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Provide instances of genuine valued outranking digraphs
(VODs) for MCDA method debugging

Discover VOD’s specific structural characteristics

Comparison with other kinds of random valued digraphs

Mathematical characterisation of VODs
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Valued Outranking Digraphs

Fact: Not every valued digraph is a valid instance of a VOD !

Example (bipolar valued digraphs)

A valid VOD instanceeS a01 a02 a03 a04

a01 - 0.2 0.4 0.4
a02 0.0 - 0.2 0.2
a03 0.4 0.6 - 0.0
a04 -0.2 0.2 0.2 -

An invalid VOD instanceeS a01 a02 a03 a04

a01 - 0.2 0.4 -0.3
a02 0.0 - 0.2 0.2
a03 0.4 0.6 - 0.0
a04 -0.2 0.2 0.2 -

−1.0 < (x S̃y) < 0.0 ⇒ (y S̃x) > 0.0 , ∀x , y
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valid VODs

Comments

A performance tableau shows the performances of a finite set
X of decision actions on a finite set F of criteria-functions
associated with significance weights and discrimination
thresholds.

A valued digraph is a valid VOD iff there exists a performance
tableau which generates the apparent digraph valuation.
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The outranking situation

Let X be a finite set of p alternatives.

Let F be a finite set of n > 1 criteria.

Let m be the total significance of the criteria.

Let x and y be two alternatives from X .

Let xi be the value taken by x on criterion gi

Definition (The outranking situation)

x outranks y (x S y) if there is a significant majority of criteria
which support an at least as good statement and there is no
criterion which raises a veto against it.

The bipolar valued relation S̃ ∈ [−m,m] expresses the
credibility of the validation or the non-validation of the
outranking relation S.
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General VOD definition – continued

Definition (The bipolar valued outranking situation)

S̃(x , y) = min
{ ( ∑

i∈F

wi · Ci (x , y)
)
, min

i∈F

(− Vi (x , y)
) · m

}

Ci (x , y) =


1 if xi + qi > yi ;

−1 if xi + pi 6 yi ;

0 otherwise

Vi (x , y) =


1 if xi + vi 6 yi ;

−1 if xi + wvi > yi ;

0 otherwise

where qi , pi represent the weak preference, resp. the preference,
and wvi , vi , the weak veto, resp. the veto, threshold on criterion gi .
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The VOD relation S̃ – continued

S̃ is defined on a bipolar-valued credibility scale L = [−m,m]
supporting the following semantics denotation:

S̃(x , y) = +m means that assertion x S y is clearly validated.

S̃(x , y) = −m means that assertion x S y is clearly
non-validated.

S̃(x , y) > 0 means that assertion x S y is more validated than
non-validated.

S̃(x , y) < 0 means that assertion x S y is more non-validated
than validated.

S̃(x , y) = 0 means that assertion x S y is undetermined.
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Ramdom Performance Tableau

Definition (A reference model)

20 decision actions; low variant: 13; high variant: 50.

13 criteria; low variant: 7; high variant: 20.

A criteria is with equal probability either to be minimized
(cost criteria) or to be maximized (benefit criteria).

All criteria either support an ordinal or a cardinal performance
scale; the cost criteria being mostly cardinal (2/3) and the
benefit ones mostly ordinal (2/3).

Ordinal performances are represented on integer scales:
{1, 2, ..., 10}.
Cardinal performances are represented on a decimal scale:
[0.0; 100.0] with a precision of 2 digits.
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Random PerformanceTableau

Three random performance generators may be considered:

a truncated normal generator (N (µ, σ));

a triangular generator (T (xm, r)) with mode xm and
probability repartition r ;

and a uniform generator (U(0.0, 100)).
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Random Performance Tableau (continued)

In the reference model the decision actions are divided
randomly into three categories: cheap, neutral, advantageous.

An action is called:

cheap when the performances are generated with
T (xm = 30, r = 0.5) (reference) or N (µ = 30, σ = 25).
advantageous when the performances are generated with
T (xm = 70, r = 0.5) (reference) or N (µ = 70, σ = 25),
and neutral when the performances are generated with
T (xm = 50, r = 0.5) (reference) or N (µ = 50, σ = 25).
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Random Discrimination Thresholds

On each cardinal criterion, the default discrimination
thresholds are chosen such that the:

indifference threshold equals the percentile 5 of all generated
performance differences;
preference threshold equals the percentile 10 of all generated
performance differences;
weak veto threshold equals the percentile 90 of all generated
performance differences;
veto threshold equals the percentile 95 of all generated
performance differences.

The ordinal criteria admit solely a preference threshold of one
unit.

Example

Random performance tableau instance
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Random VODs

Comments

From the previous reference random performance tableaux, we
are going to generate a randomly valued outranking digraph
G̃ (X , S̃).

We call ROD a sample of 3000 such valued outranking
digraphs obtained from independently sampled random
performance tableaux.

The sample size 3000 associates a 99% confidence to almost
all average characteristics of the sample.

When the standard deviation is less than 10%, the confidence
interval around mean percentage results is thus less than
0.5%.
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First results: arc and link densities

For the reference ROD we observe in average:

an arc density of 47.9%(4.4);
a double link density of 14.22%(4);
a single link density of 67.60%(6);
a link absence density of 18.19%(6).

A similar sample of standard random digraphs (SRDs) with an
arc probability of 48% would show a binomial probability of
single links (46%), double links (25%) and absence of links
(27%).

As it is the case of SRDs, these results are in fact independent
of the order of the RODs.
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First results: more or less vetoes

The number of effectively raised vetoes is directly related to
the average number of cardinal criteria we observe in the
ROD.

link 20 criteria 13 criteria 7 criteria
type average (stdev.) average (stdev.) average (stdev.)

arc 40.0% (4.2) 47.9% (4.4) 52.2% (3.7)
double 9.8% (3.0) 14.22% (4.1) 13.9% (4.0)
single 60.5% (7.0) 67.60% (6.1) 76.6% (5.2)
absence 29.7% (7.3) 18.19% (6.4) 9.4% (4.9)

Without any vetoes, we are faced with bipolar-valued weak
tournaments where there are always either a single or a double
link between all pairs (x , y) of actions:

(x S̃y) + (y S̃x) > 0.0 , ∀x , y
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First results: graph connectivity

RODs, as well as SRDs always show one single component.

SRDs nearly always (99%) show a single strong component.

RODs, however, may show up to 8 strong components.

ROD frequency distribution of multiple strong components

nbr. frequency rel. cum. leaves

1 1210 40.33% 40.33% **************
2 955 31.83% 72.17% ***********
3 517 17.23% 89.40% ******
4 203 6.77% 96.17% **
5 72 2.40% 98.57%
6 26 0.87% 99.43%
7 13 0.43% 99.87%
8 4 0.13% 100.00%
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First results: multiple vetoes and strong components

Even with 20 criteria, RODs show always one single
component. But, up to 11 strong components (in a digraph of
order 20) may now appear:

nbr. frequency rel. cum. leaves

1 635 21.17% 21.17% *******
2 809 26.97% 48.13% *********
3 648 21.60% 69.73% *******
4 423 14.10% 83.8% *****
5 253 8.43% 92.27% ***
6 117 3.90% 96.17% *
7 60 2.00% 98.17%
8 28 0.93% 99.10%
9 19 0.63% 99.73%

10 5 0.17% 99.90%
11 3 0.10% 100.00%
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Concluding Remarks

In this communication we have presented:

Generators for random performance tableaux

A reference model for random outranking digraphs

Some empirical statistical results
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