin Heidelberg, International Handbooks
on Information Systems, DOI 10.1007/978-3-662-46816-6-1, 643
pages.

[3] B. Roy (1991). The outranking approach and the foundations of the
Electre methods. Theory and Decision, 31(1):49–73.

[4] R. Bisdorff (2000). Logical foundation of fuzzy preferential systems
with application to the electre decision aid methods. Computers and
Operations Research (Elsevier) 27:673–687.

[5] R. Bisdorff (2002). Logical Foundation of Multicriteria Preference Ag-
gregation. In: Bouyssou D et al (eds) Aiding Decisions with Multiple
Criteria. Kluwer Academic Publishers, pp 379–403.

[6] S. S. Wagle, M. Guzek, P. Bouvry and R. Bisdorff (2015). An Evalu-
ation Model for Selecting Cloud Services from Commercially Avail-
able Cloud Providers. In Proceedings of the 7th IEEE International
Conference on Cloud Computing Technology and Science, Vancouver,
Canada, November 30 - December 2 2015, ISBN 978-1-4673-9560-
1/15, pp 107–114.

[7] R. Bisdorff (2012). On measuring and testing the ordinal correlation
between bipolar outranking relations. In Proceedings of DA2PL’2012
- From Multiple Criteria Decision Aid to Preference Learning. Univer-
sity of Mons, November 15-16, pp 91–100.

[8] B. Roy and D. Bouyssou (1993). Aide Multicritère à la Décision :
Méthodes et Cas. Economica Paris, 695 pages.

[9] R. Bisdorff (2013) On polarizing outranking relations with large per-
formance differences. Journal of Multi-Criteria Decision Analysis
(Wiley) 20:3-12.

[10] R. Bisdorff (2016). Tutorials of the DIGRAPH3 resources. Doc-
umentation of the DIGRAPH3 resources FSTC/ILIAS Deci-
sion Systems Group, University of Luxembourg. http://leopold-
loewenheim.uni.lu/docDigraph3 .

[11] D. Bouyssou and M. Pirlot (2005). A characterization of concordance
relations. European Journal of Operational Research 167: 427–443.

[12] S. Varrette, P. Bouvry, H. Cartiaux and F. Georgatos (2014). Manage-
ment of an Academic HPC Cluster: The UL Experience. In Proc. of
the 2014 Intl. Conf. on High Performance Computing & Simulation
(HPCS 2014), Bologna (Italy). IEEE, pp 959–967.

http://cython.org/
http://leopold-loewenheim.uni.lu/docDigraph3/tutorial.html
http://leopold-loewenheim.uni.lu/docDigraph3/tutorial.html
http://github.com/rbisdorff/Digraph3
http://leopold-loewenheim.uni.lu/docDigraph3
http://leopold-loewenheim.uni.lu/docDigraph3

	Pre-ranked sparse outranking digraphs
	Showing the performance tableau
	Quantiles sorting of a performance tableau
	A pre-ranked sparse approximation of the global outranking relation

	Computing linear rankings from a pre-ranked sparse outranking digraph
	Heuristic linear closures of pairwise outranking situations
	Fitness of the linear ranking result
	Multithreading the q-tiles sorting & ranking procedure

