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Introduction

When proposing a measure for providing informa-
tion on the potentially conflicting nature of the
criteria in a given MCDA problem [1], we applied
Kendall’s rank correlation measure τ to the ordi-
nal comparison of the marginal rankings observed
on each criterion. Now, we propose to furthermore
generalize the same idea to the direct comparison
of bipolarly-valued binary relations [5, 6].

This work is motivated, first, by the need to fine-
tune meta-heuristics for multiple criteria based
clustering, where the eventual clustering results
may be compared to an a priori given pairwise
global outranking relation [2]. A second, similar
motivation comes from the need to compare mul-
tiple criteria based rankings obtained with dif-
ferent ranking rules like Kemeny’s, Kohler’s, the
Promethee net flows rule [14], or, more recently,
Dias-Lamboray’s prudent leximin rule [3]. Assess-
ing the operational performance of these rules may
be based on the more or less consistent ordinal
correlation observed between each ranking results
and the empirical underlying valued outranking
relation.

The present work is closely related to, without
being inspired from, recent results concerning the
formal and empirical analysis of the fuzzy gamma
rank correlation coefficient [4].

After the formal introduction of our correlation
measure, and the discussion of some of its proper-
ties, we provide empirical results for statistically
testing the presence or absence of any correlation
between different types of random relations, and
more particularly, valued outrankings.

1 Measuring ordinal correlations

1.1 Ordinal correlation between
crisp relations

Let R1 and R2 be two binary relations defined on
the same finite set X of dimension n. Kendall’s
rank, or ordinal, correlation measure τ is essen-
tially based on the idea of counting the number
of concordant (equivalent) non reflexive pairwise
relational situations, normalized by the total num-
ber n(n− 1) of possible such relational situations.
If C = #{ (x, y) ∈ X2 : x 6= y and

(
(xR1 y) ⇔

(xR2 y)
)
} denotes the number of concordant non

reflexive relational situations we observe, that
Kendall’s τ measure can be defined as follows1:

τ(R1,R2) := 2× C

n(n− 1)
− 1 . (1)

It is worthwhile noticing that Kendall [7, 8] used
a very natural way (see [5, 6]) of transforming a
direct counting of concordant, i.e. logically equiva-
lent situations, into a bipolarly valued correlation
index. Unanimously (100% equivalent situations)
concordant relations are matched to a correlation
index of value +1.0, 50% concordance between the
relations (50% equivalent and 50% not equivalent
situations) is matched to a zero-valued correla-
tion index, and unanimously discordant relations

1 Originally, Kendall [7, 8] counted the number of in-
versions observed when comparing two linear orders.
Formula (1), hence, takes a dual form: τ(R1,R2) =
1 − 2 ×

(
n(n− 1) − C

)
/ n(n− 1) [9, see page 104].



(100% non equivalent situations) are matched to
a correlation index of value: −1.0.

Example 1.1. Let us consider the following crisp
relations R1 and R2 defined on a set X = {a, b, c}
of nodes, where R1 = {(b, c), (c, a)} and R2 =
{(a, b), (a, c), (b, c)}. As we observe as many con-
cordant pairs: (b, a), (b, c), and (c, b), as discor-
dant pairs: (a, b), (a, c), and (c, a), the Kendall
τ(R1,R2) correlation index equals: τ(R1,R2) =
2× 3

6
− 1 = 0.0 .

The τ rank correlation index implicitly relies on
the assumption that each relation is completely
determined. Either (xR y) or ¬(xR y); all rela-
tional situations between any pair of elements of
X are exactly known. But, what happens when
we compare now valued relations, where the val-
idation of relational situations might be more or
less precarious?

1.2 Valued equivalence of
relational situations

Let R1 and R2 be two binary relations defined on
the same finite set X of dimension n and charac-
terized via a bipolar characteristic function r tak-
ing values in the rational interval [−1.0; 1.0] [5, 6].
We call such relations, for short, r-valued and of
order n.

For any such valued relation R, its characteristic
function r supports the following semantics:

i) r(xR y) = ±1.0 signifies that the relational
situation xR y is certainly valid (+1.0), resp.
invalid (−1.0);

ii) r(xR y) > 0.0 signifies that the relational sit-
uation xR y is more valid than invalid;

iii) r(xR y) < 0.0 signifies that the relational sit-
uation xR y is more invalid than valid;

iv) r(xR y) = 0.0 signifies that the relational
situation xR y is indeterminate, i.e. neither
valid, nor invalid.

Logical negation, conjunction, and disjunction of
such r-characteristic values may be respectively
computed with changing the sign, applying a min,
or max operator [5, 6, 10]. For instance:

r
(
¬(xR y)

)
= −r(xR y),

r
(
(xR1 y) ∧ (xR2 y)

)
= min

(
r(xR1 y), r(xR2 y)

)
,

r
(
(xR1 y) ∨ (xR2 y)

)
= max

(
r(xR1 y), r(xR2 y)

)
.

These logical operators, now, allow us to com-
pute, for instance, the r-valued logical equivalence
of any two relational situations:

r
(
(xR1 y)⇔ (xR2 y)

)
= r
[(
¬(xR1 y) ∨ (xR2 y)

)
∧
(
¬(xR2 y) ∨ (xR1 y)

)]
= min

[
max

(
− r(xR1 y), r(xR2 y)

)
,

max
(
r(−xR2 y), r(xR1 y)

)]
Finally, we will need to measure the average level

of determinateness of an r-valued relation R of

order n, denoted d(R), and taking value in the
interval [0; 1]:

d(R) :=

∑x 6=y
x,y∈X2 abs(r(xR y))

n(n− 1)
. (2)

Thus, a crisp – a completely ±1-valued – relation
shows a determinateness degree of 1, whereas an
indeterminate – a completely 0-valued – relation
shows a determinateness degree of 0.

Example 1.2. We may apply the concepts and
tools of this r-valued credibility calculus for assess-
ing, for instance, the actual equivalence of the rela-
tional situations we observed in Example 1.1. Take
for instance the situation (aR b). Here we have:
r(aR1 b) = −1.0 and r(aR2 b) = 1.0. It follows
that r(aR1 b ⇔ aR2 b) = min(−1.0, 1.0) = −1.0.
Whereas, if we take the pair (b, c), we obtain
r(bR1 c ⇔ bR2 c) = min(1.0, 1.0) = 1.0. Hence,
we faithfully recover in the crisp case, the original
Kendall τ values. Suppose now that relation R1

is not certainly determined and r(aR1 b) = −α
with α ∈ [0; 1]. In this case r(aR1 b ⇔ aR2 b) =
min(−α, 1.0) = −α. Similarly, suppose now that
r(bR1 c) = α. In that case r(bR1 c ⇔ bR2 c) =
min(α, 1.0) = α.

This gives us a hint that the r-valued equiv-
alence of two valued relational situations verifies
the following important property:

Property 1.1.
Let R1 and R2 be any two r-valued relations de-
fined on the same set X. For all x, y in X2, we
have:

r
(

(xR1 y)⇔ (xR2 y)
)

=

±min
(

abs(r(xR1 y)), abs(r(xR2 y))
)
.

Proof.
Suppose r(xR1 y) = α and r(xR2 y) = β with
α, β ∈ [−1; 1]. If abs(r(xR1 y)) = abs(r(xR2 y)),
Property 1.1 follows immediately from Equa-
tion (2). Otherwise, we may observe the following
cases:

1. |α| > |β|:

i) if α > β ≥ 0 then

min[max(−α, β),max(−β, α)] = β > 0;

ii) if α > 0 > β then

min[max(−α, β),max(−β, α)] = β < 0;

iii) if β > 0 > α then

min[max(−α, β),max(−β, α)] = −β < 0;

iv) if 0 ≤ β > α then

min[max(−α, β),max(−β, α)] = −β > 0.

2. |β| > |α|:

i) if β > α ≥ 0 then

min[max(−α, β),max(−β, α)] = α > 0;

ii) if α > 0 > β then

min[max(−α, β),max(−β, α)] = −α < 0;



iii) if β > 0 > α then

min[max(−α, β),max(−β, α)] = α < 0;

iv) if 0 ≤ α > β then

min[max(−α, β),max(−β, α)] = −α > 0.

With Property 1.1 in mind, we may now gen-
eralize Kendall’s ordinal correlation measure for
taking into account genuine r-valued relations.

1.3 Correlations between valued
relations

The r-valued equivalence of relational situations
may be judiciously used, as in the crisp case, for
assessing the numerator of the ordinal correlation
measure. Yet, stating the adequate denominator
needs some further going considerations. In the
classical crisp case, following Kendall, we divide
the sum of pairwise equivalences with n(n − 1),
i.e. the total number of concerned non reflexive
situations. If we would proceed this way in the val-
ued case, the resulting measure would integrate a
mixture of both the ordinal correlation as well as
the actual determinateness of the equivalence ob-
served between the considered r-valued relations.
To factor out both these effects we take, instead,
as denominator the maximum possible sum of r-
valued equivalences we could potentially observe
when both r-valued relations would show com-
pletely concordant relational situations.

Hence, we formulate the r-valued ordinal corre-
lation measure τ between two r-valued relations
R1 and R2, defined on a same set X, as follows:
τ(R1,R2) :=∑

x 6=y r
(

(xR1 y)⇔ (xR2 y)
)

∑
x 6=y min

[
abs

(
r(xR1 y)

)
, abs

(
r(xR2 y)

)]
(3)

where, in order to avoid divisions by zero, we as-
sume that a zero sum of r-valued equivalences
occurring in the numerator always takes strong
precedence over the potential zero sum determi-
nateness occurring in the denominator. Indeed, if
the sum of absolute values of r-valued equivalences
is zero, then so must essentially be the sum of the
corresponding signed r-valued equivalences.

It is furthermore worthwhile noticing that the
denominator in Formula (3), once divided by the
number of non reflexive relational situations, i.e.:∑

x 6=y min
[

abs
(
r(xR1 y)

)
, abs

(
r(xR2 y)

)]
n(n− 1)

(4)
gives, in fact, the average determinateness degree
of the r-valued equivalence relation R1 ⇔ R2 ob-
served between both r-valued relations. In case
of crisp relations, this determinateness degree al-
ways takes maximum value 1.0. But, as soon as
one of both valued relations appears completely

indeterminate, d(R1 ⇔ R2) becomes 0. In this lat-
ter case, τ(R1,R2) becomes equally 0. Otherwise,
τ(R1,R2) gives the ordinal correlation measure in-
dependently of their equivalence determinateness
level.

Describing the ordinal correlation between two
r-valued binary relations, hence, requires to show
both, the relative ordinal correlation measure τ
defined in Equation (3), as well as the determi-
nateness degree D of the corresponding relational
equivalence defined in Equation (2).

Example 1.3. To illustrate this insight, we con-
sider in Table 1, two randomly r-valued relations
R1 and R2 of order n = 3 and defined on a same
set X = {a, b, c}. The pairwise r-valued equiva-

Table 1. Examples of randomly valued relations

r(xR1 y) a b c

a − +0.68 +0.35
b −0.94 − +0.80
c −1.00 +0.36 −

r(xR2 y) a b c

a − −0.32 +0.58
b −0.14 − +0.75
c −1.00 +0.08 −

lence situations R1 ⇔ R2 are shown in Table 2.

Table 2. r-valued equivalence between R1 and R2

r(xR1 y ⇔ xR2 y) a b c

a − −0.32 +0.35
b +0.14 − +0.75
c +1.00 +0.08 −

Hence,

τ(R1,R2)

=
−0.32 + 0.35 + 0.14 + 0.75 + 1.00 + 0.08

+0.32 + 0.35 + 0.14 + 0.75 + 1.00 + 0.08

=
0.200

0.264
= +0.7575 ,

whereas the corresponding equivalence determi-
nateness:

d(R1 ⇔ R2) =
0.264

6
= 0.44 .

Thus, nearly 76% or the jointly determined ordinal
information is actually shared by both r-valued
relations, independently of the respective 44% of
determinateness of the r-valued equivalence situ-
ations.

If we had instead used the classical denomina-
tor n(n− 1) for computing the actual correlation
measure, we would have obtained a much smaller
τ value of only: 0.200

6
= +1/3 (33.33% instead of

75.75%); potentially misleading us, thus, on the



apparent correlation between R1 and R2. Notice
that this result of 1/3 is in fact the product of
τ(R1,R2) with d(R1,R2), i.e. 0.7575× 0.44.

1.4 Properties of the ordinal
correlation measure

Again, let R1 and R2 be two r-valued binary re-
lations defined on a set X of dimension n. We
say that R1 and R2 show a same, respectively an
opposite, orientation if, for all non reflexive pairs
(x, y) in X, r(xR1 y ⇔ xR2 y) > 0, respectively
r(xR1 y ⇔ xR2 y) < 0.

Property 1.2. If two r-valued relations R1 and
R2, defined on the same set X, show a same,
respectively an opposite, orientation, τ(R1,R2)
equals +1.0, respectively −1.0, independently of
their equivalence determinateness d(R1,R2).

Proof. Property 1.2 readily follows from Prop-
erty 1.1 and the observation that in case of a same
orientation, respectively an opposite orientation,
the sum of terms in the numerator of Formula (3)
equals the sum, respectively the negation, of the
sum of terms in the denominator.

The logical negation of an r-valued relation R,
denoted ¬R, is called its dual relation. And, the
reciprocal of an r-valued relation R, denoted R,
is called its converse relation. The following very
natural properties are verified by the generalized
ordinal correlation measure τ .

Property 1.3. Let R1 and R2 be two r-valued bi-
nary relations defined on a same set X and let the
ordinal correlation measure τ be defined by For-
mula (3):

τ(R1,R2) = τ(R2,R1) (5)

τ(¬R1,R2) = −τ(R1,R2) (6)

τ( R1, R2) = τ(R1,R2) (7)

τ(¬ R1,¬ R2) = τ(R1,R2) (8)

Proof. Equations (5) to (8) follow immediately
from the definition of the τ correlation measure
(see Formula 3):

(5) Symmetry of the τ measure follows from the
commutativity of the max and min operators
used for computing the terms of numerator as
well as denominator.

(6) Negating one of the r-valued relations changes
solely the sign of all r-valued equivalences in the
numerator.

(7) Taking the converse relations of both r-valued
relations means correspondingly transposing all
(x, y) terms to (y, x) terms, jointly in numera-
tor and denominator; thus, leaving invariant the
resulting fraction.

(8) Taking the codual relations, i.e. the negation of
the converse, of both r-valued relations, hence,
leaves invariant their τ correlation measure.

In order to avoid, the case given, being fooled
by randomness, we address in the next section the
problem of estimating via Monte Carlo simula-
tions the actual significance of the ordinal corre-
lation measure when working with different types
of random r-valued relations.

2 Testing for ordinal correlations

Originally, Kendall only considered correlations
between crisp rankings without ties. Kendall’s τ
measure for pairs of random instances of such
rankings of order n is known to show an expected
correlation µτ = 0.0 with standard deviation [12]:

στ =

√
2(2n+ 5)

9n(n− 1)
.

This gives for rankings of order n = 20, for in-
stance, a standard deviation στ ≈ 0.17. Assuming
a nearly Gaussian distribution of µτ , we obtain
90% and 99% confidence intervals of approxima-
tively ±0.22, respectively ±0.40. Hence, a mea-
sure |τ | > 0.4 observed between two rankings of
20 objects reveals a significant positive or negative
ordinal correlation between them.

To similarly estimate the significance of the τ
correlation measure when comparing r-valued re-
lations, we were running extensive Monte Carlo
simulations with, in turn, three specific models
of random relations, namely random uniformly r-
valued ones, r-valued weak tournaments and, ran-
domly generated bipolar outranking relations re-
sulting from the aggregation of multiple cost and
benefit criteria.[10].

2.1 Randomly r-valued relations

First we consider a model of random relations
where to each non reflexive pair of elements (x, y)
in X is associated a uniform random float between
−1.0 and 1.0. Each possible r-valued relation has
thus the same probability to appear. To get a
hindsight on the correlation and determinateness
measures we may obtain with this genuine kind
of r-valued relations, we generate large samples
of 100 000 pairs of such r-valued relations for dif-
ferent orders n. Each pair (x, y) has, thus, in the
limit, an average probability of 1/2 to be related
or not; the strict indeterminate value 0.0 having
no chance to effectively appear as random number.

In Figure 1 is represented the scatter plot of the
resulting tuples (d, τ) for r-valued relations of or-
der 20. What strikes immediately is the nearly per-
fect symmetry of the resulting distributions, both
of the determinateness degrees, as well as of the
correlation measures.

In this model of random r–valued relations, the
distribution of the equivalence measures E of each
pairwise relational situation is following a sym-
metric triangular density with spread ±1.0 and



Figure 1. Scatter plot of (d, τ) for pairs of randomly r-valued relations of order 20

0 mode. Such random variables admit a mean
µe = 0 and a standard deviation σe =

√
3/18.

A similar situation is observed when considering
their equivalence determinateness measures. Each
term in the denominator of Formula 3 is cho-
sen from a same independent and identically dis-
tributed random variable D with positive density
1 − x for x in [0; 1[. This distribution – a special
case of the triangular distribution where the mode
equals the lower limit – shows a mean µd = 1/3
and a standard deviation of σd =

√
1/18.

Hence, the observed random ordinal correlation
measures τ =

∑
E∑
D

result from the ratio of two

non-independent sums of n(n−1) independent and
identically distributed random variables. Follow-
ing from the central limit theorem, the observed
statistics (see Table 3) rapidly show, with increas-
ing order n, a more and more Gaussian distribu-
tion with mean µ̂τ ≈ µe

µd
= 0 and standard devia-

tion:
σ̂τ√

n(n− 1)
≈ σe

µd

1√
n(n− 1)

getting ever smaller with increasing order n of the
r-valued relations.

In Table 3 we may notice that the observed
empirical standard deviations σ̂d when multiplied
with

√
n(n− 1) converge indeed to σd which

equals
√

1/18 = 0.2357023. Similarly, we may
notice that the observed standard deviation σ̂τ
tends also to the theoretical standard deviation
στ = 3

√
3/18 = 1.224745 when multiplied by√

n(n− 1). Notice, however, a consistent negative
bias of roughly 0.2%.

Example 2.1. Consider two given r-valued rela-

tions R1 and R2 of order 20. To test if they could
have been randomly generated, we may apply a
two-sided test with null hypothesis: H0 “relations
R1 and R2 are randomly r-valued”. From the em-
pirical results, we see thatH0 may be rejected with
an error probability of 10% when |τ(R1,R2)| >
0.1035 or |d(R1,R2)− 0.3333| > 0.202. Using, our
theoretical standard deviations στ = 3

√
3/18, re-

spectively σd =
√

1/18, we may precisely confirm
these confidence intervals: ±0.1033, respectively
±0.0199 with a Gaussian test.

We have thus established a generic test appa-
ratus for two-sided, or both positive or negative
one-sided tests for measuring the significance of
the ordinal correlation and equivalence determi-
nateness of any two given r-valued relations.

Yet we are more interested in testing the corre-
lation and equivalence determinateness when con-
sidering a specific subset of r-valued relations,
namely weakly complete ones. Uniformly r-valued
random relations, indeed, are statistically quite
regularly structured, with on average 1/4 of dou-
ble links, 1/4 of single forward links, 1/4 of single
backward links and, 1/4 of no links. When work-
ing in the fields of social choice or multiple criteria
decision aid with “at least as good as” preferen-
tial situations, we usually consider complementary
concordance versus discordance relations [11] that
do not allow a “no link” situation.

2.2 Random weakly complete
relations

Formally we say that a r-valued relations R is
weakly complete if for all (x, y) ∈ X, r(xR y) < 0



Table 3. Summary Statistics, for 100000 pairs of randomly r-valued relations

d(R1,R2) d σ̂d σ̂d
√
n(n− 1) Conf. 90% Conf. 99%

n = 5 0.3333 0.0527 0.23568 ±0.0866 ±0.1355
n = 10 0.3334 0.0249 0.23622 ±0.0406 ±0.0645
n = 15 0.3333 0.0162 0.23476 ±0.0266 ±0.0418
n = 20 0.3333 0.0121 0.23587 ±0.0202 ±0.0276
n = 30 0.3333 0.0080 0.23597 ±0.0132 ±0.0207
n = 50 0.3333 0.0048 0.23758 ±0.0078 ±0.0121

τ(R1,R2) τ σ̂τ σ̂τ
√
n(n− 1) Conf. 90% Conf. 99%

n = 5 0.0003 0.2731 1.22134 ±0.4500 ±0.6766
n = 10 0.0000 0.1289 1.22285 ±0.2181 ±0.3291
n = 15 0.0000 0.0842 1.22017 ±0.1386 ±0.2156
n = 20 0.0000 0.0621 1.21055 ±0.1035 ±0.1425
n = 30 0.0000 0.0414 1.22113 ±0.0681 ±0.1064
n = 50 0.0000 0.0247 1.22259 ±0.0406 ±0.0636

Figure 2. Histogram of correlation measures with normality test for pairs of random weakly complete relations

of order 20

implies r(xR y) ≥ 0. Each link is therefore either a
double, or a single forward or backward link, each
one with equal probability 1/3.

Determinateness distribution of equivalence of
pairs of this model of random r-valued relations
remains very close to 1/3, as in the general model
above (see Table 4), except a slight lowering of its
mean values (compare with Table 3). Similarly, we
may again observe an empiric distribution of cor-
relation measures which follows, with increasing
order of the relations, more and more, due to the
central limit theorem, a Gaussian distribution. In
Figure 2 is represented a histogram from a sample
of 100 000 random instances of weakly complete
r-valued relations of order 20. Notice first the fact
that the sampled mean correlation measure µ̂τ is
shifted roughly by +0.111, depending on the given

degree of weakness. In the limit, a weakness de-
gree of 1.0, on the one hand, would give always
the same complete relation, showing, hence, a con-
stant correlation measure of 1.0. A weakness de-
gree of 0.0, on the other hand, would give samples
of random tournaments with mean and median
correlation measures concentrated around 0 as in
the general case above.

In Table 4 we summarize empiric statistical re-
sults for weakly complete r-valued relations of dif-
ferent orders, maintaining constant a weakness
degree of 1/3. The observed distribution of cor-
relation measures τ , besides the already men-
tioned positive shift of the mean by approximately
+0.111, also shows an empiric standard deviation
σ̂τ multiplied by

√
n(n− 1) that is no longer a

constant independent of the given order n. Hence,



Table 4. Summary Statistics, for 100000 pairs of random weakly (1/3) complete relations

d(R1,R2) µ̂d σ̂d σ̂d
√
n(n− 1) Conf. 90% Conf. 99%

n = 5 0.33344 0.05268 0.23568 0.24920 0.42208 0.20493 0.47489
n = 10 0.33316 0.02490 0.23622 0.29262 0.37433 0.27069 0.39861
n = 15 0.33316 0.01634 0.23476 0.30646 0.36025 0.29164 0.37578
n = 20 0.33320 0.01209 0.23587 0.31342 0.35315 0.30262 0.36486
n = 30 0.33316 0.00799 0.23597 0.32006 0.34630 0.31269 0.35406
n = 50 0.33318 0.00477 0.23758 0.32537 0.34102 0.32099 0.34558

τ(R1,R2) µ̂τ σ̂τ σ̂τ
√
n(n− 1) Conf. 90% Conf. 99%

n = 5 0.1112 0.3032 1.3560 −0.3981 +0.6039 −0.6559 +0.8229
n = 10 0.1113 0.1592 1.5103 −0.1537 +0.3713 −0.3019 +0.5082
n = 15 0.1112 0.1138 1.6491 −0.0767 +0.2978 −0.1810 +0.3978
n = 20 0.1112 0.0909 1.7720 −0.0395 +0.2604 −0.1231 +0.3399
n = 30 0.1116 0.0681 2.0087 −0.0003 +0.2234 −0.0631 +0.2869
n = 50 0.1112 0.0484 2.3957 +0.0313 +0.1905 −0.0132 +0.2348

the equivalence measures on the numerator of
the τ measures are no longer independent and
identically distributed. Consequently, the central
limit theorem is no longer automatically applica-
ble. When verifying the plausibility of the random-
ness hypothesis when comparing weakly complete
r-valued relations, we are thus solely left with the
potentially biased sample standard deviations and
the corresponding tail percentiles estimations.

Example 2.2. With 99 bins, the χ2 test (see
Figure 2), however, clearly confirms (26.898 �
χ2(0.01, 98) = 68.396, p-value = 0.0) for order
n = 20 and average weakness 1/3, the qual-
ity of the Gaussian approximation with empirical
mean µ̂τ = 0.1112 and standard deviation σ̂τ =
0.0909. The Gaussian 90%-confidence, resp. 99%-
confidence, interval of the mean correlation mea-
sure µτ , hence, gives the limits [−0.0384; +0.2606],
respectively [−0.1231; +0.3454]. And, both inter-
vals are, indeed, very close to the empirical ones
(see Table 4, row n = 20) we obtain with a sample
of 100 000 random instances.

Finally, we consider a special subset of weakly
complete r-valued relations, namely r-valued out-
ranking relations.

2.3 Random outranking relations

Concordance relations, i.e. weakly complete r-
valued relations naturally result from the ordi-
nal aggregation of multiple performance criteria
when considering the weighted concordance of the
statements: “x performs at least as good as y”
[10]. Our random model for such kind of r-valued
relations is based on randomly generated perfor-
mances for all decision actions in x ∈ X on each
criterion. We distinguish three types of decision
actions: cheap, neutral and expensive ones with an
equal proportion of 1/3. We also distinguish two
types of weighted criteria: cost criteria to be mini-
mized, and benefit criteria to be maximized ; in the
proportions 1/3 respectively 2/3. Random perfor-
mances on each type of criteria are drawn, either
from an ordinal scale [0; 10], or from a cardinal

scale [0.0; 100.0], following a parametric triangular
law of mode: 30% performance for cheap, 50% for
neutral, and 70% performance for expensive deci-
sion actions, with constant probability repartition
0.5 on each side of the respective mode. Cost crite-
ria use mostly cardinal scales (3/4), whereas ben-
efit criteria use mostly ordinal scales (2/3). The
sum of weights of the cost criteria always equals
the sum weights of the benefit criteria. On cardinal
criteria, both of cost or of benefit type, we observe
following constant preference discrimination quan-
tiles: 5% indifferent situations, 90% strict prefer-
ence situations 90%, and 5% veto situation. We
call this random model of r-valued relations for
short random CB-outranking relations.

In Table 5 we summarize the empirical results
for various numbers of decision actions (n) and
criteria (c). Most noticeable is here the dimin-
ishing average determination degrees with rising
numbers n of actions and, especially numbers c of
criteria. Indeed, the fixed proportion of veto sit-
uations (5%) on each cardinal criteria augments,
with the number of criteria, the probability of the
presence of pairwise indeterminate, i.e. 0-valued,
outranking situations. Furthermore, the empiric
distribution of the determination degrees appears
no more to converge to a Gaussian type limit.

In Figure 3, one may notice, indeed, on a sam-
ple of 100 000 random CB-outranking relations
of order n = 20 and criteria c = 13, an ap-
parent left asymmetry, confirmed by a positive
skewness of 0.876, as well as a clearly leptocur-
tic distribution (excess kurtosis: +1.7884) of the
observed determinateness degrees. Comparing the
observed distribution with a theoretical gamma
distribution, reveals a positive match with param-
eters: α = 38.119 and β = 0.004. With order
n = 30 and criteria c = 21 one obtains a similar
gamma estimation with parameters: α = 64.594
and β = 0.002.

With rising numbers of indeterminate prefer-
ential situations, the proportion of double links
compared to single links, is no more as regular
(1/3 against 2/3) as in the genuine model of ran-
dom weakly complete relations. In the n = 20 and



Figure 3. Histogram of determination degrees for pairs of random CB-outranking relations of order 20

Table 5. Summary Statistics, for 100000 pairs of random CB-outranking relations

d(R1,R2) µ̂d d̂50% σ̂d Conf. 90% Conf. 99%

n = 5, c = 3 0.3259 0.3250 0.1131 0.1500 0.5255 0.0750 0.6333
n = 10, c = 7 0.2207 0.2165 0.0482 0.1494 0.3072 0.1204 0.3681
n = 15, c = 9 0.1910 0.1867 0.0362 0.1399 0.2577 0.1196 0.3102
n = 20, c = 13 0.1557 0.1527 0.0252 0.1203 0.2013 0.1053 0.2435
n = 30, c = 21 0.1372 0.1357 0.0174 0.1120 0.1674 0.1002 0.1989

τ(R1,R2) µ̂τ τ̂50% σ̂τ Conf. 90% Conf. 99%

n = 5, c = 3 0.0378 0.0345 0.5145 −0.7929 +0.8610 −1.0000 +1.0000
n = 10, c = 7 0.0629 0.0644 0.3037 −0.4420 +0.5560 −0.6483 +0.7467
n = 15, c = 9 0.0727 0.0761 0.2417 −0.3323 +0.4667 −0.5206 +0.6354
n = 20, c = 13 0.0984 0.1017 0.2085 −0.2492 +0.4383 −0.4224 +0.5904
n = 30, c = 21 0.1239 0.1272 0.1712 −0.1639 +0.4007 −0.3162 +0.5339

c = 13 case, with a sample of 100 000 random in-
stances, we observe only 18.7% double links, with
71.6% single links and, in this particular case,
9.8% of indeterminate links. Consequently, in Ta-
ble 5, we observe lower average correlation mea-
sures µ̂τ than with the previous model. Further-
more, the convergence to a Gaussian limit distri-
bution with rising order of the relations is no more
apparent when considering in Figure 4 the Q-Q
plot of the simulated correlation quantiles against
Gaussian quantiles for the case n = 20 and c = 13.
A very high χ2 value (567.356) rejects, indeed, the
Gaussian approximation hypothesis.

Appreciating the significance of the correla-
tion between pairs of CB-outranking relations re-
mains, hence, solely possible on the basis of sam-
pled tail percentiles from Monte Carlo simula-
tions. In the appendix we have gathered estimated
5%, 95%, 0.5% and 99.5% percentiles for relations
of various orders and numbers of criteria that may

be relevant in an MCDA context.

Example 2.3. Let us eventullly consider the ran-
dom r-valued CB-outranking relation shown in
Table 6. Relation R1, with an average determi-
nation degree d(R1) = 0.397, is defined on n = 10
decision actions and results from the ordinal con-
cordance observed on c = 7 performance criteria.
Applying for instance Kemeny’s ranking rule [13]
would give us the following crisp linear order:
[4, 2, 7, 8, 9, 1, 10, 6, 3, 5], showing a highly signifi-
cant correlation of +0.888 with R1 (see the up-
per limit 0.747 of the 99% confidence interval
in Table 5). Indeed, under the hypothesis of a
completely random ordering, such a high corre-
lation measure would appear in less than 0.5%
of cases. When ranking now with the help of the
net flows scores à la Promethee [14], we would
obtain the order: [4, 9, 2, 7, 8, 10, 1, 6, 3, 5], show-
ing a less higher correlation (+0.776) with R1.



Figure 4. Q-Q plot of empiric again normal correlation quantiles for pairs of random CB-outranking relations

of order 20

Table 6. Example of random CB-outranking relation (n = 10, c = 7)

R1 1 2 3 4 5 6 7 8 9 10

1 − +0.14 +0.43 −0.14 +0.29 +0.14 +0.43 −0.14 ±0.00 +0.43
2 +0.43 − +0.43 −0.43 +0.43 +0.14 +0.14 +0.43 +0.14 +0.14
3 −0.43 −0.43 − −0.71 +0.43 +0.00 −0.43 −1.00 −1.00 −0.14
4 +0.14 +0.71 +1.00 − +0.71 +0.43 +0.71 +0.43 +0.14 +0.57
5 +0.14 −0.43 −0.43 −0.71 − −0.71 −1.00 +0.14 −1.00 −0.43
6 −0.14 −0.14 +1.00 −0.43 +0.71 − −0.14 −0.14 +0.14 −0.43
7 +0.14 +0.14 +0.43 −0.43 +1.00 +0.14 − +0.14 +0.43 +0.29
8 +0.43 −0.14 +1.00 −0.43 +0.43 +0.14 −0.14 − +0.43 −0.14
9 +1.00 −0.14 +1.00 −0.14 +1.00 +0.43 +0.14 −0.14 − +0.14
10 −0.43 −0.14 +0.43 +0.14 +0.43 +0.43 +0.29 +0.14 −0.14 −

Kohler’s rule would, furthermore, give us the or-
der: [4, 2, 8, 10, 9, 6, 1, 7, 3, 5] with the same corre-
lation of +0.776. Finally, Tideman’s ranked pairs
rule [15], in fact the dual of Dias and Lamb-
oray’s leximin rule [3], will deliver the order:
[4, 2, 8, 9, 1, 7, 10, 6, 3, 5] with, this time again, a
highly significant correlation measure of +0.872.
As we compare here each time R1 with a 1.0-
valued (crisp) linear order, the correlation under-
lying equivalence determination degree is actually,
in all cases, equal to d(R1) = 0.397. By the way,
we may notice that the same first ranked decision
action with all the ranking rules is action 4, in fact
a Condorcet winner that outranks all other de-
cision actions with a majority of at least 57% of
the criteria weights (see row 4 in Table 6).

Conclusion

We have consistently generalized Kendall’s rank
correlation measure τ to r-valued binary relations
via a corresponding r-valued logical equivalence
measure. The so extended ordinal correlation mea-

sure, besides remaining identical to Kendall’s mea-
sure in the case of completely determined linear
orders, shows interesting properties like its inde-
pendence with the actual determinateness degree
of the r-valued equivalence. Empirical confidence
intervals for different models of random r-valued
relations, like weakly complete and, more particu-
larly, r-valued outranking relations are elaborated.
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