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Motivation

o Provide instances of genuine valued outranking digraphs
(VODs) for MCDA method debugging
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Motivation

@ Provide instances of genuine valued outranking digraphs
(VODs) for MCDA method debugging

o Discover VOD's specific structural characteristics
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Motivation
@ Provide instances of genuine valued outranking digraphs
(VODs) for MCDA method debugging
o Discover VOD's specific structural characteristics

o Comparison with other kinds of random valued digraphs
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Motivation
@ Provide instances of genuine valued outranking digraphs
(VODs) for MCDA method debugging

@ Discover VOD's specific structural characteristics
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Motivation
o Provide instances of genuine valued outranking digraphs
(VODs) for MCDA method debugging
@ Discover VOD's specific structural characteristics

@ Comparison with other kinds of random valued digraphs

Conclusion

Conclusion
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@ Provide instances of genuine valued outranking digraphs

(VODs) for MCDA method debugging

o Discover VOD's specific structural characteristics

o Comparison with other kinds of random valued digraphs

@ Mathematical characterisation of VODs
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Fact: Not every valued digraph is a valid instance of a VOD !

Example (bipolar valued digraphs)

A valid VOD instance

S | a01 a02
a1 | - 02
02|00 -

a03 | 04 06
a4 | -0.2 02

a03

0.4
0.2

0.2

a04

0.4
0.2
0.0
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Valued Outranking Digraphs

Conclusior

Fact: Not every valued digraph is a valid instance of a VOD !

Example (bipolar valued digraphs)

A valid VOD instance

An invalid VOD instance

S |a01 a02 a03 04 S |01 a02 203 a04
01| - 02 04 04 a0l | - 02 04 -03
02|00 - 02 02 02|00 - 02 02
a03| 04 06 - 00 a03| 04 06 - 00
a04 |02 02 02 - a04 |02 02 02 -
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Fact: Not every valued digraph is a valid instance of a VOD !

Valued Outranking Digraphs

Example (bipolar valued digraphs)

A valid VOD instance

An invalid VOD instance

S | a0l a02 a03 a04 S | a0l a02 a03 a04
01| - 02 04 04 01 - 02 04 03
a2 00 - 02 02 0200 - 02 02
a03| 04 06 - 00 03|04 06 - 00
a04 | -02 02 02 - 04|02 02 02 -

—1.0 < (xSy) < 0.0

= (ygx) =200, Vx,y

Motivation

Comments

A performance tableau shows the performances of a finite set
X of decision actions on a finite set F of criteria-functions

Random P

formance Tableaux  Randor

valid VODs

m Outrank

associated with significance weights and discrimination
thresholds.
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valid VODs
Comments
L e e o e P P e e e
valid VODs
Comments

A performance tableau shows the performances of a finite set
X of decision actions on a finite set F of criteria-functions
associated with significance weights and discrimination
thresholds.

A valued digraph is a valid VVOD iff there exists a performance
tableau which generates the apparent digraph valuation.
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Valued Outranking Digraphs

The outranking situation

The outranking index

The bipolar valued outranking digraph

Random Performance Tableaux
Reference model

random performances

random thresholds

Random Outranking Digraphs
Definition

Link densities

Connectivity
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The outranking situation

Let X be a finite set of p alternatives.
Let F be a finite set of n > 1 criteria.
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The outranking situation
@ Let X be a finite set of p alternatives.
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The outranking situation

@ Let X be a finite set of p alternatives.
o Let F be a finite set of n > 1 criteria.

@ Let m be the total significance of the criteria.

Conclusion

Conclusion
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The outranking situation

o Let X be a finite set of p alternatives.

o Let F be a finite set of n > 1 criteria.

o Let m be the total significance of the criteria.
o Let x and y be two alternatives from X.
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The outranking situation
Let X be a finite set of p alternatives.

Let F be a finite set of n > 1 criteria.

o
o
o Let m be the total significance of the criteria.
o Let x and y be two alternatives from X.

°

Let x; be the value taken by x on criterion g;

Definition (The outranking situation)
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The outranking situation

@ Let X be a finite set of p alternatives.
@ Let F be a finite set of n > 1 criteria.
@ Let m be the total significance of the criteria.

@ Let x and y be two alternatives from X.

@ Let x; be the value taken by x on criterion g;
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The outranking situation

Let X be a finite set of p alternatives.

Let F be a finite set of n > 1 criteria.

Let m be the total significance of the criteria.
Let x and y be two alternatives from X.

Let x; be the value taken by x on criterion g;

Definition (The outranking situation)

Conclusior

Conclusior

o x outranks y (xSy) if there is a significant majority of criteria

which support an at least as good statement and there is no
criterion which raises a veto against it.
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The outranking situation

o Let X be a finite set of p alternatives.

o Let F be a finite set of n > 1 criteria.

o Let m be the total significance of the criteria.
o Let x and y be two alternatives from X.

o Let x; be the value taken by x on criterion g;

Definition (The outranking situation)

o x outranks y (xSy) if there is a significant majority of criteria
which support an at least as good statement and there is no
criterion which raises a veto against it.

@ The bipolar valued relation Se [—m, m] expresses the
credibility of the validation or the non-validation of the
outranking relation S.

General VOD definition — continued

Definition (The bipolar valued outranking situation)

S(xy _mln{ ZW, (x, ry_réig(*vf(xv}’))‘m}

1 if xj+qi >y
Glxy)={-1 if x+p <y
0 otherwise

where g;, p; represent the weak preference, resp. the preference,

Random Outranking Digraphs  Conclusion

General VOD definition — continued

Definition (The bipolar valued outranking situation)

S(xy —mln{ Zw, Ci(x,y) ,mln( Vi(x.y)) - }

ieF

General VOD definition — continued

Definition (The bipolar valued outranking situation)

S(x,y) _mln{ Zw, Ci(x,y) ‘mm( Vi(x,y)) -m}
ieF

1 if x+qi>yi

Gilxy) =4 -1 if xi+p <y
0 otherwise
1 if x+vi<ys

Vilx,y) =< =1 if xi+wv; > y;;
0  otherwise

where g;, p; represent the weak preference, resp. the preference,
and wv;, v;, the weak veto, resp. the veto, threshold on criterion g;.



General VOD definition — continued

Definition (The bipolar valued outranking situation)

Stoy) =min{ (3 wi- Gileoy)), min (~ Vitxy) - m }
ieF
1 if x+q >y
Glxy)=q-1 if xi+p <y
0  otherwise
1 if x+vi<ys
Vily) =4 -1 if xi+wy>y;
0  otherwise

where g;, p; represent the weak preference, resp. the preference,

and wy;, v;, the weak veto, resp. the veto, threshold on criterion g;.

The VOD relation S — continued

S is defined on a bipolar-valued credibility scale £ = [-m, m]
supporting the following semantics denotation:

° g(x,y) = ++m means that assertion xSy is clearly validated.

° §(x‘y) = —m means that assertion xSy is clearly

non-validated.

The VOD relation S — continued

S is defined on a bipolar-valued credibility scale £ = [-m, m]

supporting the following semantics denotation:

° §(><, y) = -+m means that assertion xSy is clearly validated.

The VOD relation S — continued

S is defined on a bipolar-valued credibility scale £ = [-m, m]
supporting the following semantics denotation:
° §(X y) = -+m means that assertion xSy is clearly validated.
° g(x, y) = —m means that assertion xSy is clearly

non-validated.
° §(x,y) > 0 means that assertion xSy is more validated than

non-validated.



The VOD relation S — continued

S is defined on a bipolar-valued credibility scale £ = [=m, m]
supporting the following semantics denotation:

° §(x,y) = +m means that assertion xSy is clearly validated.

° §(x,y) = —m means that assertion xSy is clearly
non-validated.

° g(x,y) > 0 means that assertion xSy is more validated than
non-validated.

@ 5(x,y) < 0 means that assertion x Sy is more non-validated
than validated.

VOD G(X,S)

Definition (The bipolar valued outranking digraph)

The VOD relation S — continued

S is defined on a bipolar-valued credibility scale £ = [-m, m]
supporting the following semantics denotation:

° §(x, y) = +m means that assertion xSy is clearly validated.

° g(x, y) = —m means that assertion xSy is clearly
non-validated.

° §(X y) > 0 means that assertion x Sy is more validated than
non-validated.

@ S(x,y) < 0 means that assertion x Sy is more non-validated
than validated.

° g(x, y) = 0 means that assertion x Sy is undetermined.

VOD G(X,S)

Definition (The bipolar valued outranking digraph)

o We denote Eng) the bipolar-valued outranking digraph
modelled via S on X x X.



VOD G(X,S)

Definition (The bipolar valued outranking digraph)
o We denote ELX,g) the bipolar-valued outranking digraph
modelled via S on X x X.

o The associated crisp outranking relation S may be recovered
from S as the set of pairs (x,y) such that S > 0.

VOD G(X,S)

Definition (The bipolar valued outranking digraph)
o We denote (N;LX,g) the bipolar-valued outranking digraph
modelled via S on X x X.

@ The associated crisp outranking relation S may be recovered
from S as the set of pairs (x,y) such that S > 0.

® G(X,S) is called the crisp outranking digraph associated with
G(X.S).
A E(X,g) instance

S | a01 a02 203 a04

a01 - 02 04 04

a02 | 0.0 - 02 02
a03 | 04 06 - 00

a04 | -02 02 02 -

VOD G(X,S)

Definition (The bipolar valued outranking digraph)
o We denote EQX§) the bipolar-valued outranking digraph
modelled via S on X x X.

@ The associated crisp outranking relation S may be recovered
from S as the set of pairs (x,y) such that S > 0.

@ G(X,S) is called the crisp outranking digraph associated with
G(X,S).

VOD G(X,9)
Definition (The bipolar valued outranking digraph)
o We denote Ei)(g) the bipolar-valued outranking digraph
modelled via S on X x X.

@ The associated crisp outranking relation S may be recovered
from S as the set of pairs (x, y) such that S > 0.

® G(X,S) is called the crisp outranking digraph associated with
G(X,S).

o @)
A G(X,S) instance

S a0l a02 a03 a04 () |
> e e am A |
01| - 02 04 04 DN
a02 |00 - 02 02 I\
03| 04 06 - 00 >L
a04 |02 02 02 - (=
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2.1 Reference model
2.2 random performances
2.3 random thresholds
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Ramdom Performance Tableau

Definition (A reference model)

o 20 decision actions; low variant: 13; high variant: 50.

Conclusion

Conenimen
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Definition (A reference model)

@ 20 decision actions; low variant: 13; high variant: 50.
@ 13 criteria; low variant: 7; high variant: 20.

Conclusion

Conclusion
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Ramdom Performance Tableau Ramdom Performance Tableau
Definition (A reference model) Definition (A reference model)
@ 20 decision actions; low variant: 13; high variant: 50. @ 20 decision actions; low variant: 13; high variant: 50.
o 13 criteria; low variant: 7; high variant: 20. @ 13 criteria; low variant: 7; high variant: 20.
o A criteria is with equal probability either to be minimized @ A criteria is with equal probability either to be minimized
(cost criteria) or to be maximized (benefit criteria). (cost criteria) or to be maximized (benefit criteria).

@ All criteria either support an ordinal or a cardinal performance
scale; the cost criteria being mostly cardinal (2/3) and the
benefit ones mostly ordinal (2/3).
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Definition (A reference model) Definition (A reference model)

@ 20 decision actions; low variant: 13; high variant: 50. @ 20 decision actions; low variant: 13; high variant: 50.

@ 13 criteria; low variant: 7; high variant: 20. @ 13 criteria; low variant: 7; high variant: 20.

o A criteria is with equal probability either to be minimized @ A criteria is with equal probability either to be minimized
(cost criteria) or to be maximized (benefit criteria). (cost criteria) or to be maximized (benefit criteria).

@ All criteria either support an ordinal or a cardinal performance @ All criteria either support an ordinal or a cardinal performance
scale; the cost criteria being mostly cardinal (2/3) and the scale; the cost criteria being mostly cardinal (2/3) and the
benefit ones mostly ordinal (2/3). benefit ones mostly ordinal (2/3).

o Ordinal performances are represented on integer scales: o Ordinal performances are represented on integer scales:
{1,2,...,10}. {1,2,..,10

o Cardinal performances are represented on a decimal scale:
[0.0; 100.0] with a precision of 2 digits.
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Random PerformanceTableau Random PerformanceTableau
Three random performance generators may be considered: Three random performance generators may be considered:
@ a truncated normal generator (N(u,0)); @ a truncated normal generator (N(u,0));
@ a triangular generator (7 (xm, r)) with mode xm and
probability repartition r;
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Random PerformanceTableau Random Performance Tableau (continued)
Three random performance generators may be considered:
o a truncated normal generator (N (1, 0));
o a triangular generator (7 (xm, r)) with mode xm and @ In the reference model the decision actions are divided
probability repartition r; randomly into three categories: cheap, neutral, advantageous.

o and a uniform generator (/(0.0,100)).
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Random Performance Tableau (continued)

@ In the reference model the decision actions are divided

randomly into three categories: cheap, neutral, advantageous.

@ An action is called:
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Random Performance Tableau (continued)

@ In the reference model the decision actions are divided
randomly into three categories: cheap, neutral, advantageous.
@ An action is called:
o cheap when the performances are generated with
T (xm =30, r = 0.5) (reference) or N'(1n = 30,0 = 25).
e advantageous when the performances are generated with
T (xm =70, r = 0.5) (reference) or N'(1n = 70,0 = 25),
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Random Performance Tableau (continued)

In the reference model the decision actions are divided
randomly into three categories: cheap, neutral, advantageous.
@ An action is called:
o cheap when the performances are generated with

T (xm = 30, r = 0.5) (reference) or N'(y = 30,0 = 25)
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Random Performance Tableau (continued)

In the reference model the decision actions are divided
randomly into three categories: cheap, neutral, advantageous.
@ An action is called:
o cheap when the performances are generated with
T (xm = 30,r = 0.5) (reference) or N (1 = 30,0 = 25).
e advantageous when the performances are generated with
T(xm = 70,r = 0.5) (reference) or N(u = 70,0 = 25),
o and neutral when the performances are generated with
T (xm = 50, r = 0.5) (reference) or N'( = 50,0 = 25).
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Random Discrimination Thresholds

On each cardinal criterion, the default discrimination
thresholds are chosen such that the:
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Random Discrimination Thresholds

On each cardinal criterion, the default discrimination
thresholds are chosen such that the:
o indifference threshold equals the percentile 5 of all generated
performance differences;
o preference threshold equals the percentile 10 of all generated
performance differences;

Conclusion

Conclusion
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Random Discrimination Thresholds

On each cardinal criterion, the default discrimination
thresholds are chosen such that the:
o indifference threshold equals the percentile 5 of all generated
performance differences;
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Random Discrimination Thresholds

On each cardinal criterion, the default discrimination
thresholds are chosen such that the:
o indifference threshold equals the percentile 5 of all generated
performance differences;
o preference threshold equals the percentile 10 of all generated
performance differences;
o weak veto threshold equals the percentile 90 of all generated
performance differences;

Random Outranking Digraphs  Conclusion
o

Conclusion
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Random Discrimination Thresholds Random Discrimination Thresholds
On each cardinal criterion, the default discrimination On each cardinal criterion, the default discrimination
thresholds are chosen such that the: thresholds are chosen such that the:
o indifference threshold equals the percentile 5 of all generated o indifference threshold equals the percentile 5 of all generated
performance differences; performance differences;
o preference threshold equals the percentile 10 of all generated o preference threshold equals the percentile 10 of all generated
performance differences; performance differences;
o weak veto threshold equals the percentile 90 of all generated o weak veto threshold equals the percentile 90 of all generated
performance differences; performance differences;
@ veto threshold equals the percentile 95 of all generated o veto threshold equals the percentile 95 of all generated
performance differences. performance differences.
@ The ordinal criteria admit solely a preference threshold of one
unit.
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Random Discrimination Thresholds

On each cardinal criterion, the default discrimination
thresholds are chosen such that the:
o indifference threshold equals the percentile 5 of all generated
performance differences;
e preference threshold equals the percentile 10 of all generated
performance differences;
o weak veto threshold equals the percentile 90 of all generated
performance differences;
o veto threshold equals the percentile 95 of all generated
performance differences.
Random Outranking Digraphs
3.1 Definition
3.2 Link densities
3.3 Connectivity

o The ordinal criteria admit solely a preference threshold of one
unit.

Example
Random performance tableau instance
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Random VODs

Comments

@ From the previous reference random performance tableaux, we
are going to generate a randomly valued outranking digraph
G(X,S).

o We call ROD a sample of 3000 such valued outranking
digraphs obtained from independently sampled random
performance tableaux.
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Random VODs

Comments

@ From the previous reference random performance tableaux, we
are going to generate a randomly valued outranking digraph
G(X,S).
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Random VODs

Comments

@ From the previous reference random performance tableaux, we
are going to generate a randomly valued outranking digraph
G(X,S).

o We call ROD a sample of 3000 such valued outranking

figraphs obtained from il ly sampled random
performance tableaux.

© The sample size 3000 associates a 99% confidence to almost
all average characteristics of the sample.
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Random VODs

Comments

o From the previous reference random performance tableaux, we
are going to generate a randomly valued outranking digraph
G(X.9).
° We call ROD a sample of 3000 such valued outranking
digraphs obtained from independently sampled random
performance tableaux.

o The sample size 3000 associates a 99% confidence to almost
all average characteristics of the sample.

o When the standard deviation is less than 10%, the confidence
interval around mean percentage results is thus less than

0.5%.
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First results: arc and link densities

o For the reference ROD we observe in average:
o an arc density of 47.9%(4.4);

Random Outranking Digraphs ~ Conc
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First results: arc and link densities

@ For the reference ROD we observe in average:
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First results: arc and link densities

@ For the reference ROD we observe in average:
o an arc density of 47.9%(4.4);
o a double link density of 14.22%(4);

Conclusion

Conclusion
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First results: arc and link densities First results: arc and link densities
@ For the reference ROD we observe in average: @ For the reference ROD we observe in average:
@ an arc density of 47.9%(4.4); e an arc density of 47.9%(4.4);
o a double link density of 14.22%(4); o a double link density of 14.22%(4);
o a single link density of 67.60%(6); o a single link density of 67.60%(6);
o a link absence density of 18.19%(6).
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First results: arc and link densities First results: arc and link densities
@ For the reference ROD we observe in average: @ For the reference ROD we observe in average:
o an arc density of 47.9%(4.4); o an arc density of 47.9%(4.4);
o a double link density of 14.22%(4); o a double link density of 14.22%(4);
o a single link density of 67.60%(6); o a single link density of 67.60%(6);
o a link absence density of 18.19%(6). o a link absence density of 18.19%(6).

o A similar sample of standard random digraphs (SRDs) with an o A similar sample of standard random digraphs (SRDs) with an
arc probability of 48% would show a binomial probability of arc probability of 48% would show a binomial probability of
single links (46%), double links (25%) and absence of links single links (46%), double links (25%) and absence of links
(27%). (27%).

o As it is the case of SRDs, these results are in fact independent

of the order of the RODs.
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o The number of effectively raised vetoes is directly related to
the average number of cardinal criteria we observe in the

ROD.
link 20 criteria 13 criteria 7 criteria
type average (stdev.) | average (stdev.) | average (stdev.)
arc 40.0%  (4.2) | 47.9% (4.4) | 522%  (3.7)
double | 0.8%  (3.0) | 14.22% (4.1) | 13.9%  (4.0)
single | 60.5%  (7.0) | 67.60% (6.1) | 76.6%  (5.2)
absence | 20.7%  (7.3) | 18.19%  (6.4) | 9.4%  (4.9)

First results: more or less vetoes

" Random Performance Tableaus  Random Outranking Digraphs  Cor

oe

@ The number of effectively raised vetoes is directly related to
the average number of cardinal criteria we observe in the

ROD.
link 20 criteria 13 criteria 7 criteria
type average (stdev.) | average (stdev.) | average (stdev.)
arc 40.0%  (42) | 47.9% (44) | 522%  (3.7)
double | 9.8%  (3.0) | 1422% (41) | 13.9%  (4.0)
single | 60.5%  (7.0) | 67.60% (6.1) | 76.6%  (5.2)
absence | 20.7%  (7.3) | 18.10% (6.4) | 94%  (4.9)

o Without any vetoes, we are faced with bipolar-valued weak
tournaments where there are always either a single or a double
link between all pairs (x, y) of actions:

‘(xgy) +(y5x) =00, Vx,y
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First results: more or less vetoes

@ The number of effectively raised vetoes is directly related to
the average number of cardinal criteria we observe in the
ROD.

link 20 criteria 13 criteria 7 criteria
type average (stdev.) | average (stdev.) | average (stdev.)
arc 40.0% 42) | 47.9% (4.4) | 52.2% 3.7)

single 60.5% 7.0) | 67.60% (6.1) | 76.6%

( (
double | 0.8%  (3.0) | 1422% (4.1) | 13.9% (40)

( (52
absence | 20.7%  (7.3) | 18.19%  (6.4) | 9.4% (49)

@ Without any vetoes, we are faced with bipolar-valued weak

Conclusior

tournaments where there are always either a single or a double

link between all pairs (x, y) of actions:

Valued Outranking Digraphs  Random Performance Table Random Outranking Digraphs

First results: graph connectivity

@ RODs, as well as SRDs always show one single component.
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First results: graph connectivity First results: graph connectivity
@ RODs, as well as SRDs always show one single component. @ RODs, as well as SRDs always show one single component.
o SRDs nearly always (99%) show a single strong component. o SRDs nearly always (99%) show a single strong component.
@ RODs, however, may show up to 8 strong components.
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First results: graph connectivity First results: multiple vetoes and strong components

@ Even with 20 criteria, RODs show always one single

o RODs, as well as SRDs always show one single component.
component. But,

o SRDs nearly always (99%) show a single strong component.
@ RODs, however, may show up to 8 strong components.

ROD frequency distribution of multiple strong components

nbr.  frequency rel. cum.  leaves

1 1210 40.33%  40.33%  EeEReRRcRRRs
2 055 31.83%  72.17% *¥rersercex
3 517 17.23%  89.40% *xwkxk

4 203 6.77%  96.17% **

5 72 240%  98.57%

6 2 087%  99.43%

7 13 043% 99.87%

8 4 013% 100.00%
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First results: multiple vetoes and strong components

@ Even with 20 criteria, RODs show always one single
component. But, up to 11 strong components (in a digraph of
order 20) may now appear:

nbr.  frequency rel. cum. leaves
1 635 21.17%  21.17% *¥FRxEE
2 809 26.97%  48.13% FrwErakx
3 648 21.60%  69.73% *xwxwax
4 423 14.10% 83.8%  *HHEk
5 253 8.43%  92.27% ***
6 117 3.90%  96.17% *
7 60 2.00% 98.17%
8 28 093%  99.10%
9 19 063% 99.73%
10 5 017%  99.90%
11 3 0.10% 100.00%
Motivation  Valued Outranking Digraphs  Random Performance Tableaux  Random Outranking Digraphs
o o o
3 3 3

Concluding Remarks

In this communication we have presented:

o Generators for random performance tableaux

o A reference model for random outranking digraphs

Conclusion
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Concluding Remarks

In this communication we have presented:

@ Generators for random performance tableaux

Motivation  Valued Outranking Digraphs  Random Performance Tableaux  Random Outranking Digraphs

0 o 0
%0 %o %0
o B 00

Concluding Remarks

In this communication we have presented:
o Generators for random performance tableaux
@ A reference model for random outranking digraphs
@ Some empirical statistical results

Conclusion

Conclusion
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