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Welcome

Vincent Mousseau (Ecole Centrale Paris) and Marc Pirlot (UMONS) are welcoming you to the
second DA2PL Workshop. The first edition took place in Mons (Belgium) in November 2012. The
aims of this serie of workshop “from multiple criteria Decision Aid to Preference Learning” is to
bring together researchers involved in Preference Modeling and Preference Learning and identify
research challenges at the crossroad of both research fields.

It is a great pleasure to provide, during two days, a positive context for scientific exchanges and
collaboration: four invited speakers will make a presentation, twelve papers will be presented, and
we will have a poster session and a roundtable. We wish to all participants a fruitful workshop, and
an exiting and enjoyable time in Ecole Centrale Paris.

Vincent Mousseau and Marc Pirlot

Aim of the workshop

The need for search engines able to select and rank order the pages most relevant to a user’s query
has emphasized the issue of learning the user’s preferences and interests in an adequate way. That
is to say, on the basis of little information on the person who queries the Web, and, in almost no
time. Recommender systems also rely on efficient preference learning.

On the other hand, preference modeling has been an auxiliary discipline related to Multicriteria
decision aiding for a long time. Methods for eliciting preference models, including learning by
examples, are a crucial issue in this field.

It is quite natural to think and to observe in practice that preference modeling and learning
are two fields that have things to say to one another. It is the main goal of the present workshop
to bring together researchers involved in those disciplines, in order to identify research issues in
which cross-fertilization is already at work or can be expected.

The theme of the DA2PL 2014 workshop is (specifically but not excusively) devoted to “pref-
erence models with interacting criteria’.

Communications related to successful usage of explicit preference models in preference learn-
ing are especially welcome as well as communications devoted to innovative preference learning
methods in MCDA. The programme of the workshop will consist 10 sessions including:

e 6 invited lectures of internationally recognized scholars,
e 12 refereed research presentations,

e a poster session.

Support

This workshop is organized in the framework of the GDRI (Groupement de Recherche Interna-
tional) “Algorithmic Decision Theory”, which is recognized and supported by CNRS (France),
FNRS (Belgium), FNR (Luxemburg). The workshop is also supported by the French GDR RO
(CNRS) - Pdle : Décision : Modélisation, Prévision, Evaluation (DMPE). The support of Ecole
Centrale Paris (Direction de la Recherche) is also gratefully acknowledged.
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Organization

The DA2PL workshop is jointly organized by Vincent Mousseau, Ecole Centrale Paris (ECP),
France, and Marc Pirlot, University of Mons (UMONS), Faculté Polytechnique, Belgium.
Program committee

e Raymond Bisdorff (University of Luxembourg, Luxembourg),

e Craig Boutillier (University of Toronto, Canada),

e Denis Bouyssou (Paris Dauphine University, France),

e Robert Busa-Fekete (Marburg University, Germany),

e Olivier Cailloux (University of Amsterdam, Netherlands),

e Yann Chevaleyre (University of Paris North, France),

e Yves Crama (University of Liege, Belgium),

e Bernard De Baets (Ghent University, Belgium),

e Yves De Smet (Université libre de Bruxelles, Belgium),

o Krzysztof Dembczyn’ski, Poznan University of Technology, Poland,

o Luis Dias (University of Coimbra, Portugal),

e Philippe Fortemps (University of Mons, Belgium),

e Michel Grabisch (University Paris 1, France),

e Salvatore Greco (University of Catania, Italy),

e Eyke Hullermeier (Marburg University, Germany),

o Christophe Labreuche (Thales, France),

e Patrick Meyer (Telecom Bretagne, France),

e Vincent Mousseau (Ecole Centrale, Paris),

e Patrice Perny (Pierre and Marie Curie University, France),

e Marc Pirlot (University of Mons, Belgium),

o Fred Roberts (DIMACS, Rutger University, USA),

e Ahti Salo (Aalto University, Finland),

o Roman Slowinski (Poznan University of Technology, Poland),

o Alexis Tsoukias (Paris Dauphine University, France),

e Aida Valls (Universitat Rovira I Virgili, Catalonia, Spain),

e Paolo Viappiani (Pierre and Marie Curie University, France)
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from Multiple Criteria Decision Aid to Preference Learning

Program overview

Thursday November 20th, 2014

9h30 Session 1

o Invited speaker: "Preference Learning: Machine Learning meets MCDA"
Eyke Hiillermeier, Department of Computer Science, Universitit Paderborn, Germany

The topic of “preferences” has recently attracted considerable attention in artificial intelli-
gence in general and machine learning in particular, where the topic of preference learning
has emerged as a new, interdisciplinary research field with close connections to related areas
such as operations research, social choice and decision theory. Roughly speaking, preference
learning is about methods for learning preference models from explicit or implicit prefer-
ence information, which are typically used for predicting the preferences of an individual or
a group of individuals. Approaches relevant to this area range from learning special types
of preference models, such as lexicographic orders, over “learning to rank” for information
retrieval to collaborative filtering techniques for recommender systems. The primary goal of
this tutorial is to provide a brief introduction to the field of preference learning and, moreover,
to elaborate on its connection to multiple criteria decision aid.

10h30 Session 2

® “On the use of copulas to simulate multicriteria data”,
Jairo Cugliari, Antoine Rolland, Thi-Min-Tuy Tran, Lab. ERIC, Université Lyon 2

Several methods have been proposed in the past decades to deal with Multicriteria Decision
Aiding (MCDA) problems. However, a comparison between these methods is always arduous
as the number of dataset proposed in the literature is very low. One of the limitations of the
existing datasets is that generally MCDA method are dealing with very small sets of data;
typically, a MCDA problem deals with a number of alternatives that does not exceed 20 or
30 and often less. Therefore, it should be interesting to propose a way to simulate new data
based on some existing dataset, i.e. taking into account the potential links that should exist
between the criteria. We introduce in this paper the use of the statistical functions named
copula to simulate such data. A practical way to use copula is proposed, and the quality of
the obtained data is discussed.

o “Data Generation Techniques for Label Ranking”,
Massimo Gurrieri, Philippe Fortemps, Xavier Siebert, Marc Pirlot, Nabil Ait-Taleb
MATHRO, Faculté Polytechnique, UMONS
In light of the lack of benchmark data for label ranking, experimentations are typically per-
formed on data sets derived from classification or regression data sets. The generation of
artificial datasets is however not trivial since instances have to be associated with rankings
over a finite set of labels and attributes (i.e. the feature vector) have to be linked (correlated)
with such rankings. This paper discusses and proposes datasets generation techniques in
order to provide artificial datasets suitable for label ranking.
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11h30 Coffee Break
12h00 Session 3

o Invited speaker: “Boolean functions for classification: logical analysis of data”,

Yves Crama, University of Liege, Belgium

Boolean functions are among the simplest and most fundamental objects investigated in
mathematics. In spite, or because of their simplicity, they find applications in many scientific
fields, including logic, combinatorics, operations research, artificial intelligence, computer
science, game theory, engineering, and so forth. In this talk, we present a collection of
Boolean models that have been developed over the last 25 years under the name of "Logi-
cal Analysis of Data" (or LAD) in order to handle a large variety of classification problems.
We focus on the frequent situation where a decision-maker has observed a number of data
points (say, vectors of binary attributes) which have been classified either as "positive" or as
"negative" examples of a phenomenon under study. The task of the decision-maker is then to
develop a classification system that allows her to assign one of the "positive" or "negative"
qualifiers to any point that may be presented to her in the future, in a way that remains consis-
tent with the initial observations. We first recall useful facts about partially defined Boolean
functions and their extensions, and we introduce the main concepts and definitions used in the
LAD framework: support (or "sufficient") sets of attributes, patterns (or "elementary classi-
fication rules"), theories (obtained by combining patterns), etc. We show how these building
blocks can be used to develop simple interpretable classifiers that perform and generalize
well in a variety of experimental situations. Moreover, we argue that these classifiers satisfy
some minimal requirements for “justifiability”. Finally, we clarify the relation between the
LAD classifiers and certain popular classifiers used in the machine learning literature, such
as those computed by nearest neighbor classification algorithms or decision trees.

13h00 Lunch
14h20 Group Photo session
14h30 Session 4

o Invited speaker: “Learning and indentifying monotone boolean functions”,

Endre Boros, Rutgers University, NJ, USA

Numerous applications require the task of learning and/or identifying a hidden monotone
Boolean function.In this talk, first we review several learning models and clarify the the
corresponding learning complexity when the hidden function is known to be monotone. The
considered models include extending a given partially defined Boolean function or one with
missing bits within a specified class of monotone Boolean functions, and learning a certain
type of monotone function using membership queries. In the second part of the talk we
consider identification problems, which is a special case/extension (depending how one views
it) of learning by membership queries. Identification of a monotone function means that
we try to generate all of its minimal true (resp. maximal false) points. This problem is
strongly related to Boolean dualization or equivalently to finding all minimal transversals of
a hypergraph. In this talk we survey some of the related results, and provide a sample of the
standard algorithmic techniques.



15h30 Coffee Break

16h00 Session 5

e “Learning the parameters of a majority rule sorting model taking attribute interactions into
account”, Olivier Sobrie'2, Vincent Mousseau! and Marc Pirlot?
1 LGI, Ecole Centrale Paris,
2 MATHRO, Faculté Polytechnique, UMONS
We consider a multicriteria sorting procedure based on a majority rule, called MR-Sort. This
procedure allows to sort each object of a set, evaluated on multiple criteria, in a category
selected among a set of pre-defined and ordered categories. With MR-Sort, the ordered cate-
gories are separated by profiles which are vectors of performances on the different attributes.
An object is assigned in a category if it is as good as the category lower profile and not better
than the category upper profile. To determine if an object is as good as a profile, the weights
of the criteria on which the object performances are better than the profile performances are
summed up and compared to a threshold. In view of improving the expressiveness of the
model, we modify it by introducing capacities to quantify the power of the coalitions. In the
paper we describe a mixed integer program and a metaheuristic that give the possibility to
learn the parameters of this model from examples of assignment. We test the metaheuristic
on real datasets.

o “Conjoint axiomatization of the Choquet integral for two-dimensional heterogeneous prod-
uct sets” ,Mikhail Timonin, Queen Mary University of London
We propose an axiomatization of the Choquet integral model for the general case of a hetero-
geneous product set X = X; X Xs. Previous axiomatizations of the Choquet integral have
been given for particular cases X = Yn and X = R". The major difference of this paper
from the earlier axiomatizations is that the notion of “comonotonicity” cannot be used in the
heterogeneous structure as there does not exist a “built-in” order between elements of sets
X1 and X5. However, such an order is implied by the representation. Our characterization
does not assume commensurateness of criteria a priori. We construct the representation and
study its uniqueness properties.

e “Utilitaristic Choquistic Regression”,
Ali Fallah Tehrani', Christophe Labreuche?, Eyke Hullermeier!
!Department of Mathematics and Computer Science, University of Marburg,
2 Thales Research & Technology
Traditionally in machine learning, the attributes are a priori normalized (standardized) and
their normalization is not part of the learning process. Taking inspiration from multi-criteria
decision aid, we investigate in this paper the interest of learning also the utility function.
More specifically we extend two classification methods - namely logistic regression and
Choquistic regression - to learn both the normalization and the aggregation of the criteria.
Some premilinary results are presented in this paper.
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o “About the french hospitals rankings: a MCDA point of view”,
Brice Mayag, LAMSADE, Université Paris Dauphine
The aim of this paper is to convince the Multi-Criteria Decision Aid (MCDA) and Preference
Learning communities to investigate and to contribute in the development of methodologies

dedicated to hospital ranking. To do so, we present the french hospital ranking and show
how these rankings can be built properly through two existing methods: decision tree and
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Friday November 21rst, 2014

9h Session 6

o Invited speaker: “Scaling Optimization Methods for Data-driven Marketing”,
Craig Boutillier, University Toronto, Canada ,

The emergence of large-scale, data-driven analytics has greatly improved the ability to pre-
dict the behavior of, and the effect of marketing actions on, individual consumers. Indeed,
the potential for fully personalized "marketing conversations" is very real. Unfortunately,
advances in predictive analytics have significantly outpaced the ability of current decision
support tools and optimization algorithms, precisely the tools needed to transform these in-
sights into marketing plans, policies and strategies. This is especially true in large marketing
organizations, where large numbers of campaigns, business objectives, product groups, etc.
place competing demands on marketing resources—the most important of which is customer
attention. In this talk, I will describe a new approach, called dynamic segmentation, for solv-
ing large-scale marketing optimization problems.

We formulate the problem as a generalized assignment problem (or other mathematical pro-
gram) and create aggregate segmentations based on both (statistical) predictive models and
campaign-specific and organizational objectives. The resulting compression allows problems
involving hundreds of campaigns and millions of customers to be solved optimally in tens of
milliseconds. I'll briefly describe how the data-intensive components of the algorithm can be
distributed to take advantage of modern cluster-computing frameworks. I will also discuss
how the platform supports real-time scenario analysis and re-optimization, allowing decision
makers to explore tradeoffs across multiple objectives in real-time.

Time permitting, I’1l hint at how the technique might be extended to solve sequential, stochas-
tic problems formulated as Markov decision processes, and briefly mention other potential
applications of this class of techniques.

10h00 Session 7

e “Factorization of large tournaments for the median linear order problem”,

Alain Guénoche, Institut de Mathématiques de Marseille (I2M - CNRS)

Computing a median linear order for a given set of linear orders on n elements, is an ordinary
task for preference aggregation. This problem is formalized by a tournament (complete di-
rected graph) with n vertices, arcs corresponding to majority preferences. To build a median
linear order is to make it transitive, realizing a minimum number of arc-reversal operations.
They define the remoteness of any median linear order to this tournament. The computation
of a minimum series of arc reversals is usually made using a Branch & Bound algorithm
which cannot be applied when n overpasses a few tens. In this text we try to decompose
a large tournament (n > 100) into sub-tournaments and to assemble the median orders on
each one into a linear order on n elements. We show, making several simulations on random
tournaments, weighted or unweighted, that this decomposition strategy is efficient.

xiii



o “Listing the families of Sufficient Coalitions of criteria involved in Sorting procedures”,
Eda Ersek Uyanikl, Olivier Sobrie!*2, Vincent Mousseau? and Marc Pirlot!
! MATHRO, UMONS, ? LG, Ecole Centrale Paris
Certain sorting procedures derived from ELECTRE TRI such as MR-Sort or the Non Com-
pensatory Sorting (NCS model) model rely on a rule of the type: if an object is better than a
profile on a “sufficient coalition” of criteria, this object is assigned to a category above this
profile. In some cases the strength a coalition can be numerically represented by the sum of
weights attached to the criteria and a coalition is sufficient if its strength passes some thresh-
old. This is the type of rule used in the MR-Sort method. In more general models such as
Capacitive-MR-Sort or NCS model, criteria are allowed to interact and a capacity is needed
to model the strength of a coalition. In this contribution, we want to investigate the gap of
expressivity between the two models. In this view, we explicitly generate a list of all possible
families of sufficient coalitions for a number of criteria up to 6. We also categorize them
according to the degree of additivity of a capacity that can model their strength. Our goal is
twofold: being able to draw a sorting rule at random and having at disposal examples in view
of supporting a theoretical investigation of the families of sufficient coalitions.

11h00 Coffee break

11h30 Session 8

o Invited speaker: “Surrogate loss functions for preference learning”,
Krzysztof Dembczynski,
Poznan University of Technology, Poland,
In preference learning we use a variety of different performance measures to train and test
prediction models. The most popular measures are pairwise disagreement (also referred to as
rank loss), discounted cumulative gain, average precision, and expected reciprocal rank. Un-
fortunately, these measures are usually neither convex nor differentiable, so their optimiza-
tion becomes a hard computational problem. However, instead of optimizing them directly
we can reformulate the problem and use surrogate or proxy loss functions which are easier
to minimize. A natural question arises whether optimization of a surrogate loss provides a
near-optimal solution for a given performance measure. For some of the performance mea-
sures the answer is positive, but in the general case the answer is rather negative. During the
tutorial we will discuss several results obtained so far.

12h30 Lunch

13h20 Poster session

o “An Arrow-like theorem over median algebras”,
Miguel Couceiro! and Bruno Teheux?,
1 LAMSADE, Université Paris-Dauphine,
2 Université du Luxembourg
We present an Arrow-like theorem for aggregation functions over convervative median alge-
bras. In doing so, we give a characterization of conservative median algebras by means of
forbidden substructures and by providing their representation as chains.

X1V



“A Metaheuristic Approach for Preference Learning in Multi-Criteria Ranking based on Ref-
erence Points”,

Jinyan Liu, Wassila Ouerdane, Vincent Mousseau, LGI, Ecole Centrale Paris

In this paper, we are interested by an aggregation method called multi-criteria ranking method
based on Reference Points (RMP). Briefly, instead to have pairwise comparisons between
alternatives, the pairs of alternatives are judged according to the reference points. The intro-
duction of such points facilitates the comparison of any two alternatives in which dominance
relationship does not necessarily exist. However, we notice that little attention has been
brought on how to learn the parameters of this kind of model. Therefore, to tackle this prob-
lem, we propose in this work a methodology for preference learning for the RMP method.
More precisely, we are interested by learning the parameters of this method when DMs pro-
vide us a large set of data or information. Specifically, an algorithm is provided that is a
combination of an evolutionary approach and a linear programming approach. Experimental
tests and analysis are also presented.

“Inferring the parameters of a majority rule sorting model with vetoes on large datasets”,
Alexandru-Liviu Olteanu, Patrick Meyer, Telecom Bretagne

The article is centered on the problem of inferring the parameters of a majority rule sort-
ing model when large sets of assignment examples are considered. Beside the proposal of
an approach for solving this problem, the main focus of the paper lies in the inclusion of
veto thresholds inside the majority rule model, which, as we illustrate, increases the expres-
siveness of the model. However, due to its complexity, an exact approach for inferring its
parameters is not practical especially when large datasets are considered. Therefore, we pro-
pose a metaheuristic approach to overcome this difficulty. The approach is validated over a
set of constructed benchmarks as well as on several datasets containing real data.

“A Dataset Repository for Benchmark in MCDA”,

Antoine Rolland and Thi-Minh-Thuy Tran, Lab. ERIC, Université Lyon 2

Several methods have been proposed in the past decades to deal with Multicriteria Decision
Aiding (MCDA) problems. However, a comparison between these methods is always arduous
as there is no benchmark in this domain. In the same time, people proposing new MCDA
methods have no standardized data to deal with to prove the interest of their methods.We
propose the creation of a web MCDA DataSet Repository to face this lack of data. We detail
the presentation of this repository in this paper.

“User Experience Driven Design of MCDA Problems with DecisionCloud”,

Michel Zam'2, Meltem Ozturk? and Brice Mayag?,

1 KarmicSoft Research,

2 LAMSADE, Université Paris-Dauphine

Incremental transformation of stakeholder’s decision problems in robust models remains a
challenging and complex task that needs better tools. Realistic user experience gives the
most valuable input but usually requires several life-cycles. This takes too long, costs too
much, and lets precious ideas die. Sketching tools are too superficial, formal modeling tools
are too cryptic and development tools are not productive enough.

We address the evolution vs. consistency challenge and provide an agile solution approach
through the whole collaborative modeling process of multicriteria decision problems, in-
cluding sketching, modeling and interacting with running apps. DecisionCloud is a MCDA
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extension of the MyDraft platform. Way beyond declaring criteria, alternatives, constraints,
evaluations and run classical decision problems, DecisionCloud provides features as domain
modeling and instant GUI prototyping. The whole evolutionary process runs in the cloud and
is fully traced. Users, designers, and coders, if any, collaborate consistently using only their
web browsers and grow their decision models directly in the cloud.

14h00 Session 8

o Invited speaker: “Preference modeling with Choquet integral”,

Michel Grabisch, Université Paris 1

In this talk, we show how capacities and the Choquet integral emerge as natural ingredi-
ents when building a multicriteria decision model, especially when the criteria cannot be
considered as independent. To face the complexity of the model, we provide efficient sub-
models based on k-additive capacities, which are naturally connected with the interaction
indices, quantifying the interaction existing among criteria in a group of criteria. The case of
2-additive capacities seems to be of particular interest, since it leads to a model which is con-
vex combination of an additive model and max and min over any pair of two criteria. Lastly,
we address the issue of the identification of the model through learning data and preferences.

15h00 Coffee break
15h30 Session 9

e “Characterization of Scoring Rules with Distances: Application to Clustering of Rankings”,
Paolo Viappiani, LIP6, Université Pierre et Marie Curie
We consider the problem of clustering rank data, focusing on distance-based methods. Two
main steps need to be performed: aggregating rankings of the same cluster into a repre-
sentative ranking (the cluster’s centroid) and assigning each ranking to its closest centroid
according to some distance measure. A principled way is to specify a distance measure for
rankings and then perform rank aggregation by explicitly minimizing this distance. But if
we want to aggregate rankings in a specific way, perhaps using a scoring rule giving more
importance to the first positions, which distance measure should we use?
Motivated by the (known) observation that the aggregated ranking minimizing the sum of the
Spearman distance with a set of input rankings can be computed efficiently with the Borda
rule, we build a taxonomy of aggregation measures and corresponding distance measures; in
particular we consider extensions of Spearman that can give different weights to items and
positions

e “An interactive approach for multiple criteria selection problem”,
Anil Kaya!, Ozgiir Ozpeynirci', Selin Ozpeynirci?,
! Izmir University of Economics, Department of Logistics Management,
2 Izmir University of Economics, Industrial Engineering Department
In this study, we develop an interactive algorithm for the multiple criteria selection problem
that aims to find the most preferred alternative among a set of known alternatives evaluated on
multiple criteria. We assume the decision maker (DM) has a quasiconcave value function that
represents his/her preferences. The interactive algorithm selects the pairs of alternatives to be
asked to the DM based on the estimated likelihood that an alternative is preferred to another

one. After the DM selects the preferred alternative, a convex cone is generated based on
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this preference information and the alternatives dominated by the cone are eliminated. Then,
the algorithm updates the likelihood information for the unselected pairwise questions. We
present the algorithm on an illustrative example problem.

o “FlowSort parameters elicitation: the case of partial sorting”,

Dimitri Van Assche, Yves De Smet,

CoDE, Université libre de Bruxelles

We consider the context of partial sorting. We address the problem of finding the parameters
of the FlowSort method using an existing categorization. This contribution constitutes an
extension of a method we have developed in the context of complete sorting. It relies on the
use of a dedicated Genetic Algorithm based on variations of search parameters. We show
how to manage the problem of correct categorization prediction, which is more difficult,
since ranges of categories are considered. The method is tested on three different datasets for
which a partial sorting has been generated with a particular instantiation of FlowSort.

o “On confident outrankings with multiple criteria of uncertain significance”,

Raymond Bisdorff, University of Luxemburg

We develop Monte Carlo simulation techniques for taking into account uncertain criteria
significance weights and ensuring an a priori level of confidence of the Condorcet outrank-
ing digraph, depending on the decision maker. Those outranking situations that cannot be
ensured at a required level of confidence are assumed to be indeterminate. This approach
allows us to associate given confidence degree to the decision aiding artifacts computed from
a bipolarly-valued outranking, which accounts for the essential and unavoidable uncertainty
of numerical criteria weights.

17h30 Closing session
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Session 1

o Invited speaker: "Preference Learning: Machine Learning meets MCDA"
Eyke Hiillermeier, Department of Computer Science, Universitit Paderborn, Germany

The topic of “preferences” has recently attracted considerable attention in artificial intelli-
gence in general and machine learning in particular, where the topic of preference learning
has emerged as a new, interdisciplinary research field with close connections to related areas
such as operations research, social choice and decision theory. Roughly speaking, preference
learning is about methods for learning preference models from explicit or implicit prefer-
ence information, which are typically used for predicting the preferences of an individual or
a group of individuals. Approaches relevant to this area range from learning special types
of preference models, such as lexicographic orders, over “learning to rank™ for information
retrieval to collaborative filtering techniques for recommender systems. The primary goal of
this tutorial is to provide a brief introduction to the field of preference learning and, moreover,
to elaborate on its connection to multiple criteria decision aid.



Session 2

o “On the use of copulas to simulate multicriteria data”, Jairo Cugliari, Antoine Rolland, Thi-
Min-Tuy Tran, Lab. ERIC, Université Lyon 2

e “Data Generation Techniques for Label Ranking”, Massimo Gurrieri, Philippe Fortemps,
Xavier Siebert, Marc Pirlot, Nabil Ait-Taleb, MATHRO, Faculté Polytechnique, UMONS



On the use of copulas to simulate multicriteria data

Jairo Cugliari ! and Antoine Rolland ? and Thi-Min-Tuy Tran 3

Abstract. Several methods have been proposed in the past decades
to deal with Multicriteria Decision Aiding (MCDA) problems. How-
ever, a comparison between these methods is always arduous as the
number of datasets proposed in the literature is very low. One of the
limitations of the existing datasets is that generally MCDA method
are dealing with very small sets of data; typically, a MCDA problem
deals with a number of alternatives that does not exceed 20 or 30
and is often less. Therefore, it should be interesting to propose a way
to simulate new data based on some existing dataset, i.e. taking into
account the potential links that should exist between the criteria. We
introduce in this paper the use of the statistical functions named cop-
ula to simulate such data. A practical way to use copula is proposed,
and the quality of the obtained data is discussed.

1 Introduction

Multicriteria Decision Aiding (MCDA) studies aim at helping a De-
cision Maker (DM) to take (good) decisions. Many different models
have been proposed since more than 50 years (see [3] or [7] for a
survey), among others:

e utility-based approaches, using linear (MAUT [15], AHP [24]) or
non-linear (Choquet integral [14]) aggregation functions

e outranking approaches, like ELECTRE [13] or PROMETHEE [8]
methods

e mixed methods, like rule-based methods [20, 21] and others.

There is still a great increase of the number of very specific meth-
ods, or variants of existing methods, to be proposed. All these meth-
ods are always presented as very interesting and perfectly adapted
to the situation. The fact is that it is very difficult to test and com-
pare different methods described in the literature, as they often are
dedicated to one specific situation. Even if the axiomatic foundations
have been generally well studied (see [7] for a first approach), it is
often difficult to realize which are the difference in practice between
the results obtained by two different methods. Therefore, there is a
lack of testing sets of data on which one can try the different meth-
ods. Several solutions have already been proposed to increase the
possibility of benchmark between MCDA methods. We can cite the
Decision Deck project which proposes a unified data standard for
MCDA data [5], and a unified web services platform through DIVIZ
[18]. We can cite also a companion paper [22] which aims at propos-
ing a repository of real or fictitious datasets for MCDA situations.

But sometimes only very few data are available; for example, from
an preference learning point of view, the dataset should be so limited

1 Lab. ERIC, Université Lyon 2, email: Jairo.Cugliari @univ-lyon2.fr

2 Lab. ERIC, Université Lyon 2, email: Antoine.Rolland @univ-lyon2.fr

3 Lab. ERIC, Université Lyon 2, email: Thi-minh-thuy.Tran@etu.univ-
lyonl.fr

that it is too small to be divided into a test subset and a validation sub-
set. Researches should also desire to have more data to test the pro-
posed methods. There is then a need to be able to increase the size of
the datasets through simulated data. Good practices in MCDA point
out the fact, among others, that criteria should be as independent as
possible [23]. But in real life the values taken by an alternative on
different criteria are generally not totally independent. For example,
if the DM is facing a problem like flat rental, she would like to se-
lect several flats to visit. Obviously, data like surface, price, or rooms
number seem to be good criteria to decide which flat to visit. But
these criteria are often linked: increasing the surface is greater in-
crease also the chance to have more rooms; or the price is an increas-
ing function of the surface, with respect to other criteria. Therefore,
MCDA data cannot be independently well simulated. The problem
is then to model the interaction between criteria in a plausible way.
We propose to use a statistical approach to overcome this difficulty.
Copula is a statistical tool which aims at modelling those interac-
tions. Basically, a copula is a function that describe a multivariate
distribution as a function of the marginal univariate distributions. We
propose in this paper to use copulas to first model the interactions
between criteria, and then to simulate new alternatives. We automat-
ically learn the copula parameters from the actual dataset (used as
training set) so as to generate new simulated data sets.

As far as we know, there is no work about the simulation of mul-
ticriteria data except a tentative using Bayesian network presented in
[2].

In this paper we present a practical way to use copulas to simu-
late MCDA data inspiring from the work in [12]. In section 2 we
introduce the copulas functions and quickly present the most well-
known copulas families. In section 3 we first stand the hypothesis
under which we worked. We then present a process to elicitate the
parameters of the copulas following [1]. Finally, we show some nu-
merical experiments we performed on available MCDA dataset in the
literature.

2 Copulas

In this section we recall some basic notions about modeling depen-
dency with copulas (see [19] for a more formal presentation of the
subject). The basic construction bricks will be pair copula construc-
tions (PCC) which are assembled together in a vine copula.

2.1 A brief introduction to copulas

In a nutshell a copula is a multivariate cumulative distribution func-
tion which has all its margins uniformly distributed on the unit inter-
val. If Uy, ...,Up;n > 2 are random variables with uniform distri-
bution in [0, 1], then a copula C': [0, 1] + [0, 1] satisfies

C(ul,...7un):P(U1Su17~~-Un,§un) (1)



A central result on copulas is Sklar’s theorem [25] which al-
lows one to represent any n—variate cumulative distribution function

F(z1,...,zy) of the random vector X = (X1,...,X,) as
F(xl,...,xn):C’(F(zl),...,F(xn)), 2
where F(z1),...,F(z,) are the univariate marginal distribution

functions of the vector X. Moreover, this representation is unique
if the marginals are absolutely continuous. A converse result is
Nelsen’s corollary [19] which identifies the copula from the joint and
marginal distribution

Cuty. . un) = F(F  (21),..., F ' (zn)). 3)

Intuitively, the probabilistic structure of the vector X is the result
of coupling the marginal behavior of the components of X by means
of the copula C' which has intermediate practical implications. For
example, from the observation of n independent and identical real-
izations Xy, ..., X, of X, one can estimate the joint multivariate
distribution function F' by estimating the marginals and identifying
one copula function among the elements of known copula families
(e.g. the elliptical or Archimedean classes among others [19]). If F’
is absolutely continuous, then we use the chain rule to write the den-
sity equivalent to equation (2)

f(@1,. . zn) = c(Fi(x1),. .., Fo(@n)) fi(z1) .. fa(zn) 4
where the copula density function c is given by
0"C(u1,...,un)
e Up) = e — 5
o, tn) Ou,...,0u, ©)

The difficulty of this problem depends on the data dimension n. In
the bivariate case, e.g. n = 2, only one pair-copula must be estimated
and many solutions have been already proposed to do so (see for
example [16, Chapter 5]). However, several of these approaches are
not feasible in higher dimension spaces.

2.2 Pair-Copula Construction (PCC)

To avoid some problems that arise on high dimension datasets, [4]
propose a pair-copula construction in order to decompose the mul-
tivariate joint density of X into a cascade of building blocks called
pair-copula.

As before f is the joint density of X which is factorized (uniquely
up to a relabeling of the elements of X) as

f@i, . mn) = f(zn) f(@n-1|zn) ... f(z1]|22, ...

Then, one can write each of the conditional densities on (6) using
(4) recursively which yields on this general expression for a generic
element X; of X given a generic conditioning vector v

f(@i|v) =ca, 05 j0_; (F(wilv—3), F'(vilv—;))
X f(@ilv—;). @)
In last expression we use the notation v; for the j-th element of v
and v_; for all the elements of v but v;.

For example, let take three random variables X7,X2 and X3. We
have the following decomposition:

,Zn).  (6)

f(@1|zows) =crops (F(21|23), F(x2|as))
x f(z1]xs). (8)

2.3 Vines copulas

Vines copulas have been proposed to classify alternatives factor-
ization of (6) into a structured graphical model [4]. This construc-
tion allows highly flexible decompositions of the (possibly high) di-
mensional distribution of X because each pair-copula can be cho-
sen independently from the others. The iterative decomposition pro-
vided by the PCC is then arranged into a set of linked trees (acyclic
connected graph). Two special schemes are usually used: C-vines
(canonical vines) and D-vines. In the former one, a dependent vari-
able is identified and chosen to be the root of the tree. In the follow-
ing tree, the dependence will be computed conditional on this first
variable and so on. In the latter scheme, a variable ordering is cho-
sen. Then on the first tree one models the dependence of each of the
consecutive pairs of variables. The following tree will model the de-
pendence of the remaining pairs, conditional on the those that were
already modeled. See [1] for a more detailed exposition of this con-
struction.

2.4 Simulation

Simulation of copula data (i.e. n-variate data with uniformly dis-
tributed marginals) can be done using the probability integral trans-
form. It is convenient to define the h-function

8(10”;77,“1,7.(F(Z"Uj),F(id’U—j), ‘6)

OF (vj|v—j) ’

h(zlv,0) = )
where 6 is a parameter vector associated to the decomposition level.
The h-function is the conditional distribution of = given v and we
let h=!(ulv, ) be its inverse with respect to u, i.e. the inverse of
the cumulative conditional distribution. The simulation for the vine
is as follows. First sample n uniformly distributed random variables
w1, Ws, ..., Wn. Then use the probability integral transform of the
corresponding conditional distribution:

r1 = wi,
wy = F~ ' (wa]a1),

r3 = Fﬁl(’LU3|I1,CCQ),

Tn = F_l(wnfl‘xlw .. 73771)'

At each step, the computation of the inverse conditional distribution
is made through the (inverse) h-function.

3 Numerical experiments

The aim of the data simulation is to obtain new fictitious data in
accordance with a set of real data. The model (copula) parameters
are automatically learned from the real dataset, and then the model is
used to simulate new data. Ideally, the new fictitious data should be
indiscernible from the real ones. We detail in the following sections
the hypothesis on the real data that we make, then the simulation
process and the way we can prove that we reach our objective of
indiscernibility.

3.1 Hypothesis

The input data are a set of p alternatives described on n criteria. Typ-
ically, a MCDA problem faces a small number of alternatives (from



5 or 6 to less than 50). The number of criteria is also small rang-
ing between 3 and about 10. It should be noticed that the real data
can be considered as example data but not as sampled data as in the
classical statistical sampling theory framework: the data set is not
obtained by a random sampling, as the data has been generally pre-
viously selected for their interest. Therefore it is difficult to infer the
distribution of each criteria from the data, as there exists a observa-
tion bias.

Since the margins are unknowns, it is preferable to use normal-
ized ranked data to estimate the copula parameters. This avoids the
problem of estimating the marginal distribution. However, we need to
estimate these distributions in order to transform the simulated data
(whose margins are uniformly distributed) into the original scale of
the data. Two different solutions can be considered:

e choose a parametric form of distribution (Gaussian, uniform...) for
the criteria and estimate its parameters, or
e use a non-parametric approach for the marginal distribution.

We chose to use the empirical distribution invert function which is a
fully non-parametric approach. The inconvenience stands in the fact
that we can only infer marginal distribution contained between the
observed (real) minimum and maximum for each criterion. Therefore
extrema values could be not so well simulated.

In order to avoid problems due to count data we assume that the
margins are absolutely continuous. Thus, the representation in (2) is
unique.

3.2 Simulation scheme

We use the statistical software R to perform the numerical experi-
ments. The simulation process has been implemented in the CDVine
package [9]. The input data set is a numeric performance matrix. To
obtain a simulated dataset we follow these steps:

Step 1. Transform original data into copula data, i.e. purely ordinal
distributions for each criterion.

Step 2. Select a C or a D vine structure via the function
CDVineCopSelect proposed in the package CDVine. Param-
eters of this function are the choice between C-Vine or D-Vine
structure to be selected, and the selection criterion (AIC or BIC).

Step 3. Estimate the parameters of all the pair copula jointly through
the maximization of the pseudo likelihood. This step is performed
via the function CDVineMLE proposed in the package.

Step 4. Simulate the desired number of data via the function
CDVineSim proposed in the package CDVine.

Step 5. Transform back copula data into real-like data via the in-
verse of the empirical cumulative function.

3.3 Evaluation

The testing step consists in the analysis of the differences between
the set of real data and the set of simulated one. We want to detect if
there is any difference between both sets and quantify the difference
if any. An acceptable simulation procedure would yield on simulated
data that is indistinguishable from the real data.

Since we are interested on a joint multivariate probability struc-
ture, using classical univariate tests (e.g. Kolmogorov-Smirnov test)
on the margin of the joint distribution is clearly not sufficient. How-
ever, the simulation scheme must warranty that these margins are
correctly simulated as well as the joint structure.

One could then rely on clustering methods to split the mixed
datasets of real and simulated data into two clusters. Then, one com-
putes a confusion matrix using the classes obtained from the clus-
tering methods and the real labels (real vs simulated) and tests for
independence through a x? test. The k-means method is one of the
most common and popular unsupervised clustering method. How-
ever, this method should be useless here, as it will always conclude
to the confusion of real and simulated data as long as the marginal
distributions will be close. This clustering method is able to capture
clusters that are not in the same place in the possible data space, but
is less able to capture clusters that have different structures in the
same subspace.

Alternatively, one could use a binary classifier to test whether the
merged data is easy to discriminate in terms of the added labels real
vs. simulated. We use the Random Forest algorithm [10] as a su-
pervised learning method. This algorithm allows to estimate the in-
fit sample error rate, that is the proportion of alternatives that are
wrongly classified. For this, the algorithm constructs many binary
trees classifiers on bootstrapped subsets of the merged dataset. Then,
it test the classifier on the remaining alternatives and computes the
error rate. The quality indicator we look at is the mean global error
ratio computed over all the classifiers constructed by the Random
Forest algorithm. Heuristically, the higher the ratio the better it is in
our case as it indicates that there is more and more confusion between
real and simulated data.

A more formal way of measuring the quality of the simulation is to
test the existence of differences between the simulated and real data.
For instance, one could use a flexible multivariate ANOVA [26]. We
do not explore this method in this paper.

3.4 Results

We tested the elicitation process on 3 data sets obtained from the
MCDA data set repository [22]. Let us present the three selected
cases.

Case 1. A data set of farms evaluated on the animal welfare, de-
scribed in [6]. The dataset is composed of 29 farms described on
4 criteria valued between 0 and 100.

Case 2. A data set of 27 scenarios for radioactive waste manage-
ment, with regard to 4 criteria, described in [11].

Case 3. A data set of 243 virtual peach ideotypes with regard to 3
criteria described in [17].

The three data sets are represented on the left panels of Figures 1,2
and 3 respectively. These panels contain all the pairwise scatter plots
for each data set on its upper triangle. On the lower triangles we rep-
resent each estimated pairwise copula density by means of contour
plots. These pair copula are the elemental brick on the construction
of the vines. It is possible to remark different kinds of probability
structures and dependence between the three cases. For instance, the
contour plots show spherical shapes in Figure 1 and elliptical shapes
in Figure 2 which can be associated to multivariate normal or ¢ distri-
butions. The shapes of the contour plots in Figure 3 are more intricate
and therefore represent more complex dependence structures.

In order to obtain a estimation of the quality of the simulation
procedure we repeated the simulation scheme (see 3.2) 1000 times,
producing then 1000 simulated data sets for each of the three real
data sets. The simulated data sets have the same dimensions as the
real data sets they are simulated from. Figures 1, 2 and 3 allow to
visually inspect one of the replicates of the simulation procedure for
each of the MCDA data sets. On the first two cases, it is hard to tell
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Figure 1: Animal welfare dataset [6]. On the right, the pairs plot of the data points (black dots) and simulated points (gray dots). On the left,
the original data points are represented as normalized ranks on the upper triangle and the estimated pair copulas as shown as contour plots on

the lower triangle.

that the global pattern of the data is not respected, however there are
some simulated data points that lay in zone of low real data density.
On the third case, it is more clear that the structure of the simulated
dataset does not necessarily follow the structure of the real data. In
particular, we see how simulated data points lay far away from the
strong structure of real data set.

For each simulation we tested the univariate and multivariate ad-
equacy of the simulated datasets to the real datasets. We used the
Kolmogorov-Smirnov test on each margin and the proposed eval-
uation (see 3.3) using the Random Forest intrinsic error ratio. The
Kolmogorov-Smirnov test is marginally rejected at the level of 5%
(the maximum rejection was 5 times out of 1000 replication using
the first dataset and the first variable) so we do not include the re-
sults here. The obtained average error ratios using Random Forest
are presented in table 1 which is detailed and analysed in the next
section.

In order to ensure that results are not purely due to randomness,
we also produced 1000 simulated data sets without any hypothesis
of dependence between criteria, i.e. we generated criteria values in-
dependently, following only the marginal distributions for each cri-
terion on each dataset. The results of such simulation are also listed
in table 1.

RandomForest Error Ratio

Data Set With copulas  Without copulas
Case 1 [6] 0.534 0.5

Case 2 [11] 0.573 0.012

Case 3 [17] 0.204 0.119

Table 1: Average error ratio of the Random Forest classifier for each
of the MCDA datasets for the simulation scheme using copula to
model dependence and without any dependence structure.

A higher error ratio shows that it is more difficult to distinguish be-
tween learning data and simulated data with the use of copulas, and
as a consequence we consider that the simulation is of better quality.
If we consider that a higher error ratio implies a simulation of higher
quality, then we notice that for all the proposed datasets the quality
of the simulated data seems to be better when we use copulas than
under the independence hypothesis. However, the differences among
the three cases are not negligible. For example while in the first case
both error rates are very close (0.534 under the dependence hypothe-
ses against 0.500 under the independence hypothesis), in the second
case the error rates are quite different (0.573 under the dependence
hypothesis against 0.012 under the independence hypothesis). Let us
examine more in detail these results.

First we used vine tree plots to graphically represent the esti-
mated dependence structure. Vine tree plots represent dependent pair
copulas as connected components on a graph. The non connected
components are the (conditionally) independent couples of variables.
When a pairwise dependence exists, the associated edge indicates the
strength of the association and a label is placed together with the em-
pirical Kendall’s tau as well as the retained copula. Vine tree plots
for our experiment are presented on Figure 4. With this representa-
tion it is easy to see the low dependence structure of the first case
(where only one non independent pair copula is estimated), and also
the strong structure observed in case 3 where all the possible pair-
wise components are linked together. Finally the case 2 is somehow
more interesting because the dependence structure is present at some
levels of the disaggregation and for some variables.

We now try to interpret the obtained results in terms of the practi-
cal problem associated to each one of the cases we studied.

Case 1. [6] presents data that are very weakly dependent (see figure
1). There, the representation of the data and the used copula seems
to indicate that the dataset could be correctly represented using a
spherical copula. Therefore, a simulation under the independence



00 02 04 06 08

1.0
L

N

00 02 04 06 08 10

5 S A TR
© Lo
3 . . . 3
o . . © : - ot o
c1 . c1 - P e [
= 5 . o LI ¥ s - L
o c 0
° o Hea B [ e
H S . . L
N ote] [0 8 s B
ER n 3 ° 3
§ - % ., ’
2 R H Bel. ) s
1 9 H @ | B
© 005 . H @ 4
= ©
3 B . I
3 €2 s - c2 E :
° =1
N B ~ Sase ¥ge & ° e
g 0 : ;
2 . s [%
2 o
o 3} Cory - S
© © - . . -
3 . ? Lo
$© 0, .
C oo .o S
/ ¢ . \ c3 . c3 . | S
K % < . . 3
° o~
[ o
,,,,,, 3 e - R
< 4
3 I3 :
21 o o, - 0.05 En el f
05 0.05:
o | ™~ | . B
3
C4 ~ o d W | C4
s . S . 3 o | o .o
\ / s/ J ER sl R
o |
S .. . e
ER ? . IR
T — T
L e e e e
00 02 04 06 08 10 02 04 06 08 03 00 02 04 06 08 10

Figure 2: Radioactive waste management dataset. On the right, the pairs plot of the data points (black dots) and simulated points (gray dots). On
the left, the original data points are represented as normalized ranks on the upper triangle and the estimated pair copulas as shown as contour

plots on the lower triangle.
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Figure 3: Peach ideotypes dataset. On the right, the pairs plot of the data points (black dots) and simulated points (gray dots). On the left, the
original data points are represented as normalized ranks on the upper triangle and the estimated pair copulas as shown as contour plots on the
lower triangle.

hypothesis will give good results and will not be very improved
by the use of copulas.
Case 2. [11] is a very interesting case as the data are more linked
by a non-linear relation (see figure 2 for the representation of the
data and the used copula). In this case the use of copulas permits to
really improve the quality of the simulation by taking into account
these links.

Case 3. [17] is a very special case since all the alternatives in the

dataset are situated in a 3D-surface which is a Pareto front (see
3 for the representation of the data and the used copula). Sim-
ulating data without the constraint of being in the surface leads
for sure to absurd solutions. The use of copulas in this situation
can weakly improve the quality of the data, but cannot of course
use the special surface structure of the data to better simulate new



alternatives. The simulation process should be linked with a clean-
ing phase where only pareto-optimal solutions should be kept in
the dataset.

4 Conclusion

The objective of our work is to propose to the community a practical
tool to simulate “real-like” data from a real dataset. We focused on
the way to take into account weak and non-linear links between cri-
teria and proposed a solution based on the use of copulas to model
these links. We have shown that the use of copula increases the qual-
ity of the simulated data compared to the simple model only based on
the use of the marginal distributions. The proposed process is based
on a automatic learning of the copula model and parameters. How-
ever, we can imagine that the expert can define the used model of
copula and/or part of the parameters if needed.

The use of copulas to simulate new MCDA data from a set of real
ones seems to be validated by the tests we made. In each case data are
of better quality with the use of copulas than if we simulate data un-
der the hypothesis of complete independence between criteria. How-
ever, the use of copulas is of higher interest when the criteria are
linked by a weak relation: if no relation exists between criteria one
can simulate criteria values independently; if a strong (and hidden)
relation exists between criteria copulas can fail at representing it.

Moreover, it should be noticed in a multicriteria combinatorial op-
timization point of view that we only generate alternatives with cred-
ible criteria values. We do not check if these alternatives correspond
effectively to feasible solutions or not.

Perspectives of this work are the following:

e to provide an efficient similarity-index to test the similarity be-
tween real and simulated data;

e to develop an available R service for anyone to simulate MCDA
data from a learning dataset;

e to study the effect of criteria number and alternatives number in
the learning set on the quality of the simulation;

e to propose a process using copulas to simulate data directly from
indications of the DM without any learning dataset.
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Abstract

In view of the lack of benchmark data for label
ranking, experimentations are typically performed on
data sets derived either from classification or regres-
sion data. However, though such data sets are ac-
cepted by several researchers in this field, they do not
provide in general trustworthy data and fail to deal
with more general settings. Moreover they are not
guaranteed to verify more general properties suited
for particular settings. This paper proposes datasets
generation techniques to provide synthetic data suit-
able for label ranking and its extensions.

Keywords: Preference Learning, Label Ranking,
Machine Learning, Data generation, Bayesian Net-
works, Multi-criteria Decision Aid.

1 Introduction

The topic discussed in this paper concerns label rank-
ing [1-5], a prediction task in preference learning,
where the goal is to learn a map from instances to
rankings over a finite set of classes (or labels). The
main goal in label ranking is to predict weak or par-
tial orders (more generally total orders) of labels for
a new query (or instance). For example, a group
of custumers is willing to rank five products, such
that position one is associated to the best product
(the top ranked one), position two to the second best
and so on. The learning of such a model (i.e. the
label ranker) is based on custumer’s features (e.g.
his/her net salary, his/her age, etc.) and will be
capable of predicting a ranking on these five prod-
ucts for a new custumer based on his/her features.
Several methods to label ranking have been recently
presented [1-7] and in view of the lack of benchmark
data for label ranking, experimentations were mainly

10

performed on data sets derived either from classi-
fication or regression data sets, i.e. from machine
learning repositories (UCI, MLData, StatLib, Stat-
log...) [5]. However, though such data sets are well
accepted by several researchers in this field, they do
not provide, in general, trustworthy data for label
ranking data and fail to deal with more general set-
tings, namely label ranking where the learning set
containg either incomplete rankings or partial orders
instead of linear orders. Moreover they are not guar-
anteed to verify more general properties (e.g. prior
knowledge of monotonicities between attributes and
labels or correlations between labels) suited for par-
ticular settings. The generation of artificial datasets
is however not trivial since instances have to be as-
sociated with full /incomplete rankings over a finite
set of labels and attributes (i.e. the feature vector)
have to be linked with such orders. In this paper we
discuss some methods to generate artificial data sets
for label ranking.

This paper is organized as follows. In section 2, we
introduce label ranking more formally. In section 3,
we describe existing datasets for labels ranking. In
section 4 and 5, we introduce approaches to generate
data sets suitable for label ranking. Finally, in section
6 and 7, we present some experimental results and
conclusions, respectively.

2 Label Ranking

In label ranking [6, 7] the main goal is to predict for
any instance z, from an instance space X, a prefer-
ence relation >=,: X — L, where L= {ly;la;...;1;} is
a finite set of labels or alternatives, such that I; >, [;
means that instance x prefers label I; to label [; or,
equivalently, /; is ranked higher than ;. More specifi-
cally, we are interested to the case where >, is a total
strict order over L, or equivalently, a ranking of the



entire set L. This ranking can therefore be identified
with a permutation 7, € Q (the permutation space
of the index set of L), such that (i) < m,(j) means
that label [; is preferred to label I; (7 (i) represents
the position of label /; in the ranking).

3 Data sets from Machine

Learning

Existing label ranking data sets are available at KEBI
Data Repository 2. These data sets are essentially
multiclass and regression data sets from the UCI
repository and the Statlog collection that were turned
into label ranking data in two different ways. As for
classification data (denoted type A), the procedure
proposed in [1] consists in training a naive Bayes
classifier on the complete data set. For each train-
ing instance, all the class/labels present in the data
set are then ordered with respect to the predicted
class probabilities (ties are arbitrarly broken). As for
regression data (denoted type B) [5], a certain num-
ber of (numerical) attributes are removed from the
set of predictors and are accordingly considered as
labels. Finally, to obtain a ranking for each instance,
the (removed) attributes are standardized and sorted
by decreasing order of their values. Since the overall
original attributes are correlated, the remaining pre-
dictive attributes will be somehow correlated with the
final rankings. As stated in [5], experimentally, the
second type of data generation produces more dif-
ficult learning problems (in view of the correlation
between remaining and removed attributes). How-
ever, though the above-mentioned datasets are used
for experimentations related to label ranking, they
lack of trustworthiness and cannot be used to model
more general settings where, for example, the train-
ing set contains incomplete rankings or partial orders
instead of full rankings. This is mainly due to the fact
that even when two labels are incomparable or indis-
tinguishable, they are arbitrarily discriminated and
ordered to form a total order. In the case of type-A
data, very often, when running the procedure sug-
gested in [1,5], it is possible to observe that there

[ Ly L, [ Ly [La| Ls [Le¢[ L7 |
0 0 0 0 0 0 1
0.853 | 0.048 0.1 0 0 0 0
0 0.884 0 0 [ 0102 | 0 [ 0014
0.782 | 0.213 | 0.005 | 0 0 0 0
0.957 | 0.013 | 0.029 | © 0 0 0
0 0.072 0 0 [ 0928 0 0

Table 1: Partial class probability distributions for
the (multiclass) data set Glass obtained with a naive
Bayes classifier. Each row represents the predicted
probability distribution of classes Li-L7. Such distri-
butions tend to privilegiate one class, while the others
are more or less equally distributed with probabilities
close to zero.

is a dominating class (the one with the highest class
probability) while the other classes are more or less
equally distributed. As an example, Table 1 partially
shows class probability distributions obtained with a
naive Bayes classifier for the multiclass data set Glass
(214 instances, 9 attributes and 7 classes) run on
Weka [8]. Tt is evident that (almost) the overall prob-
ability is always given to one class, while the other
classes have probability values close to zero. Thus,
the way rankings are obtained from such probabilities
values is somehow unreliable. As a main consequence,
different strategies to break ties may lead to differ-
ent rankings on the set of labels, so that the perfor-
mances of a label ranker could be directly influenced
by such a choice. As for regression data sets, the way
labels are chosen among the predictors is once again
arbitrary and unclear. Therefore, it is clear that con-
verting classification /regression data into label rank-
ing data cannot always ensure the trustworthiness of
data. To sum up, it would be very useful to pro-
vide reliable methods for generating synthetic data
that would allow one not only to have trustworthy
data, but also to simulate/represent more general set-
tings and to take into account more general properties
(e.g. monotonicities between attributes and labels [9]
or correlations between labels [10,11]) that could be
useful for future research in this field. In view of the
above, in this paper, we present methods for the gen-

2http:/ /www.uni-marburg.de/fb12/kebi,/research /repository eration of artificial data sets (denoted type C) based
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DATA H Type ‘ Instances | Labels | Attributes ‘
DATAGEN1 C 1000 5 10
DATAGEN?2 C 1000 5 10
DATAGEN3 C 1000 5 5
DATAGEN4 C 1000 4 5
DATAGENS5 C 1000 4 b)

Table 2: Summary of generated synthetic data

on Multi-criteria decision making approaches [12] and
on Bayesian Networks [13]. A summary of five exem-
plary artificial data sets, and their properties, that we
generated with the methods proposed in this paper,
is given in Table 2.

4 Artificial Data sets:
function approach

Utility

In this section we present methods for generating syn-
thetic data for label ranking that are based on the no-
tion of utility functions [6,12,14], where it is possible
to provide rankings (total orders) among the set of
labels based on values of their utilities. Note that, if
a threshold for utilities is fixed, then the preference of
a label over another one can also be associated with
a notion of intensity, meaning that utilities within
that threshold of each other are declared incompa-
rable (rejecting the assumption that indifference is
transitive, i.e. arising semiorders [12] instead of total
orders ). Let L= {l1;ls;...;lx} be the set of labels
for which a ranking has to be provided based on the
n-dimensional feature vector x = (ay,as, ...,a,) de-
scribing an instance € X, with |X| = N. Thus, the
final data set will be comprised of instances such as:

(Ji,ﬂ'l-) = (I,lﬂ;l(l) ~x l‘rr,;l(Z) x e T lﬂ,;l(K))
(4.1)
In order to generate such a ranking, labels will be
ordered w.r.t. decreasing values of (real-valued) util-
ity functions, one for each label:

fi: X >R Vkel,2,., K (4.2)

so that I, =4 i <:>7Tx(l) < ﬂ—z(]) < fh(w) > fk(x)

In the following three sections, we discuss three dif-
ferent approaches for label ranking data sets genera-
tion based on the notion of utilities. Though the pre-
sented methods concern the generation of instances
associated with strict linear orders, they can easily
be adapted to deal with more general settings (par-
tial orders or semiorders instead of linear orders, as
discussed above).

4.1 Data sets

DATAGEN1

In our first proposed method, we assume that each
label I, k£ = 1,2,..., K, is characterized by a M-
dimensional vector (or equivalently a set of M cri-
teria). Thus, the utility given by the generic instance
i,1=1,2,.., N, to label [; will be a weighted sum on
the M criteria:

generation method:

M
feli) =Y wicer (k=1,2,..,K) (4.3)
s=1

where the weight w? is linear combination of the eval-
uations of the instance ¢ on the n attributes and c; j
represents the evaluation of the kth label on the sth

criteria:
n
Ws = E aijbj.s
=1

as explained in the following. Let A = [(a; ;)] be
the feature matrix wherein the ¢th line is an n-
dimensional vector describing the instance ¢ among
a set of N instances, w.r.t. to n attributes (i.e.
its feature vector or equivalently, the evaluation of
the instance ¢ on each of the n attributes). Thus
t1=1,2,.., N and j = 1,2,...n. The matrix A, con-
taining the feature vector of each instance, can be
randomly generated.

Let us now define the matrix B = [(b;;)], j =
1,2..,n, s = 1,2,..., M, where the sth column b, ,
j = 1,2,...,n, contains a n-dimensional vector of
weights related to the n attributes aq, as, ..., a, w.r.t.
to the current criterion s. In other words, columns
1,2, ..., s can be considered as s different ways of giv-
ing importance to the n attributes. Note that the
number M of such models can be chosen arbitrarly

(4.4)
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Figure 1: DATAGEN1: Histograms of attributes Al-
A10 and of labels L1-L5. L3 occupies most of times
the first or the last position while L4 never occupies
the first position and only two times the last position
in the generated rankings.
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depending on how each label is described. The matrix
B is generated with the constraint that the elements
of each column sum up to one (they are weights given

to attributes):
n
D bis=1
j=1

In order to draw normalized vectors of weights in uni-
form way, we used the algorithm discussed in [15] that
prevents non-uniformity of sampling.

Let us finally define the matrix C' = [(¢cs1)], s =
1,2,...M, k=1,2, ..., K, where the generic kth col-
umn cgk, s = 1,2,...,M, contains the evaluations
of the kth label on the M criteria. The columns of
the matrix C are generated similarly as for matrix
A = [(a;;)]. The output of this method will be a set
of instances (z,7,:) = (i1, ...y Qin, Tzi ), Where the
ranking m,: on labels is obtained by ordering labels
w.r.t. values of their utilities (obtained by inserting
4.4 in 4.3):

(4.5)

n M

fk(l) = ZZai,jbj’scs,k (k = 1,2,

j=1s=1

K) - (4.6)

thus fi(7) is a weighted sum of the M criteria related
to the label k, where weights are linear combinations
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of the n attributes specific for the ith instance. Figure
1 shows the attributes and labels distributions of the
generated data set. Though attributes Al to Al0
are uniformly distributed (at least approximatively),
labels L3 and L4 present some bias. L3 occupies
most of times the first or the last position while L4
never occupies the first position and only two times
the last position in the generated rankings.

4.2 Data sets
DATAGEN2

generation method:

The method described in this section can be con-
sidered as a specific instance of the method DATA-
GEN1 where the utility given by the generic instance
i,7=1,2,..,N, to label [ is simply a weighted sum
of the n attributes.

Let define the matrix A = [(a; ;)] as in the pre-

vious section, while B = [(b;x)], j = 1,2..,n,
k=1,2,..., K is now a matrix whose the generic kth
column b;r, j = 1,2,...,n, contains weights given

to the n attributes used to describe the kth label.
In other words, such a column represents the im-
portance given by a generic instance i to the n at-
tributes that describe the kth label. Note that the
elements of B are generated as in DATAGEN1. The
output of this method will be a set of instances
(2, 7m4) = (i1, @im,Tqi), similarly to method
DATAGENI, where the ranking 7, on labels is ob-
tained by ordering labels w.r.t. their utilities:

fei) = aibie (k=1,2,..,K) (4.7)
j=1

Figure 2 shows attributes and labels distributions
of the generated data set. Attributes Al to A10 as
well as labels L1 to L5 are uniformly distributed.

4.3 Data sets
DATAGENS3

A slightly different method is described hereinafter.
Let @ = [(wi )], 4 =1,2...,N,j=1,2,...,n, be ama-
trix where each line represents a n-dimensional set

generation method:
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Figure 2: DATAGEN2: Histograms of attributes Al-
A10 and of labels L1-L5. All labels are uniformly
distributed along the positions of the generated rank-
ings

of weights. Thus, a generic line ¢ identifies a par-
ticular set S; = (wi,1,w;2,...,w;in) of weights asso-
ciated to the n attributes. The main idea is that
if we want to rank K objects (i.e. labels) through
a weighted sum of their n attributes, different sets
of weights should provide different rankings on these
objects. Thus, N sets of weights will provide N dif-
ferent rankings on the given objects. Thus the output
of this method will be a set of instances (z°,7,:) =
(Siyms,) = (Wi, ooy Win, Tgi), 4 = 1,2..., N where the
ranking 7g, is obtained by ordering labels w.r.t. their
utilities:

= wijgix (k=12.,K) (4.8)
j=1
where the rows of the matrix Q = [(w; ;)] are gen-

erated as for DATAGEN1 and DATAGEN2 (i.e. the
elements of each row are normalized weights) while
the generic kth column of the matrix G = [(g;x)]
contains the evaluations of the kth label on the n
attributes and can be randomly generated. Never-
theless, in order to guarantee monotonicity between
attributes and labels, the matrix G could also be ob-
tained, for example, by using a real data set where
such a monotonicity is provided. Figure 3 shows the
attributes and labels distributions of the generated
data set. In this example, we used the car’s choice
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Figure 3: DATAGENS: Histograms of attributes A1l-
A5 and of labels L1-L5. Attributes and labels are not
uniformly distributed. L1 always occupies the forth
and the fifth position, L2 and L3 always occupy the
third, fourth and fifth positions and L4 and L5 oc-
cupies the first and second positions in all generated
rankings.

data set [14] to obtain the matrix G. Attributes Al to
A5 are not uniformly distributed and all labels reveal
some bias. L1 always occupies the forth and the fifth
position, L2 and L3 always occupy the third, fourth
and fifth positions and L4 and L5 occupies the first
and second positions in all generated rankings.

5 Artificial Data sets:
Networks

Bayesian

In previous approaches the feature matrix A, C' and
G containing, respectively, the evaluations of each
instance on attributes, the evaluations of each label
on a set of criteria and the evaluations of each label
on attributes, are drawn independently, which is to
some extent not realistic. In this section, we present
a method that allows to generate correlated evalu-
ations. The present method is based on Bayesian
Networks [13] and allows to generate data wherein
conditional dependencies between attributes and la-
bels can be explicitly given as input.

Assume that we want to generate N-dimensional
data vectors whose correlations are as close as pos-



sible to a correlation matrix R given as input. In
the following, we briefly describe the principles of the
method designed for this purpose. However, the in-
terested reader is referred to the working paper [16]
for further information.

Let us fix an order on the N dimensions and con-
sider a Bayesian Network whose the graph is a di-
rected acyclic graph (DAG) of this order. The N vari-
ables are genereted iteratively as follows. The first
random variable X7 is simply drawn from a standard
normal distribution, i.e. X; ~ N(0,1). The second
random variable X5 is generated in such a way as to
preserve the value of the required correlation (given in
the matrix R) between the first two variables X7, Xo,
i.e. Xy is obtained as a noisy linear regression of the
variable X;. The third variable X3 is similarly ob-
tained so as to preserve the given correlation with
X1 and X5, and so on. As a result, each variable X;,
1 =1,2,...N, is obtained as a noisy linear regression
on the previuos variable X1, Xo,..., X;_1. At a given
step, in case it is not possible to exactly preserve
the specified correlations, a matrix algorithm [17] is
used to minimize the (Frobenius) distance between
the current correlation matrix and matrix R given
as input. At the end of this process, the associated
Bayesian Network can generate random vectors dis-
tributed according to a multivariate Gaussian distri-
bution whose the correlation matrix is, in a certain
sense, the correlation matrix closest to the given ma-
trix R. Though each variable X;, ¢ = 1,2,...N, is
N(0,1), it is possible to adjust the marginal means
and variances by using an appropiate affine transfor-
mation. Note that such a process can be adapted to
the case in which the matrix R is only partially spec-
ified. Alternatively, one can specify the main cor-
relations by drawing an acyclic graph. The desired
correlations are specified for the arcs of the graph
only. In such a case, the order relation on the vari-
ables is chosen in such a way as to contain all arcs of
the graph (which is always possible since the graph is
acyclic). In the current label ranking setting, a spe-
cific instance of the desired synthetic dataset can be
represented as a directed acyclic graph (DAG) whose
nodes are either attributes (in arbitrary number) or
labels, while edges represent conditional dependen-
cies between any two nodes. In the following sec-
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tions, we discuss two exemplary datasets generated
by means of the present method.

DATAGEN4: the case of uncorre-
lated labels

5.1

In the present case, we do not impose correlations
between labels evaluations (i.e. the set of labels is
an independent set of nodes in the DAG). Thus, all
arcs in the DAG are either linking attribute nodes
between them or attribute nodes with label nodes.
Moreover, in order to guarantee uncorrelated label
evaluations, all arcs linking attribute nodes with la-
bel nodes should have their origin at label nodes, as
shown in Figure 4. As a consequence, label evalua-
tions will be drawn independently. The correlations
obtained for DATAGEN4 are represented in Table 3
and are in accordance with the required correlations
given as input. The generated data can be inter-
preted as follows: the sub-vector corresponding to
attribute values represent the feature vector of a spe-
cific instance while the sub-vector corresponding to
the label values represent utilities that are used to
form a ranking on labels. Note that label values are
uncorrelated and that attribute values and label val-
ues follow Gaussian distributions with mean 100 and
standard deviation 20. In particular, the attributes
values are noisy linear regressions of the labels values.

5.2 DATAGENS5:
lated labels

In this exemplary dataset, DATAGENS, we imposed
some correlations between labels nodes, as depicted
in Figure 5. The correlations obtained for DATA-
GENS5 are represented in Table 4 and are in accor-
dance with the required correlations given as input.
Attribute values and label values also follow Gaussian
distributions with mean 100 and standard deviation
20. Note that the possibility to establish correlations
between labels, as proposed in this paper, would be
particularly useful in the context of preference learn-
ing and more particularly in multi-label classification
where the interdependency (or correlation) between
labels is a crucial issue to take into account during
the learning phase [10,11].

the case of corre-



Figure 4: Conditional Dependencies Structure of
DATAGEN4.

6 Experimental setup

This section is devoted to experimentations on the
artificial datasets generated with the presented meth-
ods. The evaluation measures used in this study are
the Kendall’s tau and the Spearman’s rank correla-
tion coefficient [18]. A cross validation study (10-
fold) was performed. The following methods were
used in our experimentation: ranking by pairwise
comparison (RPC) [1], nominal coding decomposi-
tion (ND ) [2—4] and random classifier chains for label
ranking (CD) [4]. The experimental results, in terms
of Kendall’s Tau and Spearman’s rank corrrelation,
are shown in Table 5. In this experiment, we evalu-
ated all algorithms using WEKA [8] in batch mode
from a Python program and Radial Basis Function
(RBF) as base-classifier with default parameters.
DATAGEN4, DATAGENS5 are the most difficult
datasets to learn since both measures are lower w.r.t.
any method. Conversely, DATAGEN3, DATAGEN1
and DATEGEN2 are less difficult to learn. At least
intuitively, this could be explained by the distribu-
tions of attributes and labels, as shown in Figures

Figure 5: Conditional Dependencies Structure of
DATAGENS.
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Figure 6: DATAGEN4: Bayesian Network (no corre-
lation between labels). Histograms of attributes Al-
A5 and of labels L1-L4. Attributes Al to A4 follow
(approximately) a Gaussian distribution around the
mean while all labels are uniformly distributed along
the positions of the generated rankings.
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\ T A [ Ay [ A | Ay | A [ Ly Ly Ls Ly

Ai |[ 1.000 | 0.631 [ 0.044 [ 0.111 [ 0.052 | 0.484 | -0.003 | -0.423 | 0.405
A, ] 0.631 | 1.000 | 0.084 [ 0.015 | -0.567 [ 0.115 | -0.201 [ -0.525 | 0.080
Az || 0.044 [ 0.084 | 1.000 [ 0.062 | -0.172 [ -0.014 | -0.388 | -0.003 | 0.052
Ay || 0111 | 0.015 | 0.062 | 1.000 | 0.001 | 0.133 | -0.035 | 0.129 | 0.058
As ][] 0.052 | -0.567 | -0.172 [ 0.001 | 1.000 [ -0.058 | 0.098 | 0.087 | 0.133
L; |[ 0484 | 0.115 | -0.014 | 0.133 | -0.058 | 1.000 | 0.008 | 0.026 | 0.015
L, || -0.003 | -0.201 | -0.388 | -0.035 | 0.098 | 0.008 | 1.000 | -0.021 | -0.003
Ly || -0.423 | -0.525 | -0.003 | 0.129 | 0.087 | 0.026 | -0.021 | 1.000 | -0.003
L, || 0405 | 0.080 | 0.052 | 0.058 | 0.133 | 0.015 [ -0.003 | -0.003 | 1.000

Table 3: Correlation matrix obtained for DATAGEN4. Correlation values are in accordance with the corre-
lations given as input.

’ H Ay ‘ Ay ‘ Az ‘ Ay ‘ As ‘ L. Lo L3 Ly

A, 1.000 | -0.318 0.002 0.430 0.063 | -0.108 | -0.030 0.713 0.442
A, -0.318 1.000 0.029 0.068 | -0.252 0.499 0.349 | -0.383 0.152
As 0.002 0.029 1.000 | -0.002 | -0.624 | 0.078 | -0.027 | 0.020 | -0.013
Ay 0.430 0.068 | -0.002 1.000 0.010 0.127 0.104 0.115 0.108
As 0.063 | -0.252 | -0.624 | 0.010 1.000 | -0.180 | -0.030 0.064 | -0.043
L1 -0.108 | 0.499 0.078 0.127 | -0.180 1.000 0.404 0.013 0.286
Lo -0.030 | 0.349 | -0.027 | 0.104 | -0.030 | 0.404 1.000 | -0.013 0.516
Ls 0.713 | -0.383 0.020 0.115 0.064 0.013 | -0.013 1.000 0.048
L4 0.442 0.152 | -0.013 0.108 | -0.043 | 0.286 0.516 0.048 1.000

Table 4: Correlation matrix obtained for DATAGENS. Correlation values are in accordance with the corre-
lations given as input.
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Figure 7: DATAGENS5: Bayesian Network (correla-
tion between labels). Histograms of attributes Al-
A5 and of labels L1-14. Attributes Al to A4 follow
(approximately) a Gaussian distribution around the
mean. All labels are (approximately) uniformly dis-
tributed along the positions of the generated rankings
except L3 which seems to appear mostly either in the
first or the last position of the generated rankings.

1-7: datasets having labels uniformly distributed over
the ranking positions (DATAGEN4, DATAGENS)
are more difficult to learn. Conversely, datasets
(DATAGEN3, DATAGEN1, DATAGEN2) for which
labels are distributed less uniformly are less difficult
to learn (i.e. they present a bias due to the fact that
some labels occupy very often the same position in
the rankings).

7 Conclusions

In this paper, we introduced some techniques for
generating datasets suitable for label ranking. We
mainly investigated two generation methods: a first
method which is based on the concept of utility func-
tions (DATAGEN1, DATAGEN2, DATAGENS3) and
a second one which is based on Bayesian Network
(DATAGEN4, DATAGENS). In particular, the latter
allows to generate data where some statistical param-
eters (mean, variance and correlation) can be given
as input. In order to study such datasets, we used
some label ranking methods and evaluate their per-
formances w.r.t. to Kendall’s Tau and Spearman’s

18

Kendall tau

SD ND cc
DATAGEN1  .7944-.020  .4274-.073 724+4-.035
DATAGEN2  .7504-.021 A86+-.028 704+-.024
DATAGEN3  .9734-.008 895+-.018 960-+-.011
DATAGEN4  .2524-.057  .168+-.005 :220+-.007
DATAGEN5  .3224-.036 .2424-.065 297+-.004
Spearman’s rank correlation
SD ND cc
DATAGEN1  .861+-.018 512+-.083 776-+-.036
DATAGEN2  .8354-.019 5884-.027  .798+-.022
DATAGEN3  .9864-.004  .9464-.009 .979+-.006
DATAGEN4  .313 4- .063  .200 +- .073  .267 +- .008
DATAGENS5  .379 4- .037  .285 +- .075  .348--.004

Table 5: Kendall’s Tau and Spearman’s rank corre-
lation on Artificial Data Sets - RBF as base classifier

rank correlation. As a main result, datasets having
labels uniformly distributed (DATAGEN4, DATA-
GEN5 and DATAGEN2) over the ranking positions
are more difficult to learn. Conversely, datasets for
which some labels present a bias (i.e. they occupy
very often the same position in a ranking) are less
difficult to learn. In particular, as expected, DATA-
GEN4 is the most difficult dataset to learn, since
labels are independent from attributes and uncorre-
lated between them. Beside the experimental results
provided for the exemplary datasets generated with
the proposed methods, this paper discusses and at-
tempts to solve an important issue in label ranking,
namely how to generate synthetic data suitable for
this setting. The methods proposed in this paper
would be useful not only to provide trustworthy la-
bel ranking data, but also to simulate/represent more
general settings (incomplete rankings, partial orders)
and to take into account more general properties re-
quired for future research in this field.
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Session 3

o Invited speaker: “Boolean functions for classification: logical analysis of data”,

Yves Crama, University of Liege, Belgium

Boolean functions are among the simplest and most fundamental objects investigated in
mathematics. In spite, or because of their simplicity, they find applications in many scientific
fields, including logic, combinatorics, operations research, artificial intelligence, computer
science, game theory, engineering, and so forth. In this talk, we present a collection of
Boolean models that have been developed over the last 25 years under the name of "Logi-
cal Analysis of Data" (or LAD) in order to handle a large variety of classification problems.
We focus on the frequent situation where a decision-maker has observed a number of data
points (say, vectors of binary attributes) which have been classified either as "positive" or as
"negative" examples of a phenomenon under study. The task of the decision-maker is then to
develop a classification system that allows her to assign one of the "positive" or "negative"
qualifiers to any point that may be presented to her in the future, in a way that remains consis-
tent with the initial observations. We first recall useful facts about partially defined Boolean
functions and their extensions, and we introduce the main concepts and definitions used in the
LAD framework: support (or "sufficient") sets of attributes, patterns (or "elementary classi-
fication rules"), theories (obtained by combining patterns), etc. We show how these building
blocks can be used to develop simple interpretable classifiers that perform and generalize
well in a variety of experimental situations. Moreover, we argue that these classifiers satisfy
some minimal requirements for “justifiability". Finally, we clarify the relation between the
LAD classifiers and certain popular classifiers used in the machine learning literature, such
as those computed by nearest neighbor classification algorithms or decision trees.

Session 4

o Invited speaker: “Learning and indentifying monotone boolean functions”,

Endre Boros, Rutgers University, NJ, USA

Numerous applications require the task of learning and/or identifying a hidden monotone
Boolean function.In this talk, first we review several learning models and clarify the the
corresponding learning complexity when the hidden function is known to be monotone. The
considered models include extending a given partially defined Boolean function or one with
missing bits within a specified class of monotone Boolean functions, and learning a certain
type of monotone function using membership queries. In the second part of the talk we
consider identification problems, which is a special case/extension (depending how one views
it) of learning by membership queries. Identification of a monotone function means that
we try to generate all of its minimal true (resp. maximal false) points. This problem is
strongly related to Boolean dualization or equivalently to finding all minimal transversals of
a hypergraph. In this talk we survey some of the related results, and provide a sample of the
standard algorithmic techniques.
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Session 5

e “Learning the parameters of a majority rule sorting model taking attribute interactions into
account”, Olivier Sobrie!2, Vincent Mousseau' and Marc Pirlot?
L 1LGI, Ecole Centrale Paris
2 MATHRO, Faculté Polytechnique, UMONS

e “Conjoint axiomatization of the Choquet integral for two-dimensional heterogeneous product
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o “Utilitaristic Choquistic Regression”,
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Brice Mayag, LAMSADE, Université Paris Dauphine

21



Learning the parameters of a majority rule sorting
model taking attribute interactions into account

Olivier Sobrie’?? , Vincent Mousseau”? and Marc Pirlot?

Abstract. We consider a multicriteria sorting procedure
based on a majority rule, called MR-Sort. This procedure al-
lows to sort each object of a set, evaluated on multiple cri-
teria, in a category selected among a set of pre-defined and
ordered categories. With MR-Sort, the ordered categories are
separated by profiles which are vectors of performances on
the different attributes. An object is assigned in a category
if it is as good as the category lower profile and not better
than the category upper profile. To determine if an object
is as good as a profile, the weights of the criteria on which
the object performances are better than the profile perfor-
mances are summed up and compared to a threshold. In view
of improving the expressiveness of the model, we modify it
by introducing capacities to quantify the power of the coali-
tions. In the paper we describe a mixed integer program and
a metaheuristic that give the possibility to learn the parame-
ters of this model from examples of assignment. We test the
metaheuristic on real datasets.

1

In Multiple Criteria Decision Analysis, the sorting problem-
atic consists in assigning each alternative of a set, evaluated
on several monotone criteria, in a category selected among
a set of pre-defined and ordered categories. Several MCDA
methods are designed to handle such type of problematic. In
this paper, we consider a sorting model based on a major-
ity rule, called MR-Sort [11, 17]. In MR-Sort, the categories
are separated by profiles which are vectors of performances
on the different criteria. Each criterion of the model is as-
sociated to a weight representing its importance. Using this
model, an alternative is assigned in a category if (a) it is con-
sidered at least as good as the category lower profile and (b)
it is not considered at least as good as the category upper
profile. An alternative is considered as good as a profile if its
performances are at least as good as the profile performances
on a weighted majority of criteria.

Consider a MR-Sort model composed of 4 criteria (c1, ca,
cs and c4) and 2 ordered categories (C2 > C4), separated by a
profile b1. Using this model, an alternative is assigned in the
“good” category (Co) iff its performances are as good as the
profile b1 on at least one of the four following minimal criteria
coalition:

Introduction

1 email: olivier.sobrie@gmail.com

2 Ecole Centrale Paris, Grande Voie des Vignes, 92295 Chatenay
Malabry, France, email: vincent.mousseau@ecp.fr

3 Université de Mons, Faculté Polytechnique, 9, rue de Houdain,
7000 Mons, Belgium, email: marc.pirlot@umons.ac.be
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c1 N\ ca
c3 N\ cq
c1 N\cy
co N\ cyq

L

A coalition of criteria is said to be minimal if removing any
criterion is enough to reject the assertion “alternative a is as
good as profile b”. Using an additive MR-Sort model, it can be
achieved by selecting, for instance, the following weights and
majority threshold: w; = 0.3, w2 = 0.2, wg = 0.1, wy = 0.4
and A = 0.5. We have w1 + w2 = \, wz+ws = A\, w1 +wg > A
and ws +w4 > A. All the other coalitions of criteria which are
not supersets of the 3 minimal coalitions listed above are not
sufficient to be considered as good as b1 (e.g. w1 + ws < A).

Now consider the same type of model, but with the follow-
ing minimal criteria coalitions:

1. c1 ANeo
2. c3Ncy

Modeling this classification rule with an additive MR-Sort
model is impossible. There exist no weights and majority
threshold satisfying solely the 2 minimal criteria coalitions. In
view of being able to represent such type of rule, we propose in
this paper a new formulation of MR-Sort, called Capacitive-
MR-Sort. This formulation expresses the majority rule of MR-~
Sort with capacities like in the Choquet Integral [8].

The paper is organized as follows. The next section de-
scribes formally the MR-Sort model and the new formulation
of MR-Sort with capacities. Section 3 recalls the literature
dealing with learning parameters of MR-Sort models from as-
signment examples. The next two sections describe respec-
tively a Mixed Integer Program and a metaheuristic that al-
low to learn the parameters of a Capacitive-MR-Sort. Some
experimental results are finally presented.

2 MR-Sort and Capacitive-MR-Sort
2.1 MR-Sort

MR-Sort is a method for assigning objects in ordered cate-
gories. Each object is described by a multicriteria vector of
attribute values. The attribute values can be meaningfully or-
dered, i.e. there is an underlying order on each attribute scale,
which is interpreted as a “better than” relation. Categories are
determined by limit profiles, which are vectors of attribute
values. The lower limit profile of a category is the upper limit
profile of the category below. The MR-Sort rule works as fol-
lows. An object is assigned to a category if it is better than



the lower limit profile of the category on a sufficiently large
coalition of (weighted) attributes and this condition is not
met for the upper limit profile of this category. Obviously,
MR-Sort is a monotone rule, i.e. an object that is at least
as good as another on all attributes cannot be assigned to a
lower category.

The MR-Sort rule is a simplified version of the ELECTRE
TRI procedure, a method that is used in MCDA to assign
objects to predefined categories [19, 16]. The underlying se-
mantic is generally to assign the objects labels such as “good”,
“average”, “bad”, .. ..

Formally, let X be a set of objects evaluated on n ordered
attributes (or criteria), F = {1,...,n}. We assume that X is
the Cartesian product of the criteria scales, X = [[7_, X;.
An object a € X is thus a vector (a1,...,a;,...,an), where
aj € X; for all j.

The ordered categories which the objects are assigned to
by the MR-Sort model are denoted by Cp, with h =1,...,p.
Category C}, is delimited by its lower limit profile by_; and
its upper limit profile by, which is also the lower limit profile
of category Ch41 (provided 0 < h < p). The profile b, is the
vector of criterion values (bn,1,...,bn,5,-..,b0n,n), with b ; €
X for all j. We denote by P = {1, ....,p— 1} the list of profile
indices.

By convention, the best category, Cp, is delimited by a fic-
tive upper profile, b,, and the worst one, C'1, by a fictive lower
profile, bo.

It is assumed that the profiles dominate one another, i.e.:

bh—l,jgbh,jv h:L»Pa jzl,,’ﬂ

Using the MR-Sort procedure, an object is assigned to a
category if its criterion values are at least as good as the
category lower profile values on a weighted majority of criteria
while this condition is not fulfilled when the object’s criterion
values are compared to the category upper profile values. In
the former case, we say that the object is preferred to the
profile, while, in the latter, it is not. Formally, if an object
a € X is preferred to a profile b, we denoted this by a =
bp. Object a is preferred to profile b, whenever the following
condition is met:

Do owiz A

jiaj>bp

ax=bp &

(1)

where w; is the nonnegative weight associated with criterion
7, for all j and X sets a majority level. The weights satisfy the
normalization condition ZJEF w; = 1; A is called the majority
threshold; it satisfies A € [1/2,1].

The preference relation = defined by (1) is called an out-
ranking relation without veto or a concordance relation ([16];
see also [2, 3| for an axiomatic description of such relations).

Consequently, the condition for an object a € X to be as-
signed to category C} writes:

Z w; < A

Jiaj>bp,;

Jia; >bp—1j

w; > A and

2)

The MR-Sort assignment rule described above involves pn+
1 parameters, i.e. n weights, (p — 1)n profiles evaluations and
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one majority threshold. Note that the profiles by and b, are
conventionally defined as follows: by ; is a value such that
aj > bo; foralla € X and j =1,...,n; by; is a value such
that aj < by forallae X and j=1,...,n.

A learning set A is a subset of objects A C X for which
an assignment is known. For h = 1,...,p, A, denotes the
subset of objects a € A which are assigned to category Ch.
The subsets Aj, are disjoint; some of them may be empty.

2.2 Capacitive-MR-Sort

Before describing the Capacitive-MR-Sort model, we intro-
duce the notion of capacity. To illustrate this, we consider an
application in which a committee for a higher education pro-
gram has to decide about the admission of students on basis
of their evaluations in 4 courses: math, physics, chemistry and
history. To be accepted in the program, the committee judges
that a student should have a sufficient majority of evaluations
above 10/20. The courses (criteria) coalitions don’t have the
same importance. The strength of a coalition of courses varies
as a function of the courses belonging to the coalition. The
committee stated that the following subsets of courses are the
minimal coalition of courses in which the evaluation should
be above 10/20 in view of being accepted:

e {math, physics}

e {math, chemistry}

e {physics, history}

As an example of this rule, Table 1 shows evaluations of sev-
eral students and, for each student, if he is accepted or refused.

Math  Physic  Chemistry History A/R
James 11 11 9 9 A
Marc 11 9 11 9 A
Robert 9 9 11 11 A
John 11 9 9 11 R
Paul 9 11 9 11 R
Pierre 9 11 11 9 R

Table 1. Evaluation of students and their acceptance/refusal sta-

tus

Representing these assignments by using a MR-Sort model
with profiles fixed at 10/20 in each course is impossible. There
are no weights allowing to model such rules. MR-Sort is not
adapted to model such types of rules because it does not han-
dle criteria interactions.

In view of taking criterion interactions into account, we pro-
pose to modify the definition of the global outranking relation,
a = by, given in (1). We introduce the notion of capacity. A
capacity is a function p : 2 — [0, 1] such that:

e u(B) > u(A), for all A C B C F (monotonicity) ;
e u(P) =0 and p(F) =1 (normalization).

The Mobius transform allows to express the capacity in an-
other form:

wA) = m(B)

BCA

®3)



for all A C F, with m(B) defined as:

m(B) =Y _ (-1)F7u(0)

cCB

(4)

The value m(B) can be interpreted as the weight that is ex-
clusively allocated to B as a whole. A capacity can be defined
directly by its Mobius transform also called “interaction”. An
interaction m is a set function m : 2 — [—1, 1] satisfying the
following conditions:

> m(K)>0  VjeFJCF\{i} (5)
JEKCJIU{j}
and
> m(K) =1

If m is an interaction, the set function defined by u(A) =
> pcam(B) is a capacity. Conditions (5) guarantee that p is
monotone [5].

Using a capacity to express the weight of the coalition in

favor of an object, we transform the outranking rule as follows:
a=bp < p(A) > Awith A={j:a; >bn;}

and p(A) = Z m(B)

BCA

(6)

Computing the value of p(A) with the Mobius transform in-
duces the evaluation of 2/4! parameters. In a model composed
of n criteria, it implies the elicitation of 2" parameters, with
1(0) =0 and p(F) = 1. To reduce the number of parameters
to elicit, we use a 2-additive capacity in which all the interac-
tions involving more than 2 criteria are equal to zero. In the
literature [12], for the ranking problematic, it has been shown
experimentally that a 2-additive model allows to improve the
representation capabilities. However using a 3-additive capac-
ity instead of a 2-additive one does not significantly improve
the accuracy of the model. Inferring a 2-additive capacity
for a model having n criteria requires the determination of
% — 1 parameters.

Finally, the condition for an object a € X to be assigned
to category C} can be expressed as follows:

wW(Fepn—1) > and p(Fon) <A

(7)

with Fa,h—l = {] caj Z bh—Lj} and Fa,h = {] L aj 2 bhﬁj}.

3 Learning the parameters of a MR-Sort
model

Learning the parameters of MR-Sort and ELECTRE TRI
models has been already studied in several articles [14, 13,
15, 6, 7, 11, 4, 17, 20]. In this section, we recall how to learn
the set of parameters of an MR-Sort using respectively an
exact method [11] and a metaheuristic [17].
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3.1 Mixed Integer Programming

Learning the parameters of an MR-~Sort model using linear
programming techniques has been proposed in [11]. The pa-
per describes a Mixed Integer Program (MIP) taking a set
of assignment examples and their vector of performances as
input and finding the parameters of an MR-Sort model such
that a majority of the examples are restored by the inferred
model. We recall in this subsection the main steps to obtain
the MIP formulation proposed in [11].

The definition of an outranking relation (1) can be rewritten
as follows:

wj

0

" ifa; > by ;

a=by = Y ch; >\ withcl; = =
. ]; 7= 7 otherwise

To linearize this constraint, we introduce for each value CZY !
binary variable 651, ; that it is equal to 1 when the performance
of the object a is at least equal or better than the performance
of the profile b; on criterion j and 0 otherwise. To obtain the
value of 637 j» we add the following constraints:

ML, —1)<a;—b; < M-8, (8)

! . the values of c;j are deduced as

By using the value d, ;,

follows:
I 1
Caj < lay
I
Caj SWj

Caj 20— 14w,

The objective function of the MIP consists in maximizing
the number of examples compatible with the learned model,
i.e. minimizing the 0/1 loss function. In order to model this,
we introduce new binary variables v,, equal to 1 if object a
is assigned in the expected category, i.e. the category it has
been assigned in the learning set, and equal to 0 otherwise.
To deduce the value of v, variables, two additional constraints
are added:

h—1
{Z?_l Ca,j

Z?:l Ca,j
Finally, the combination of all the constraints leads to the
MIP given in (9).

>A+M(ve—1)
<A—M(v.—1)

3.2 Metaheuristic

The MIP presented in the previous section is not suitable
for large datasets because of the high computing time that is
required to infer the MR-Sort parameters. In view of learn-
ing MR-~Sort models in the context of large datasets, a meta-
heuristic has been proposed in [17]. As in the MIP, the meta-
heuristic takes as input a set of assignment examples and
their vector of performances and returns the parameters of
an MR-Sort model.

The metaheuristic proposed in [17] works as follows. First
a population of MR-Sort models is initialized. After the ini-
tialization, the two following steps are repeated iteratively on
each model in the population:



9)

max Z’Y“
acA

et =2 A+ M(ra—1) Va€ Aph={2,..,p}

j=1

Sch; < A=M(ya—1) Va€Aph={1,..,p—1}

j=1

aj—b; < M-8, Vj € F\Ya € Ay,Yh € Pl ={h—1,h}

aj —b; > ML, —1) Vj € F\Ya € Ay,Yh € Pl ={h—1,h}
ey < O Vj € F\Ya € Ay,Vh € Pl ={h—1,h}
ch; < wj Vj € F,\¥a € Ay,Yh € P,l={h—1,h}
ch; > O;—1+w; Vj€F\NacApVhePl={h—1h}
bh,j > bh—Lj VjeF h= {2, D — 1}

Su o= 1

j=1
o, € {01} Vj € F,Ya € Ap,Yh € Pl ={h—1,h}
c; € [0,1] Vj € F,Va € Ap,Yh € P,l ={h—1,h}
bhyj e R Vj e F,Yh e P
Yo € {0,1} Va € X
w; € [0,1] VjeF

A € [0.5,1]

1. A linear program optimizes the weights and the majority
threshold on basis of assignment examples and fixed pro-
files.

Given the inferred weight and the majority threshold, a
heuristic adjusts the profiles of the model on basis of the
assignment examples.

After applying these two steps to all the models of the pop-
ulation, the |[%] models restoring the least numbers of ex-
amples are reinitialized. These steps are repeated until the
metaheuristic finds a model that fully restores all the exam-
ples or after a number of iterations given a priori.

The linear program designed to learn the weights and the
majority threshold is given by (10). It minimizes a sum of
slack variables, =, and y,, that is equal to 0 when all the
objects are correctly assigned, i.e. assigned in the category
defined in the input dataset. We remark that the objective
function of the linear program does not explicitly minimize
the 0/1 loss but a sum of slacks. It implies that compensatory
effects might appears to the detriment of the 0/1 loss. How-
ever in this metaheuristic, we consider that this effects are
acceptable. This linear program doesn’t contain binary vari-
ables, therefore the computing time remains reasonable when
the size of the problem increases.

The objective function of the heuristic varying the pro-
files maximizes the number of examples compatible with the
model. To do so, it iterates over each profile h and each cri-
terion j and identifies a set of candidate moves which cor-
respond to the performances of the examples on criterion j
located between the profiles h — 1 and h + 1. Each candidate
move is evaluated as a function of the probability to improve
the classification accuracy of the model. To evaluate if a can-
didate move is likely or unlikely to improve the classification
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of one or several objects, the examples which have an evalu-
ation on criterion j located between the current value of the
profile, by, ; and the candidate move, by ; + § (resp. by, ; — §)
are classified in different subsets:

V;fj‘.s (resp. Vhff) : the sets of objects misclassified in Chy1
instead of C}, (resp. C}, instead of Cj41), for which moving
the profile b, by +d (resp. —d) on j results in a correct
assignment.

W,jf (resp. W,;j : the sets of objects misclassified in Cj41
instead of Cj, (resp. C, instead of Chy1), for which moving
the profile b, by +J (resp. —d) on j strengthens the criteria
coalition in favor of the correct classification but will not
by itself result in a correct assignment.

Q;‘; (resp. Q;f;) : the sets of objects correctly classified in
Cht1 (resp. Cht1) for which moving the profile by by +¢
(resp. —6) on j results in a misclassification.

R;"; (resp. R,;‘;) : the sets of objects misclassified in Cjpq1
instead of Cj, (resp. C, instead of Chy1), for which moving
the profile by, by +¢ (resp. —d) on j weakens the criteria
coalition in favor of the correct classification but does not
induce misclassification by itself.

Thf? (resp. Thfj) : the sets of objects misclassified in a cate-
gory higher than Cj, (resp. in a category lower than Ch1)
for which the current profile evaluation weakens the criteria
coalition in favor of the correct classification.

In order to formally define these sets we introduce the fol-
lowing notation. Al denotes the subset of misclassified ob-
jects that are assigned in category C; by the model while in
the dataset, they are assigned in category C}. Azlh denotes
the subset of misclassified objects that are assigned in cate-
gory higher than C; by the model while in the dataset it is
assigned in a category below Cj,. We denote by o(a,bp)



min > (@l + v
acA
Z Wj — Ta + = A
jiaj>bp_1,;
Wi+Ya—yo = A—0
jiaj>bp
n
ij = 1
j=1
w; € [0;1] VjeF
A € [0.5;1]
xa,ya,m;,y& € R(T

Va € Ap,Vh € P\{1}

Va € An,Vh € P\{p — 1}

(10)

Z].:aj>bh ;Wi the sum of criteria weights in favor of object a
against profile b,. We have, for any h, j and positive J:

Vo= {a € APt b, 46> a; > by and o(a,by) —w; < A}
Vh_j = {a € AZ“ ibp,j —6 < aj <bp, and o(a,bp) +w; > )\}
Wil = {a € AP by, 46> a; > by and o(a,by) — w; > )\}
W, 3§ = {a €A}y ibhy— 8 <aj <bp;and o(a,by) +w; < A}
Q;(Sj = {a € AZi} tbpj+0 >a; > by and o(a,by) — w; < )\}
Q;f;‘ = {“ € Ah, tbp; — 6 < a; <bp,; and o(a,by) +w; > A}
R;'SJ = {a € A,}t+1 tbpj+0>a; > bhyj}

R;,i = {‘1 € AZ+1 tbp;— 6 <a; < bh,]}

T;rj = {a €AZ] by +6>a; > bhq‘}

Trs = {“ €ASNI by —8<a; < bh.j}

The evaluation of the candidate move is done by aggregat-
ing the number of elements in each subset. Finally the choice
to move or not the profile on the criterion is determined by
comparing the candidate move evaluation to a random num-
ber drawn uniformly. These operations are repeated multiple
times on each profile and each criterion.

4 Mixed Integer Program to learn a
Capacitive-MR-Sort model

As compared to a MR-Sort with additive weights, a MR-Sort
model with capacities implies more parameters. In a stan-
dard MR-Sort model, a weight is associated to each crite-
rion, which makes overall n parameters to elicit. With an
MR-Sort model limited to two-additive capacities, the com-
putation of the weights of a coalition of criteria involves the
weights of the criteria in the coalition and the pairwise inter-
actions (Mobius coefficients) between these criteria. Overall
there are n + % -1= w — 1 coefficients. In the two-
additive case, let us denote by m; the weights of criterion j
and by m;  the Mdbius interactions between criteria j and
k. The capacity u(A) of a subset of criteria is obtained as:

n(A) = 3 camy + Z{j,k}CA m;.k. The constraints (5) on
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the interaction read:

my+3 m >0 VjeFYJCF\{j} (11)

keJ
and
St Y mast
jEF {j,k}CF

The number of monotonicity constraints evolves exponentially
as a function of the number of criteria, n. In [10], two other
formulations are proposed in order to reduce significantly the
number of constraints ensuring the monotonicity of the capac-
ities. The first formulation reduces the number of constraints
to 2n? but leads to a non linear program. The second formu-
lation introduces n? extra variables and reduces the number
of constraints to n* 4+ 1 without introducing non linearities.

With a 2-additive MR-Sort model, the constraints for an
alternative a to be assigned in a category h (7) can also be
expressed as follows:

n h 1
Z] 1 a,] +ZJ 1Zk 1 a]k 2)\+M(’7a71) (12)
glc,y"'z Zkl agk <A=M(ya—1)
with:
o Jl (resp. cZ‘J-) equals m; if performance of alternative a

is at least as good as the performance of profile b,_1 (resp.
bp) on criterion 7, and equals 0 otherwise;

cZ;}k (resp. c” k) equals m; 1, if performance of alternative
a is at least as good as the performance of profile b, 1 (resp.

bp) on criteria j and k, and equals 0 otherwise.

For allae X, je F and | € P, constraints ( 11) imply that
; > 0 and that c, ik € [-1,1]. The values of ¢">' and
can be obtained in a 51m11ar way as it is done for learnmg the
parameters of a standard MR-Sort model by replacing the
weights with the corresponding Mébius coefficient (13).

! !
Caj < 0ay
!
Coj <My (13)
! !
Caj 20a;—14m;
However it is not the case for the variables CZ;lk and ¢l ; 4,

because they imply two criteria. To linearize the formulation,



we introduce new binary variables, Al,l,jyk equal to 1 if alter-
native a has better performances than profile b, on criteria j
and k and equal to 0 otherwise. We obtain the value of Afw-, E
thanks to the conjunction of constraints given at (8) and the
following constraints:
2Afm,j,k§5 +6a]SAl k+1

In order to deduce the value of ¢, ks Which can be either
positive or negatlve for all [ € P, we decompose the variable
in two partb aa .k and B j,k such that caJ p =l ajk ﬂlw &
with aw’k > 0 and ﬁm],k > 0. The same is done for m; i
which is decomposed as follows: m; = m;'k - J_k with
'er,C > 0 and m;, > 0. The value of al . and ,Ba | are
finally obtained thanks to the following constramts

l 1 l 1

Y jr < Bk agk < Dok
) + l

Qo gk <My Bajr < m;o,

1 1 —+
U 2By —14+miy

1
Ba,jx

Finally, we obtain the MIP given in (14).

5 Metaheuristic to learn a
Capacitive-MR-Sort model

The MIP described in the previous section requires a lot of
binary variables and is therefore unsuitable for large problems.
In subsection 3.2, we described the principle of a metaheuristic
designed to learn the parameters of an MR-Sort model. In
this section, we describe an adaptation of the metaheuristic
in view of learning the parameters of a Capacitive-MR-Sort
model. Like for the MIP described in the previous section, we
limit the model to 2-additive capacities in order to reduce the
number of coefficient in comparison to a model with a general
capacity.

The main component that needs to be adapted in the meta-
heuristic in order to be able to learn a Capacitive-MR-Sort
model is the linear program that infers the weights and the
majority threshold (10). Like in the MIP described in the
previous section, we use the Mobius transform to express ca-
pacities. In view of inferring Mébius coefficients, m; and m; x,
Vj,Vk with k < j, we modify the linear program as given in
(15).

The value of z, — x, (resp. Y« — y,) represents the dif-
ference between the capacity of the criteria belonging to the
coalition in favor of a € Aj, w.r.t. by—1 (resp. bn) and the
majority threshold. If both z, — 2/, and y, — ¥/, are positive,
then the object a is assigned to the right category. In order to
try to maximize the number of examples correctly assigned
by the model, the objective function of the linear program
minimizes the sum of z/, and y,, i.e. the objective function is
min ¥, (o) + h).

The heuristic adjusting the profile also needs some adap-
tations in view of taking capacities into account. More pre-
cisely, it is needed to adapt the formal definition of the sets in

which objects are classified for computing the candidate move
evaluation. The semantic of the sets, described in Section 3.2

l —
> An =1+ m;k
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remains the same, only the formal definitions of the sets are
adapted as follows.

Vit ={ae AT by 40> a5 > by and p(Fai\(H) < A}

Vid ={a€ A by =8 < aj < by and p(Fan U {5}) > A}
Wit ={a€ Al b +6> a5 > by and w(Fas\{) > A}
w, S = {a € AP ibuy —8<aj; <bu;and p(Fan U{j}) < A}
@il ={ac Al ibu, +0> a5 2 by and w(Fa i\ () < A}
Qny={ae Al by —8<a; <bunyand p(Fanu{ih) >}

The formal definitions of the sets R+ b R;‘;, T,j' ; remain
the same as for the simple additive MR-Sort model as well as
function computing the evaluations taking into account the
size of the sets.

6 Experimentations

The use of the MIP for learning a Capacitive-MR-Sort model
is limited because of the high number of binary variables
it involves. It contains more binary variables than the MIP
learning the parameters of a simple additive MR-Sort model.
In [11], experiments have demonstrated that the computing
time required to learn the parameters of a standard MR-Sort
model having a small number of criteria and categories from a
small set of assignment examples becomes quickly prohibitive.
Therefore we cannot expect to be able to treat large problems
using the MIP learning Capacitive-MR-Sort models.

In view of assessing the performances of the metaheuristic
designed for learning the parameters of a Capacitive-MR-Sort
model, we used it to learn Capacitive-MR-Sort models from
several real datasets presented in Table 2. These datasets have
been found in the UCI machine learning repository [1] and
in WEKA [9]. They have been already used to assess the
learning performances of other algorithms, like in [18] and
[17]. The dataset presented in Table 2 contains from 120 to
1728 instances, 4 to 8 criteria (criteria) and 2 to 36 categories.
In the experimentations, the categories have been binarized
by thresholding at the median (like in [18, 17]). All the input
criteria of the datasets are considered as monotone.

Dataset  #instances  #criteria  Ffcategories
DBS 120 8 2
CPU 209 6 4
BCC 286 7 2
MPG 392 7 36
ESL 488 4 9
MMG 961 5 2
ERA 1000 4 9
LEV 1000 4 5
CEV 1728 6 4
Table 2. Datasets

In a first experiment, we used 50% of the alternatives con-
tained in the datasets as learning set and the rest as test



max Z Ya
acA
Z +ZZQ1],€ ZZ@M > A+ Ma—1) Va€Apnh=2,..,p
]7 J=1k=1 J=1k=1
Z ,ﬁZZaM ZZ@”,C < A=M(ya—1) Va€ApVheP
j=1 j=1k=1 j=1k=1
i < 8L Vj € F\Ya € Ap,Vh € P,l={h—1,h}
chi < omy Vj € F\Ya € Ap,Yh € P,l={h—1,h}
iy > 0Ly, —14my Vj € F,VYa € Ap,Yh € P,l={h—1,h}
aj —b; < M-6,; Vj € F\Va € Ap,Yh € Pl ={h—1,h}
aj—by; > ML, —1) Vj € F,VYa € Ap,Yh € P,l={h—1,h}
Shi+ohe > 2AL 4 Vj e F\Vk € F,k < j,Va € Ap,Yh € P,l = {h —1,h}
Shidoh, < Al +1 Vj e F\Vk € F,k < j,Va € Ap,Yh € P,l = {h —1,h}
abiw < AL, Vj e F\Vk e F,k < j,Va € Ap,Yh € P,l = {h—1,h}
ahe < omiy Vj e F\Vk e F,k < j,Va € Ap,Vh € P,l = {h—1,h}
a’dk > Agjr—14m), Vj€FVkeFk<jVaeA,VhePl={h—1nh}
ﬁwk < Al Vj € F,Vk € Fik < j,Va € Ap,Vh € P,l = {h —1,h}
ﬁw, < myy Vj € F\Vk € F,k < j,Ya € Ap,Vh € P,l={h —1,h}
ﬂwk > Agje—1+m Vj € F\Vk € F|k < j,Ya € Ap,Vh € P,l={h—1,h}
mi+ Y (miy—mi,) > 0 Vj € F,¥J C F\{j}
keJ
bhﬂ > bh—l,] Vie F,h= {2,...,])— 1}
Z m; + Z Z(m =1
j=1k=1
cfw € [0,1] Vj € F\Ya € Ap,Yh € Pl ={h—1,h}
oL, € {01} Vj € F\Ya € Ap,Yh € Pl ={h—1,h}
Lk Bhie € [0,1] Vj € F,Vk € F,k < j,Ya € Ap,Yh € P,l = {h —1,h}
Afw-,k e {0,1} Vj € F\Vk € F,k < j,Ya € Ap,Vh € P,l={h —1,h}
m; € [0,1] VjeF
mi,miy € [0,1] Vje F,Vke F k<j
br; € R Vje F,YheP
Y. € {0,1} Va € X
A e [0,1]
14)
set. From the examples of the learning set, we learned MR-
Sort and Capacitive-MR-Sort models with the metaheuristic.
We repeated the operation for 100 random splittings of the Dataset META MR-Sort META Capa-MR-Sort
datasets in learning and test sets. The results are given in Ta- DBS 0.8400 + 0.0456 _ 0.8306 + 0.0466
ble 3. We see that the average classification accuracy obtained CPU 0.9270 +0.0294  0.9203 + 0.0315
with the Capacitive-MR-Sort metaheuristic is in average com- BCC 0.7271 £0.0379  0.7262 £+ 0.0377
parable to the one obtained with the MR-Sort metaheuris- MPG 0.8174£0.0290  0.8167 + 0.0468
ti.c. For some datasets, the CaPaciti.vejMR—Sort metaheuristic II\E/ISI\BIIG ggggg i 88}22 82%3 i 881;?
gives better results but sometimes it is the contrary. The use ERA 0.6905 + 0.0192  0.6927 + 0.0165
of a more descriptive model does not help to improve the LEV 0.8454 + 0.0221 0.8445 + 0.0223
classification accuracy of the test set. CEV 0.9217 £ 0.0067  0.9187 + 0.0153
The second experiment we did consisted in using all the Table 3. Average and standard deviation of the classification ac-

instances of the datasets as learning set. As in the first exper-
iment, for each dataset, we run the two metaheuristic with
100 different seeds. The average classification accuracy and
the standard deviation of the learning set of each dataset is
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curacy of the test set when 50 % of examples used as learning set

and the rest as test set



> (@ +ya)

min
acA
n J
Z mj + Z mik | —2a+x, = A
Jiaj>bp_1,;j k:ap>bp—1,k
J
Z m; + Z mig | +va—vya = A—e
Jia;>bp kiap2>bp, g
n n 7
Som e = 1
j=1 j=1k=1
mi+Y mik > 0
keJ
A € [0.5;1]
m; € [0,1]
Mj,k € [7171]
/ ’ +
TayYarTasYa € IRO

Va € Ap,Vh € P\{1}

Va € An,Vh € P\{p — 1}

(15)

Vj € F\¥J C F\{j}

VjeF
Vje FVkeFk<j
a € A.

given in Table 4. The Capacitive-MR-Sort metaheuristic does
not always give better results than the MR-Sort one.

Dataset META MR-Sort META Capa-MR-Sort
DBS 0.9318 £ 0.0036 0.9247 £ 0.0099
CPU 0.9761 £ 0.0000 0.9694 + 0.0072
BCC 0.7737 £ 0.0013 0.7700 £ 0.0077
MPG 0.8418 £ 0.0000 0.8418 £ 0.0000
ESL 0.9180 £ 0.0000 0.9180 + 0.0000
MMG 0.8491 £ 0.0011 0.8508 £ 0.0005
ERA 0.7142 £ 0.0028 0.7158 £ 0.0004
LEV 0.8650 £ 0.0000 0.8650 =+ 0.0000
CEV 0.9225 £ 0.0000 0.9225 £ 0.0000

Table 4. Average and standard deviation of the classification ac-
curacy of the learning set when using the MR-Sort and Capacitive-
MR-Sort models when using all the dataset as learning set

The average computing time required to obtain the results
presented in Table 4 is given in Table 5. We observe that
learning a Capacitive-MR-~Sort model can take up to almost

3 times the time required to learn the parameters of a simple
MR-Sort model.

Dataset META MR-Sort META Capa-MR-Sort
DBS 3.0508 6.9547

CPU 3.1646 5.2069

BCC 3.3700 7.7545

MPG 4.4136 9.9294

ESL 3.8466 7.2495

MMG 6.1481 13.4848

ERA 5.9689 14.4875

LEV 5.8986 13.2356

CEV 11.1122 31.7042

Table 5. Average computing time (in seconds) required to find

a solution with MR-Sort and Capacitive-MR-Sort metaheuristic
when using all the examples as learning set

The two experiments show that using a more expressive
model does not always result in a better classification accu-
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racy. This observation raises two questions. Firstly, in view of
the results obtained, one may doubt that the Capacitive-MR-
Sort extends much the original MR-Sort. For what type of
assignment data is the new model more flexible? Secondly, is
the metaheuristic well-adapted to learn Capacitive-MR-Sort
models? To answer these questions, more experimentations
have to be done.

7 Comments

We observe that using 2-additive weights instead of simple
additive weights in MR-Sort does not result in significant im-
provement of the 0/1 loss. It is somewhat surprising because
the model is more flexible when 2-additive weights are used.

In view of understanding better how the representation ca-
pabilities of an MR-Sort model can be improved by using
2-additive weights, we do the following experimentation. We
modify the MIP presented in section 3.1 to learn only the
weights and the majority threshold of an MR-Sort model on
basis of fixed profiles and assignment examples. The objec-
tive function of the MIP remains the minimization of the 0/1
loss. The MIP is used to learn the parameters of an MR-Sort
model composed of 2 categories, C1 > Ca, 4 to 6 criteria, and
a fixed profile equals to 0.5 on all the criteria. Each of this
learning sets contains 2™ alternatives, with n being the num-
ber of criteria of the model that is learnt. Performances of the
alternatives of the learning are either equal to 0 or 1 on each
criterion and the learning set is built such that each vector
of performances is represented once and only once. Alterna-
tives in the learning set are assigned either in C or Cy such
that monotonicity is guaranteed in assignments, i.e. an alter-
native, x, which has at least equal or better performances on
each criterion than another one, y, is never assigned in a least
preferred category than the category in which y is assigned.
In the experiment, we consider all the non-additive learning
sets, i.e. all the learning sets which are not fully compatible
with a simple additive MR-Sort model composed of n criteria.

Results of the experimentation are presented in Table 7.



Each row of the table contains the results for a given number
of criteria, n. The second column contains the percentage of
learning sets that are not compatible with a simple additive
MR-Sort model composed of n criteria, among all the learning
sets combinations. The last three columns contain the min,
max and average percentage of 2" examples that cannot be
restored by a simple additive model among the non-additive
learning sets. We observe that a MR-Sort model composed
of 4 criteria is, in worst case, not able to restore 6.2% of the
examples of the learning set (1 example on 16). With 5 and 6
criteria, the maximum 0/1 loss increases respectively to 9.4%
and 12.4%. We see that the proportion of the alternatives that
cannot be restored with a simple MR-Sort model is small.
This observation might explain the poor gain observed with
the Capacitive-MR-Sort metaheuristic compared to the MR-
Sort one.

n % non-additive MR-Sort

min. max. avg.
4 11 % 62% 62% 6.2 %
5 57 % 31% 94 % 3.9 %
6 97 % 1.6 % 125% 48 %

Table 6.
ing sets after learning additive weights and the majority threshold
of an MR-Sort model

Average, minimum and maximum 0/1 loss of the learn-

8 Conclusion

In this paper, we proposed an extension of the MR-Sort
model by adding capacitive weights to the model. We called it
Capacitive-MR~Sort. We also modified the MIP presented in
[11] and the metaheuristic described in [17] in view of being
able to learn Capacitive-MR-Sort models. The MIP formu-
lation induces a lot of binary variables and is unsuitable for
problems involving large datasets. As we want to be able to
deal with real datasets, which are often large, we made ex-
periments with the metaheuristic. Tests have been done on
well-known datasets and showed that a more flexible model,
the Capacitive-MR-Sort, does not guarantee to get a better
classification accuracy. More experiments have to be done in
view of being able to better measure and compare the rep-
resentation ability of MR-Sort and Capacitive-MR-Sort mod-
els.
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Conjoint axiomatization of the Choquet integral
for two-dimensional heterogeneous product sets

Mikhail Timonin!

Abstract. We propose an axiomatization of the Choquet in-
tegral model for the general case of a heterogeneous product
set X = X X Xa. Previous axiomatizations of the Choquet
integral have been given for particular cases X = Y™ and
X = R". The major difference of this paper from the ear-
lier axiomatizations is that the notion of “comonotonicity”
cannot be used in the heterogeneous structure as there does
not exist a “built-in”” order between elements of sets X7 and
X5. However, such an order is implied by the representation.
Our characterization does not assume commensurateness of
criteria a priori. We construct the representation and study its
uniqueness properties.

1 Introduction

We propose a representation theorem for the Choquet inte-
gral model. Binary relation = is defined on a heterogeneous
product set X = X; X X5. In multicriteria decision analy-
sis (MCDA), elements of the set X are interpreted as alter-
natives characterized by two criteria taking values from sets
X1 and X». Previous axiomatizations of the Choquet integral
model have been given for the special cases of X = Y™ (see
[Kobberling and Wakker, 2003] for a review of approaches)
and X = R"™ (see [Grabisch and Labreuche, 2008] for a
review). One related result is the recent axiomatization of
the Sugeno integral model ([Greco et al., 2004, Bouyssou
et al., 2009]). Another approach using conditions on the util-
ity functions was proposed in [Labreuche, 2012]. The “con-
joint” axiomatization of the Choquet integral for the case of
a general X was an open problem in the literature [Bouys-
sou et al., 2012]. The crucial difference with the previous
axiomatizations is that the notion of “comonotonicity” can-
not be used in the heterogeneous case, due to the fact that
there does not exist a meaningful “built-in” order between
elements of sets X7 and X>. New axioms and modifications
of proof techniques had to be introduced to account for that.

Our axioms aim to reflect the main properties of the Cho-
quet integral. The first one is that the set X can be partitioned
into subsets, such that within every such subset the prefer-
ence relation can be represented by an additive function. The
axiom (A3) we introduce is similar to the “2-graded” condi-
tion previously used for characterizing of MIN/MAX and the
Sugeno integral ([Greco et al., 2004, Bouyssou et al., 2009]).
At every point z € X it is possible to build two “rectangu-
lar cones™: {z : z1p = z1p,az2 = azz} forallp € X,
and all @ € X3, and {z : az2 = azs,z1p = z1p} for
all p € X9 and all @ € X;. The axiom states that triple
cancellation must then hold on at least one of these cones.
The second property is that the additive representations on
different subsets are interrelated, in particular “trade-offs”
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between criteria values are “consistent” across partition el-
ements both within the same dimension and across different
ones. This is reflected by two axioms (A4, AS), similar to
the ones used in [Wakker, 1991a] and [Krantz et al., 1971]
(section 8.2). One, roughly speaking, states that triple can-
cellation holds across cones, while the other says that order-
ing of intervals on any dimension must be preserved when
they are “projected” onto another dimension by means of
equivalence relations. These axioms are complemented by a
new condition called bi-independence (A6), weak separabil-
ity (A2) [Bouyssou et al., 2009] - which together reflect the
monotonicity property of the integral, and the standard es-
sentiality, “comonotonic”” Archimedean axiom and restricted
solvability (A7,A8,A9). Finally, = is supposed to be a weak
order, and X is order dense (A1).

2 Choquet integral in MCDA

Definition 1. Letr N = {1,...,n} be a finite set and 2~ its
power set. Capacity (non-additive measure, fuzzy