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Abstract. When modelling preferences following the out-
ranking approach, the sign of the majority margins do sharply
distribute validation and invalidation of pairwise outranking
situations. How can we be confident in the resulting out-
ranking digraph, when we acknowledge the usual imprecise
knowledge of criteria significance weights and a small major-
ity margin? To answer this question, we propose to model the
significance weights as random variables following more less
widespread distributions around an average weight value that
corresponds to the given deterministic weight. As the bipo-
larly valued random credibility of an outranking statement
results from a simple sum of positive or negative independent
and similarly distributed random variables, we may apply the
CLT for computing likelihoods that a given majority margin
is indeed positive, respectively negative.

Keywords: Multiple criteria decision aid; Uncertain cri-
teria weights; Stochastic outranking relations; Confidence of
the Condorcet outranking digraph.

Introduction

In a social choice problem concerning a very important issue
like amending a country’s Constitution, the absolute major-
ity of voters is often not seen as sufficient for supporting a
convincing social consensus. A higher majority of voters, two
third or even three forth of them, may be required to support
the bill in order to take effective decisions. Sometimes, even
unanimity is required; a condition that, however, may gen-
erate in practice many indecisive situations. A similar idea
is sometimes put forward in multiple criteria decision aiding
in order to model global compromise preferences when the
significance of the criterion are not known with sufficient pre-
cision. In his seminal work on the Electre I method (Roy
[1], concerning a best unique choice problematique, Roy is
clearly following this line of thought by proposing to choose a
sufficiently qualified majority of criterial support before con-
sidering an outranking statement to be significant.

Following the SMAA approach (Tervonen et al. [2]), we are
here proposing a different approach. The individual criteria
significance weights are considered to be random variables.
The bipolarly valued characteristic of the pairwise outranking
situations (Bisdorff [3, 4]) appear hence to be sums of random
variables of which we may assess the apparent likelihood of
obtaining a positive weighted majority margin for each out-

ranking situation. And depending on the seriousness of the
decision issue, we may hence recommend to accept only those
outranking statements that show a sufficiently high likelihood
of 90% or 95%, for instance. We could also, in the limit accept
only those statements which appear to be certainly supported
by a weighted majority of criterial significance.

The paper is structured as follows. A first section is con-
cerned with how to model the uncertainty we face for assess-
ing precise numerical criteria significance weights. The second
section illustrates how the likelihood of outranking situations
may be estimated. The third section introduces the concept
of confidence level of the valued outranking digraph, followed
by short last section devoted to an illustrative example of
confident best choice recommendation.

1 Modelling uncertain criteria significances

We have already extensively discussed some time ago (see Bis-
dorff [5]) the operational difficulty to numerically assess with
sufficient precision the actual significance that underlies each
criterion in a multiple criteria decision aid problem. Even,
when considering that all criteria are equi-significant, it is
not clear how precisely (how many decimals ?) such a numer-
ical equality should be taken into account when computing
the outranking characteristic values. In case of unequal sig-
nificance of the criteria, it is possible to explore the stability
of the Condorcet digraph with respect to the ordinal crite-
ria significance structure (Bisdorff [6, 7]). One may also use
indirect preferential observations for assessing via linear pro-
gramming computations apparent significance ranges for each
criterion (Dias [8]).

Here, we propose instead to consider the significance
weights of a family F of n criteria to be independent random
variables Wi, distributing the potential significance weights
of each criterion i = 1, ..., n around a mean value E(Wi) with
variance V (Wi).

Choosing a specific stochastic model of uncertainty may
be application specific. In the limited scope of this paper,
we will illustrate the consequence of this design decision on
the resulting outranking modelling with four slightly different
models for taking into account the uncertainty with which we
know the numerical significance weights: uniform, triangular,
and two models of Beta laws, one more widespread and, the
other, more concentrated. When considering that the poten-
tial range of a signficance weight is distributed between 0 and



two times its mean value, we obtain the following random
variates:

1. A continuous uniform distribution on the range 0 to 2 ∗
E(Wi). Thus Wi ∼ U(0, 2E(Wi)) and V (Wi) = 1

3
E(Wi)

2;
2. A symmetric beta(a, b) distribution with, for instance, pa-

rameters a = 2 and b = 2. Thus, Wi ∼ Beta(2, 2)×2E(Wi)
and V (Wi) = 1

5
E(Wi)

2.
3. A symmetric triangular distribution on the same range

with mode E(Wi). Thus Wi ∼ T r(0, 2E(Wi), E(Wi)) with
V (Wi) = 1

6
E(Wi)

2;
4. A narrower beta(a, b) distribution with for instance param-

eters a = 4 and b = 4. Thus Wi ∼ Beta(4, 4) × 2E(Wi),
V (Wi) = 1

9
E(Wi)

2

It is worthwhile noticing that these four uncertainty models
all admit the same expected value, E(Wi), however, with a
respective variance which goes decreasing from 1/3, to 1/9 of
the square of E(Wi) (see Fig. 1).
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Figure 1. Four models of uncertain significance weights

We will limit in the sequel our attention to the triangular
random model and explore now, without loss of generality, the
resulting uncertainty we are going to model into the valued
outranking digraph.

2 Likelihood of “at least as good as”
situations

Let A = {x, y, z, ...} be a finite set of n potential decision
actions, evaluated on F = {1, ...,m}, a finite and coherent
family of m performance criteria. On each criterion i in F ,
the decision actions are evaluated on a real performance scale
[0;Mi], supporting an upper-closed indifference threshold indi
and a lower-closed preference threshold pri such that 0 6
indi < pri 6 Mi. The marginal performance of object x on
criterion i is denoted xi. Each criterion i is thus characterizing
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Figure 2. Characteristic function of marginal “at least as good

as” statement

a marginal double threshold order <i on A (see Fig. 2):

r(x <i y) =


+1 if xi − yi > −indi
−1 if xi − yi 6 −pri
0 otherwise.

(1)

+1 signifies x is performing at least as good as y on criterion i,
−1 signifies that x is not performing at least as good as y on

criterion i.
0 signifies that it is unclear whether, on criterion i, x is per-

forming at least as good as y.

Each criterion i ∈ F contributes the random significance Wi

of his “at least as good as” characterization r(<i) to the global
characterization r̃(<) in the following way:

r̃(x < y) =
∑
i∈F

[
Wi · r(x <i y)

]
(2)

Thus, r̃(x < y) becomes a simple sum of positive or negative
independent random variables with known means and vari-
ances where r̃ > 0 signifies x is globally performing at least
as good as y, r̃ < 0 signifies that x is not globally performing
at least as good as y, and r̃ = 0 signifies that it is unclear
whether x is globally performing at least as good as y.

From the Central Limit Theorem (CLT), we know that
such a sum (Eq. 2) leads, with m getting large, to a Gaus-
sian distribution Y with E(Y ) =

∑
iE(Wi) × r(x < y) and

V (Y ) =
∑
i V (Wi) × |r(x < y)|. And the likelihood of vali-

dation, respectively invalidation of an “at least as good as”
situation, denoted lh(x < y), may be assessed as follows:

lh(x < y) =

{
1.0− P (Y 6 0.0) if E[r̃(x < y)] > 0,

P (Y 6 0.0) otherwise.
(3)

Example 2.1. Let us consider two decision alternatives x
and y being evaluated on a family of 7 equi-significant crite-
ria, such that four out of the seven criteria positively support
that x outranks y, and three criteria support that x does not
outrank y. In this case, r̃(x < y) = 4w − 3w = w where
Wi = w for i = 1, ..., 7 and the outranking situation is posi-
tively validated. Suppose now that the significance weights Wi

appear only more or less equivalent and let us model this nu-
merical uncertainty with independent triangular laws: Wi ∼
T r(0, 2w,w) for i = 1, ...7. The expected credibility of the out-
ranking situation, E(r̃(x < y)) = 4w − 3w = w, will remain
the same, however with a variance of 7× 1

6
w2. If we take a unit



weight w = 1, we hence obtain a standard deviation of 1.08.
Applying the CLT we notice that, under the given hypothe-
ses, the likelihood lh(x < y) of obtaining a positive majority
margin will be about 1.00 − P ( r̃−1

1.08
6 0.0) ≈ 83%. A Monte

Carlo simulation with 10 000 runs empirically confirms the ef-
fective convergence to a Gaussian: r̃(x < y) N (1.03, 1, 089)
(see Figure 3), with an empirical probability of observing a
negative majority margin P (r̃(x < y) 6 0.0) of indeed about
17%.

Figure 3. Distribution of outranking credibility r̃(x < y)

Example 2.2. The second example concerns two decision
alternatives a1 and a2 that are evaluated on a family of 7
criteria, denoted gi of unequal significance weights wi for
i = 1, ..., 7 (see Tab. 1). The performances on the seven cri-
teria are measured on a rational scale from 0 (worst) to 100
points (best). Let us suppose that both decision alternatives
are evaluated as shown in Tab. 1. A performance difference
of 10 points or less is considered insignificant, whereas a dif-
ference of 20 points and more is considered to be significant.

Table 1. Pairwise comparison of two decision alternatives

gi g1 g2 g3 g4 g5 g6 g7
wi 7 8 3 10 1 9 7

a1 14.1 71.4 87.9 38.7 26.5 93.0 37.2
a2 64.0 87.5 67.0 82.2 80.8 80.8 10.6

a1 − a2 -49.9 -16.1 +20.9 -43.5 -54.3 +12.2 26.5
r(<i) −1 0 +1 −1 −1 +1 +1

The overall deterministic outranking credibility r(a1 < a2)
(see [4]) is given as follows:

r(a1 < a2) =

7∑
i=1

r(a1 <i a2)× wi (4)

= −7 + 0 + 3− 10− 1 + 9 + 7 = +1 (5)

The outranking situation “(a1 < a2)” is thus positively val-
idated (see Eq. 5). However, in case the given criteria sig-
nificance weights (see Tab. 1) are not known with certainty,
how confident can we be about the actual positiveness of

r̃(a1 < a2)? If we suppose now that the random significance
weights Wi are in fact independently following a triangu-
lar continuous law on the respective ranges 0 to 2wi, the
CLT approximation will make r̃(a1 < a2) tend to a Gaus-
sian distribution with mean equal to E(r̃(x < y)) = +1 and
standard deviation equal to

√∑
i 1/6E(Wi)2 = 6.94. The

likelihood of r̃(a1 < a2) > 0.0 equals thus approximately
1.0 − P ( z−1

6.94
6 0.0) = 1.0 − 0.443 ≈ 55.7%, a result we

can again empirically verify with a Monte Carlo sampling of
10 000 runs (see Fig. 4). Under the given modelling of the

Figure 4. Distribution of outranking credibility r̃(a1 < a2)

uncertainty in the setting of the criteria significance weights,
the credibility of the outranking situation between alterna-
tives a1 and a2 is neither convincingly positive, nor negative.
The given relational situation may, hence, neither confidently
be validated, nor, confidently invalidated.

3 Confidence level of outranking situations

Following the classic outranking difinition (see Roy [1], Bis-
dorff [4]), we may say from an epistemic point of view, that
decision action x outranks decision action y, denoted x % y),
if

1. a confident majority of criteria validates a global outrank-
ing situation between x and y, and

2. no considerably less performing is observed on a discordant
criterion.

Dually, decision action x does not outrank decision action y,
denoted (x 6% y), if

1. a confident majority of criteria invalidates a global out-
ranking situation between x and y, and

2. no considerably better performing situation is observed on
a concordant criterion.

On a criterion i, we characterize a considerably less performing
situation, called veto and denoted ≪i, as follows:

r(x≪i y) =


+1 if xi + vi 6 yi
−1 if xi − vi > yi
0 otherwise.

. (6)



where vi, with Mi > vi > pri, represents a lower-closed veto
discrimination threshold. A corresponding dual considerably
better performing situation, called counter-veto and denoted
≫i, is similarly characterized as:

r(x≫i y) =


+1 if xi − vi > yi
−1 if xi + vi 6 yi
0 otherwise.

. (7)

A global veto, or counter-veto situation is now defined as
follows:

r(x≪ y) = >i∈F r(x≪i y) (8)

r(x≫ y) = >j∈F r(x≫j y) (9)

where > represents the epistemic polarising ([9]) or symmetric
maximum ([10]) operator:

r > r′ =


max(r, r′) if r > 0 ∧ r′ > 0,

min(r, r′) if r 6 0 ∧ r′ 6 0,

0 otherwise.

(10)

We observe the following semantics:

1. r(x≪ y) = 1 iff there exists a criterion i such that r(x≪i

y) = 1 and there does not exist otherwise any criterion
j ∈ F such that r(x≫j y) = 1.

2. Conversely, r(x≫ y) = 1 iff there exists a criterion i such
that r(x≫i y) = 1 and there does not exist otherwise any
criterion j such that r(x≪j y) = 1.

3. r(x ≫ y) = 0 if either we observe no very large perfor-
mance differences or we observe at the same time, both a
very large positive and a very large negative performance
difference.

It is worthwhile noticing that r( 6≪)−1 is identical to r(≫),
both ≪ and ≫ being, by construction, codual relations one
to another.

The deterministic outranking characteristic r(%) may hence
be defined as follows:

r(x % y) = r(x < y) >i∈F
[
− r(x≪i y)

]
(11)

And in particular,

1. r(x % y) = r(x < y) if no very large positive or negative
performance differences are observed,

2. r(x % y) = 0 if a veto and a counter-veto situation are
conjointly occurring;

3. r(x % y) = 1 if r(x < y) > 0 and r(x≫ y) = 1,
4. r(x % y) = −1 if r(x < y) 6 0 and r(x≪ y) = 1.

When considering now the criteria significance weights to
be random variates, r(x % y) becomes a random variable via
the random characteristic r̃(x < y).

r̃(x % y) = r̃(x < y) >i∈F
[
− r(x≪i y)

]
(12)

In case 1. we are back to the unpolarised “at least as good
as” situation discussed in the previous section. In case 2.,
the resulting constant indeterminate outranking characteris-
tic value 0 is in fact independent of any criterion significance.
Only cases 3. and 4. are of interest here. If E(r̃(x < y)) > 0,

we are in case 3. where strictly negative characteristics will
be given the indeterminate characteristic 0, and the others,
a polarised +1 value. Similarly, if E(r̃(x < y)) 6 0 we are in
case 4., strictly positive characteristics r(x < y) > 0 will be
given the indeterminate value 0, and the others, the polarised
−1 value.

By requiring now a certain level α of likelihood for effec-
tively validating all pairwise outranking situations, we may
thus enforce the actual confidence we may have in the valued
outranking digraph. For any outranking situation (x % y) we
obtain:

r̂α(x % y) =

{
E
[
r̃(x % y)

]
if lh(x < y) > α,

0 otherwise.
(13)

If, for instance, we would require that an outranking situation
(x % y), to be validated, respectively invalidated, must admit
a likelihood lh(x < y) of α = 90% or more, any positively
or negatively polarising of the “at least as good as” state-
ment will only occur in case of sufficient likelihood. Noticing
that E

[
r̃(x % y)

]
= r(x % y), we safely preserve, hence, in

our stochastic modelling, all the nice structural properties of
the deterministic outranking relation (see Eq. 11), like weak
completeness and coduality, that is the dual of the outranking
relation (6%) corresponds to the asymmetric part (�) of its
converse relation (see Bisdorff [4]).

Example 3.1. We may illustrate our uncertainty modelling
approach with a small random performance tableau (see
Tab. 2) showing the evaluations of seven decision alternatives
on the same family of performance criteria we used for Ex-
ample 2.2. To operate with a full fledged outranking model,
we furthermore consider that a performance difference of 80
points and more will trigger a veto or counter-veto situation
(see [4]).

Table 2. Random performance tableau

gi wi a1 a2 a3 a4 a5 a6 a7

g1 7 14.1 64.0 73.4 36.4 30.6 85.9 97.8
g2 8 71.4 87.5 61.9 84.7 60.4 54.5 45.8
g3 3 87.9 67.0 25.2 34.2 87.3 43.1 30.4
g4 10 38.7 82.2 94.1 86.1 34.1 97.2 72.2
g5 1 26.5 80.8 71.9 21.3 56.4 88.1 15.0
g6 9 93.0 80.8 23.2 57.2 81.4 16.6 93.0
g7 7 37.2 10.6 64.8 98.9 69.9 24.7 13.6

Thresholds: indi = 10.0, pri = 20, and vi = 80 for i ∈ F .

When using the deterministic criteria significance weights
shown in Tab. 2, we obtain the bipolarly valued outranking
relation shown in Tab. 3. We recover there the weakly positive
credibility (r(a1 % a2) = +1/45) of the outranking situation
between alternative a1 and alternative a2 discussed in Exam-
ple 2.2. Notice also the slightly negative credibility (−5/45)
of the outranking situation between alternative a1 and a3.
Notice, furthermore the veto and counter-veto situations we
observe when comparing alternatives a1 and a7, a2 and a4, as
well as, a4 and a7. How confident are all these pairwise pref-
erential situations when the significance weights are not pre-
cisely given? Assuming that the criteria significance weights
wi are in fact random variates distributed following indepen-
dent triangular laws T (0, 2wi, wi) for i = 1, ..., 7, we obtain



Table 3. Deterministic credibility of (x % y)

r(%)× 45 a1 a2 a3 a4 a5 a6 a7

a1 - +1 −5 −11 +22 +9 0
a2 +16 - +21 0 +25 +14 +22
a3 +21 +5 - −3 +21 +34 +13
a4 +21 +45 +29 - +19 +19 +45
a5 +28 −7 +10 −5 - +9 +2
a6 +6 +5 +31 −3 +7 - +20
a7 +45 +11 +1 0 +15 +13 -

Table 4. CLT likelihood of the (x < y) situations

lh a1 a2 a3 a4 a5 a6 a7

a1 - .56 .74 .94 1.0 .88 .92
a2 .99 - 1.0 1.0 1.0 .99 1.0
a3 1.0 .74 - .65 1.0 1.0 .95
a4 1.0 .74 1.0 - .99 1.0 .95
a5 1.0 .82 .90 .74 - .88 .62
a6 .83 .74 1.0 .65 .82 - 1.0
a7 .85 .95 .56 .78 .98 .97 -

the CLT likelihoods shown Tab. 4. If we, now, require for each
“at least as good as” situation (x < y) to admit a likelihood
of 90% and more for convincingly validating, respectively in-
validating, the corresponding outranking statement (x % y),
we obtain the result shown in Tab. 5.

Table 5. 90% confident outranking characteristics (×45)

r̂90%(x % y) a1 a2 a3 a4 a5 a6 a7

a1 - 0 0 −11 +22 0 0
a2 +16 - +21 0 +25 +14 +22
a3 +21 0 - 0 +21 +34 +13
a4 +21 0 +29 - +19 +19 +45
a5 +28 0 +10 0 - 0 0
a6 0 0 +31 0 0 - +20
a7 0 +11 0 0 +15 +13 -

We notice there that, for instance, the outranking situations
(a1 % a2) and (a1 6% a3), with likelihoods 56%, resp. 73% –
lower than 90%– are both put to doubt. Similarly, the +45 po-
larised outranking situation (a7 % a1) appears not confident
enough. Same happens to +45 polarised situation (a4 % a2).
Whereas situation (a4 % a7) remains confidently polarised to
+1. In total 16 pairwise outranking statements, out of the
potential 7× 6 statements, are thus considered not confident
enough. At required confidence level of 90%, their credibility
r̂90%(x % y) is put to the indeterminate value 0. It is worth-
while noticing that all outranking situations, showing a ma-
jority margin between ±9/45 (between 40 and 60%) are thus
not confident enough and consequently put to doubt (charac-
teristic value 0).

4 Exploiting the confident outranking
digraph

Many MCDA decision aiding problematiques like best choice,
ranking, sorting, or clustering recommendations based on
pairwise outranking situations, rely on majority cuts of the
corresponding valued outranking digraph (see [11, 12, 13]).

Example 4.1. The previous example 3.1 gives the hint how
we may appreciate the very confidence we may have in a given
majority when the criteria significance weights are not pre-
cisely given. We may, for instance, notice that alternative a4
gives apparently the only Condorcet winner in the determin-
istic outranking digraph and will hence be recommended in
the Rubis decision aid approach as best choice (see [13]). In
the 90% confident outranking digraph, however, alternatives
a2 and a4 both give two equivalent weak Condorcet winners,
and may, hence, be both recommended as potential Rubis
best choice candidates; a recommendation more convincingly
supported than the deterministic one, when considering in
fact the excellent performances of alternative a2 compared to
a4 (see Tab. 6).

Table 6. Pairwise comparison of alternatives a4 and a2

gi g1 g2 g3 g4 g5 g6 g7
wi 7 8 3 10 1 9 7

a4 36.5 84.7 34.2 86.1 21.3 57.2 98.9
a2 60.0 87.5 67.0 82.2 80.8 80.8 10.6

− -27.5 -2.8 -32.8 +3.8 -59.2 -23.6 +88.8
<j −1 +1 −1 +1 −1 −1 +1
≫j 0 0 0 0 0 0 +1[
r(a3 < a2) = +5 ∧ r(a4 ≫ a2) = +1

]
⇒ r(a4 % a2 = +45;[

lh.90(a4 < a2) = .74
]
⇒ r̂(a4 % a2) = 0.

Being confidently at least a s good as alternative a4 (lh(a2 <
a4) = 100%, see Tab. 4), alternative a2 shows four excellent
performances over 80.0, whereas alternative a4 only shows
three such high evaluations. The actual difference between
the deterministic and the confident best choice recommenda-
tion stems in fact from the not confident enough polarisation
of the counter-veto affecting the performance comparison be-
tween a4 and a2 (lh(a4 < a2) = 74% < α = 90%, see
Tab. 4). Hence, alternative a4 does no more appear alone as
the Condorcet winner. Both, alternatives a2 and a4 appear as
confident weak Condorcet winners, hence their joint recom-
mendation as confident best choice candidates.

Knowing a priori the distribution of the significance weight
of each criterion will genuinely be sufficient in practice for
computing, with the so given means and variances, the CLT
based likelihood of the fact that a bipolar outranking char-
acteristics r(x % y) is positively validating, respectively neg-
atively invalidating, the outranking situation “(s % y)”. The
quality of the CLT convergence will, however, depend, first,
on the number of effective criteria, i.e. non abstaining ones, in-
volved in each pairwise comparison and, secondly, on the more
or less differences in shape of the individual significance weight
distributions. Therefore, with tiny performance tableaux, less
than 25 decision actions and less than 10 criteria, we may
estimate more precisely the actual likelihood of all pairwise
outranking situations with a Monte Carlo (MC) simulation
consisting of a given number of independent runs. Indeed,
the present computational power available, even on modest
personal computers, allow us to sufficiently sample a given
outranking digraph construction.

Example 4.2. If we sample, for instance, 10 000 MC simu-
lations of the previous outranking relation (see Tab. 3), by



keeping the same uncertainty modelling of the criteria signifi-
cances with random weights distributed like T (0, 2wi, wi), we
obtain same empirical likelihoods (see Tab. 7).

Table 7. Empirical likelihoods of (x < y) with a MC sampling of

10 000 runs

p-value a01 a02 a03 a04 a05 a06 a07

a01 - .55 .74 .95 1.0 .88 .92
a02 .99 - 1.0 1.0 1.0 .99 1.0
a03 1.0 .74 - .65 1.0 1.0 .96
a04 1.0 .75 1.0 - 1.0 1.0 .96
a05 1.0 .82 .90 .75 - .88 .61
a06 .83 .74 1.0 .65 .82 - 1.0
a07 .85 .96 .55 1.0 .99 .97 -

We may thus verify again the very accurate convergence (in
the order of ±1%) of the CLT likelihoods, a convergence we
already observed in Example 2.2, even with a small number
of criteria.

Conclusion

In this paper we illustrate some simple models for tackling
uncertain significance weights: uniform, triangular and beta
laws. Applying the Central Limit Theorem, we are able to
compute under these uncertainty models the actual likeli-
hood of any pairwise at least as good as situations. This op-
erational result, by adequately handling potential veto and
counter-veto situations, allows to enforce a given confidence
level on the corresponding outranking situations. On a small
illustrative best choice problem, we eventually show the prag-
matic decision aid benefit one may expect from exploiting a
confident versus a classic deterministic outranking digraph.
Acknowledging this operational benefit, one may finally be
tempted to extend the uncertainty modelling, as in the SMAA
approach, to the marginal performances. This is however,
not needed, as traditionally the performance discrimination
thresholds proposed in the outranking approach may well take
care of any imprecision and uncertainty at this level.
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