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Abstract

In this communication, we introduce an original
algorithm for computing both dominant and ab-
sorbent kernels in a bipolar ordinal valued di-
graph. The approach relies on theoretical re-
sults recently obtained by Bisdorff, Pirlot and
Roubens [8] which give a constructive – fixpoint
equation based – proof of the bijection between
bipolar ordinal valued kernels of such a valued
digraph and the crisp kernels we observe in the
associated strict median cut crisp digraph.
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1 Dominant and absorbent kernels in
digraphs

In this section we discuss the concept of indepen-
dent dominant, respectively absorbent, choice in
a digraph. These concepts correspond to the no-
tion of independent dominating sets in undirected
graphs. In digraphs, we distinguish two oriented
variants of this notion, a dominant kernel, that is
an initial, or dominant choice, and a terminal or
absorbent choice.

In the graph theory literatures, dominating sets
in general, and independent dominating sets in
particular, have gained more and more attention
(see Haynes, Hedetniemi and Slater [13]). The
oriented counterpart, known as kernels in the ab-
sorbent version, and (Von Neumann game) so-
lutions in the dominant version, have attracted
slightly less attention (Ghoshal, Laskar, and Pil-
lone [12]).

In this first part, we first introduce basic notation
in the crisp case, before extending our presenta-
tion to bipolar ordinal valued digraphs.

1.1 The crisp case

We consider G(X, R) to be a digraph where X is a
finite set of vertices and R is a set of directed arcs,
in fact a binary relation on X, i.e. R ⊆ X × X.
We thus ignore multiple loops and multiple arcs
except for pairs of opposite arcs. If R = X × X
we call G complete. The cardinality n of X gives
the order of the G, whereas the cardinality of R
over the square n2 of the order of the graph gives
the fill rate of the graph. We call G a connected
digraph if the symmetric and transitive closure of
G corresponds to a complete graph. In fact a con-
nected graph is a graph that contains no isolated
vertices. A graph G(X,R) is called irreflexive if
(x, x) 6∈ R : ∀x ∈ X. In the sequel we shall only
consider irreflexive and connected digraphs.

A choice Y in a digraph G(X, R) is a non empty
subset of vertices from X. A dominant (respec-
tively absorbent) choice in G is either X, called
the greedy choice, or a choice Y ⊂ X such that
∀x ∈ X − Y there exists some y ∈ Y such that
(y, x) (respectively (x, y) is in R. An independent
choice is either a singleton choice, or a choice Y
such that (x, y) 6∈ R for all x, y ∈ Y . We call
dominant (respectively absorbent) kernel of G a
choice Y which is both independent and dominant
(respectively absorbent).

Let G(X,R) be a digraph. We may represent
choices with the help of a bi-valued character-
istic (row) vector Y () : X → {−1, 1} where
Y (x) = 1 if x ∈ Y and Y (x) = −1 if x 6∈ X.
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We may also represent the binary relation R with
the help of the same bi-valued characteristic ma-
trix R() : X ×X → {−1, 1} where R(x, y) = 1 if
(x, y ∈ R and R(x, y) = −1 if (x, y) 6∈ R.

Proposition 1 (Berge 1958)
Let G(X, R) be an irreflexive digraph. A vector Y
satisfying the following equation system:

Y ◦R = −Y (1)

where, for all x ∈ X,

(Y ◦R) (x) = max
y∈X

(
min(Y (x), R(y, x))

)
,

characterizes an absorbent kernel of G.

A same proposition is true for the dominant case.
We simply have to reverse the direction of relation
R by using instead the transposed characteristic
matrix Rt of R.

Equation system (1) (respectively its reversed ver-
sion) is called the absorbent (respectively domi-
nant) kernel equation system. We don’t have the
space here to give exhaustive results on existence,
uniqueness and particular characteristics of the
solutions of equation system (1) (see Berge [1, 2]
and Ghoshal et al. [12] for instance). Quickly
stated, acyclic digraphs always admit a unique
dominant and a unique absorbent kernel ([1]). Al-
most all random digraphs have several dominant
as well as absorbent kernels ([11, 18]). But asym-
metric odd circuits for instance don’t admit any
dominant nor absorbent kernel ([14]).

The digraphs we would like to consider here ap-
pear in the context of the outranking methods de-
signed for multiple criteria decision aiding (Roy
and Bouyssou [15]). These outranking digraphs
are generally valued with the help of a bipolar ma-
jority concordance based index (Bisdorff [6, 7]).

1.2 The bipolar ordinal valued case

Instead of characterizing membership statements
with a simple bi-valued {−1, 1} characteristic
function, we consider here a finite increasing
sequence L of degrees of credibility denoted
(−m,−(m−1), . . . ,−1, 0,+1, . . . ,+m). As in the
bi-valued case, the sign of the characteristic value
is carrying a logical denotation: + signifies more

true than false and − signifies more false than
true. When considering two degrees of credibility
k and l such that k > l the membership assertion
evaluated k is considered to be strictly more cred-
ible than the one evaluated l; with −m meaning
definitely false and +m meaning definitely true.
0 signifies that the so characterized membership
assertion is neither true nor false, i.e. logically
undetermined (see Bisdorff [7]).

Let us consider a crisp choice Y . We denote
its corresponding L-valued characteristic function
Ỹ : X → L, where Ỹ (x) = ±k gives the degree of
truthfulness (+k) or falsity (−k) of the fact that x
is a member of the choice Y . The L-valued char-
acteristic (row) vector Ỹ is called an L-choice if
Ỹ does not contain any 0 value.

Similarly, for a given relation R ⊆ X×X we may
as well consider such an L-valued characteristic
matrix R̃ : X ×X → L where R̃(x, y) = ±k gives
the degree of truthfulness (+k) or falsity (−k) of
assertion (x, y) ∈ R. The corresponding L-valued
digraph is denoted G̃(X, R̃).

To each L-valued digraph G̃(X, R̃), we may as-
sociate a crisp digraph G(X, R) obtained by op-
erating a strict median cut on R̃ as follows:
R = {(x, y) ∈ X × X/R̃(x, y) > 0}. Similarly,
to each L-choice Ỹ we may associate a natural
choice Y obtained by the same strict median cut:
Y = {x ∈ X/Ỹ > 0}.
Furthermore, when considering two L-valued
characteristic vectors Ỹ1 and Ỹ2, we may con-
sider a special bipolar sharpness relation ¹ de-
fined as follows: Ỹ1 ¹ Ỹ2 if ∀x ∈ X, either
Ỹ1(x) ≥ Ỹ2(x) ≥ 0 or Ỹ1(x) ≤ Ỹ2(x) ≤ 0.

We may now consider the L-valued extension of
the crisp kernel equation system (1) where the get
the following formal result:

Proposition 2 Let G̃(X, R̃) be an L-valued di-
graph. The choices Y obtained from the maximal
sharp L-choices Ỹ – in the sense of relation ¹ –
which verify the following L-valued kernel equa-
tion system:

Ỹ ◦ R̃ = −Ỹ (2)

where

(Ỹ ◦ R̃)(x) = max
y∈X,y 6=x

(
min(Ỹ (x), R̃(x, y))

)
,
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for all x ∈ X, are the dominant kernels Y of the
associated strict median cut digraph G(X,R).

Proof of this important and non trivial proposi-
tion (Bisdorff, Pirlot and Roubens [8]) is based on
an original constructive fixpoint equation based
approach, imagined by Pirlot, which allows to pre-
cisely construct the maximal sharp L-choices that
are solutions of the L-valued kernel equation sys-
tem (2). He observed that, given a dominant ker-
nel Y of the associated strict median cut graph
G, the fixpoint of the transformation:

T (Ỹ ) = −(Ỹ ◦ R̃) = Ỹ , (3)

which necessarily exists and is unique, gives the
corresponding maximal sharp Ỹ solution of kernel
equation system (2).

By simply transposing the L-valued relation R̃ in
this equation system we get a similar bijection for
the absorbent kernel case.

The fixpoint equation (3) based proof of proposi-
tion (2) gives by the way a constructive procedure
for effectively computing L-valued dominant and
absorbent kernels in an L-valued digraph.

2 The L-valued kernel extraction

In this part, we present an original algorithm for
computing bipolar ordinal valued kernels from a
given digraph G̃.

2.1 The general algorithm

Von Neumann [19] showed that the unique domi-
nant kernel Y of a crisp acyclic digraph G(X,R)
corresponds to the stable solution of a dual fix-
point equation (see Schmidt and Ströhlein [16,
17]):

T 2(Y ) = −(−(Y ◦R) ◦R) = Y. (4)

Solving equation (4) allows to compute the kernel
Y in polynomial complexity in terms of the order
of G.

Based on this result, Bisdorff [5] observed that
for a given L-valued digraph G̃, each independent
and dominant choice Y in the associated strict

median cut graph G determines a partially de-
fined subgraph G̃/Y which admits a correspond-
ing L-choice Ỹ as unique maximal sharp solution
of kernel equation system (2). Following the von
Neumann approach, a similar dual L-valued ex-
tended fixpoint algorithm applied to G̃Y allows
to compute the associated maximal sharp Ỹ solu-
tion in polynomial complexity.

As already mentioned, the fixpoint equation (3)
now gives us access to a similar algorithmic ap-
proach. For each kernel Y observed in the as-
sociated strict median cut digraph G, we may
compute the associated maximal sharp L-choice
Ỹ by solving the corresponding fixpoint equation
T (Ỹ ) = Ỹ , where Ỹ is initialized as {−m,+m}-
valued characteristic vector of kernel Y .

In general, for a given L-valued digraph G̃:

1. we compute the associated strict median cut
digraph G;

2. we compute the sets Kd (respectively Ka) of
dominant (respectively absorbent) absorbent
kernels in G;

3. for each kernel Y ∈ Kd (respectively Ka), we
solve the fixpoint equation T (Ỹ ) = Ỹ .

Step (1) and (3) are of polynomial complexity in
terms of the order the digraph and the number
m of truthfulness degrees, but step (2) remains
evidently difficult, as finding a kernel in a general
digraph, via a reduction from the SAT problem,
has been showed to be NP-complete by Chvatál
(http://www.cs.rutgers.edu/ chvatal/kernel.html).

2.2 On computing crisp kernels from a
crisp digraph

Computing dominant and absorbent kernels in a
crisp digraph is indeed a computationally difficult
problem because of the fact that the crisp kernel
equation system (1) does not allow in general any
triangular solving approach. Therefore only the
smart enumeration of potential choices remains
an efficient approach.

In Bisdorff [3, 4, 5], we used a finite domain
solver to generate all admissible solutions of the
crisp kernel equation system (1), but working in
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a more general tri-valued {−1, 0, +1} evaluation
domain. The constraint enumerated solutions are
then sorted with respect to the sharpness rela-
tion ¹ in order to get the maximal sharpest so-
lutions. Thus we may obtain not only L-choices,
i.e. completely L-determined solutions, but also
only partially L-determined solutions which have
no correspondent in the associated crisp strict me-
dian cut digraph G. Unfortunately, finite domain
solvers, like the one proposed in GNU-Prolog (see
[9, 10]), due to space limitation when generat-
ing the constraints graph used for efficient arc-
consistency propagation, may not easily tackle
graphs of orders larger than 100. Also, the set of
admissible solutions of the kernel system (1) with
graphs of large order may be of huge cardinality.
We therefore looked for a smart enumeration tech-
nique with ad hoc propagation and search space
cutting strategies.

Noticing that in the outranking methods, the
strict median cut digraphs obtained from the
given L-valued digraphs have in general a high fill
rate (50% and more), we observe most of the time
a small number of kernels, i.e. independent and
dominant or absorbent choices, that are further-
more of small cardinality compared to the order
of graph (see [18]).

Therefore, starting from each singleton choice,
our approach consists in constructing larger and
larger independent choices until we reach one that
is minimally dominant or absorbent. Indeed, a
dominant (respectively absorbent kernel) is nec-
essarily both a maximally independent and min-
imally dominant (respectively absorbent) choice
(see Berge [2]). Keeping by the way record of
already visited choices, we avoid unnecessary rep-
etitions when progressing with the exploration of
admissible independent choices.

The great advantage of this algorithm, directly
working on the enumeration of independent
choices is that we may in the same enumeration
pick up both the dominant and absorbent kernels.
Enumerating the solutions of the kernel equation
system (1) needs separate runs for the dominant
and the absorbent case.

2.3 Implementation and empirical run
tests

We have implemented the complete kernel extrac-
tion algorithm with all three steps in Python (ver-
sion 2.4), using the latest inbuilt set class with
optimized set manipulating operators on a four
processors i64 architecture under GNU/Linux 2.4.
Run time statistics shown in Figure 1 illustrate
that we are able to extract in a fraction of a sec-
ond all L-valued dominant and absorbent kernels
of randomly filled L-valued digraphs of order up
to 60 and fill rate over 25 %. With an average

Figure 1: Timing the kernels extraction algorithm

high fill rate of 75% and more, we are even able
to extract all dominant and absorbent kernels in
random digraphs of order up to 700 in less than
10 seconds. In this case, kernels are indeed of very
low cardinality, in general less than 6 (see [18]).

Worst case is given with sparse connected di-
graphs of very low fill rate, where the kernel car-
dinalities may become high – up to half of the
order of the graph – and the search space, despite
our cut mechanisms, gets definitely to large and
therefore inexplorable. Figure 1 shows this expo-
nential growing in the North East corner where
the yrun times are deliberately limited to 10 sec-
onds. With an order of 30 and a fill rate lower
than 10% we may for instance observe run times
of nearly 100 seconds, compared to the otherwise
very low times of less than a second. We may
see that here the combinatorial explosion is bru-
tal and our algorithm is not adapted for digraphs
with such low a fill rate.
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3 Concluding remarks

In this communication, we present an original al-
gorithm for computing kernels in a bipolar valued
digraph. Empirical run test show efficient execu-
tion times for digraphs of sufficient fill rate (50%
and more).
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