Motivation

In the outranking based MCDA (Roy 74), two different approaches exist to specify criteria significance weights:

0.1 either via *direct* knowledge or assessment

- Roy & Bouyssou 93;
- Roy & Mousseau 96,
- 0.2 or via some *a priori partial knowledge* of the resulting aggregated outranking is used:
 - Mousseau & Słowinski 98;
 - Meyer, Marichal & Bisdorff 08.

Here, we focus on the latter, the indirect preference information approach. Similar disaggregation-aggregation or ordinal regression methods have been proposed in MAUT and MAVT contexts:

- Jacquet-Lagrèze & Siskos 82;
- Mousseau, Figueira, Dias, Gomes da Silva & Clímaco 03;
- Greco, Mousseau & Słowinski 08;
- Grabisch, Kojadinovic & Meyer 08.

Our inverse analysis uses the robustness of the significant majority that the decision maker acknowledges for his/her pairwise outranking comparisons (Bisdorff 04).

Motivation	The CONDORCET robustness	InverseAnalysis	Practical Application	Concluding remarks
	000	00	0	
	00	000	0	
	00000	000	0	

Notations

- Let $A = \{x, y, z, ...\}$ be a finite set of n > 1 potential decision alternatives
- and $F = \{g_1, \dots, g_m\}$ a coherent finite family of m > 1 real valued criteria functions.
- The performance of alternative x on criterion g_i is denoted x_i .
- To each g_i in F is associated an indifference q_i and a preference p_i discrimination threshold.
- This leads to a double threshold order S_i whose numerical representation is given by:

$$S_i(x,y) = \begin{cases} 1 & \text{if } x_i + q_i \ge y_i \\ -1 & \text{if } x_i + p_i \le y_i \\ 0 & \text{otherwise.} \end{cases}$$

Inverse Analysis from a CONDORCET robustness denotation of valued outranking relation

Raymond Bisdorff, Patrick Meyer and Thomas Veneziano

University of Luxembourg, $\mathsf{FSTC}/\mathsf{CSC}$

ADT'2009, Venice October 2009

Outline

The CONDORCET robustness

Bipolar-valued outranking relations The CONDORCET robustness Measuring the CONDORCET robustness

Inverse Analysis from the $\operatorname{CONDORCET}$ robustness

The Inverse Analysis Problem Estimating the apparent criteria significance The mixed-integer MP model

Practical Application

Solving the MILP Partial preference information A progressive and robust decision aid approach

The bipolar-valued outranking relation

The CONDORCET robustness

W = {w_i : g_i ∈ F} is a vector of normalized significance weights

where w_i represents the contribution of g_i to the overall warrant or not of the at least as good as preference situation between all pairs of alternatives.

• The bipolar-valued outranking relation is defined as :

$$\widetilde{\mathsf{S}}^{W}(x,y) = \sum_{w_i \in W} w_i \cdot S_i(x,y), \ \forall (x,y) \in A \times A.$$

Bipolar semantics of the valued outranking

- S^w(x, y) = +1.0 indicates that all criteria unanimously warrant the "at least as good as" preference situation;
- S^w(x, y) > 0.0 indicates that a significant majority of the criteria warrant the "at least as good as" preference situation;
- $\widetilde{S}^{W}(x, y) = 0.0$ indicates a balanced situation;

The CONDORCET robustness

- S^w(x, y) < 0.0 indicates that a significant majority of criteria do not warrant the "at least as good as" preference situation;
- $\widetilde{S}^{W}(x, y) = -1.0$ indicates that all criteria unanimously warrant the negation of the "at least as good as" preference situation.

Motivation	The CONDORCET robustness	InverseAnalysis	Practical Application	Concluding remarks	Motivation	The CONDORCET robustness	InverseAnalysis	Practical Application	Concluding remarks
	000 00 00000	00 000 000	0 0 0			000 00 00000	00 000 000	0 0 0	

The CONDORCET robustness denotation

- Let ≿_w be the preorder on *F* associated with the natural ≥ relation on the weights of the significance vector *W*.
- ~_W induces r ordered equivalence classes Π^W₁ ≻_W ... ≻_W Π^W_r (1 ≤ r ≤ m).
- The criteria of an equivalence class have the same significance weight in *W*.
- For *i* < *j*, those of Π^W_i have a higher significance weight than those of Π^W_i.
- If *W* represents the set of all potential significance weights vectors, then *W*_{≿w} ⊂ *W* denotes the set of all significance weights vectors that are preorder-compatible with ≿w.

The CONDORCET robustness denotation (continue)

The CONDORCET robustness $[\![\widetilde{S}^w]\!]$ of \widetilde{S}^w is denoted as follows:

- [S^w](x, y) = ±3 if all criteria *unanimously warrant* (resp. *do not warrant*) the outranking situation between x and y;
- [S^w](x, y) = ±2 if a significant majority of criteria warrants (resp. does not warrant) the outranking situation between x and y for all ≿_w-compatible weights vectors;
- [S^w](x, y) = ±1 if a significant majority of criteria warrants
 (respectively does not warrant) this outranking situation for
 W but not for all ≿_w-compatible weights vectors;
- $[\![\widetilde{S}^{W}]\!](x, y) = 0$ if the total significance of the warranting criteria is *exactly balanced* by the total significance of the not warranting criteria for W.

Measuring the CONDORCET robustness

- Let S[%]_i = (S_i + 1)/2 be the [0, 1]-recoded characteristic functions and let there be k = 1, ..., r significance classes Π_k.
- Let $c_k^w(x, y)$ be the sum of "at least as good as" characteristics $S_i^{\%}(x, y)$ for all criteria $g_i \in \Pi_k^w$, and $\overline{c_k^w}(x, y)$ the sum of the negation $1 - S_i^{\%}(x, y)$ of these characteristics.
- Furthermore, let $C_k^w(x, y) = \sum_{i=1}^k c_i^w(x, y)$ be the cumulative sum of "at least as good as" characteristics for all criteria having significance at least equal to the one associated to Π_k^w , and

let $\overline{C_k^w}(x, y) = \sum_{i=1}^k \overline{c_i^w}(x, y)$ be the cumulative sum of the negation of these characteristics for all k in $\{1, \ldots, r\}$.

Measuring the CONDORCET robustness (continue)

In the absence of ± 3 denotations, the following proposition gives us a test for the presence of a +2 denotation:

Proposition (Bisdorff 2004, 4OR:2(4))

The CONDORCET robustness

00

$$[\widetilde{\mathsf{S}}^{^W}](x,y) = +2 \iff egin{cases} orall k \in 1,...,r: C_k^w(x,y) \geqslant \overline{C_k^w}(x,y);\ \exists k \in 1,...,r: C_k^w(x,y) > \overline{C_k^w}(x,y). \end{cases}$$

The negative -2 denotation corresponds to similar conditions with reversed inequalities.

The proof relies on the verification of first order stochastic dominance conditions.

CONDORCET robustness

otivation	The CONDORCET robustness	InverseAnalysis	Practical Application	Concluding remarks	Motivation	The CONDORCET robustness	InverseAnalysis	Practical Application	Concluding remarks
	000	00	0			000	00	0	
	00	000	0			00	000	0	
	00000	000	0			00000	000	0	

Example of valued outranking

	g1	g2	g3
а	10	4	8
b	5	6	4
с	7	2	3
d	5	7	2
р	1.0	1.0	1.0
W	3.0	1.5	2.0

The CONDORCET robustness

00 00000

\widetilde{S}^{W}	а	b	с	d
а	-	.54	1.0	.54
b	54	-	.08	.54
С	-1.0	08	-	.54
d	-0.54	0.38	54	-

	g1	g2	g3
р	1.0	1.0	1.0
W	3.0	1.5	2.0
а	10	4	8
b	5	6	4
С	7	2	3
d	5	7	2

$[\widetilde{S}^W]$	а	b	с	d
а	-	2	3	2
b	-2	-	1	2
С	-3	-1	-	2
d	-2	2	-2	-

Outranking Digraph

000

CONDORCET robustness

	g1	g2	g3
р	1.0	1.0	1.0
W	4.0	1.5	2.0
а	10	4	8
b	5	6	4
с	7	2	3
d	5	7	2

The CONDORCET robustness

000 00 00000

Inverse Analysis from the CONDORCET robustness

InverseAnalysis

- In a decision aid problem we are generally given
 - 1. a performance table $A \times F$, but without any explicit significance weights information.
 - 2. Suppose we are however given the apparent CONDORCET robustness denotation $[\widetilde{S}^{W}]$, but with W and \widetilde{S}^{W} actually unknown.

Notivation	The CONDORCET robustness	InverseAnalysis	Practical Application	Concluding remarks	Motivation	The CONDORCET robustness	InverseAnalysis	Practical Application	Concluding remark
	000	0.	0			000	00	0	
	00	000	0			00	000	0	
	00000	000	0			00000	000	0	

Inverse Analysis from the $\operatorname{CONDORCET}$ robustness

The inverse estimation problem

May we compute on the basis of the given information a preorder \succeq on the criteria and a numerical instance W^* of a \succeq -compatible weights vector which satisfies the given CONDORCET robustness denotation $\widetilde{[S]}^w$, i.e.

 W^* and \succeq are such that $[\widetilde{S}^{W^*}] = [\widetilde{S}^W]$?

The decision variables $P_{m \times M}$

- Every criterion gets an integer significance weight $w_i \in [1, M]$, where M denotes the maximal admissible value.
- $P_{m \times M}$ is a Boolean (0, 1)-matrix, with general term $[p_{i,u}]$, that characterises row-wise the number of weight units allocated to criterion g_i such that: $\sum_{u=1}^{M} p_{i,u} = w_i$.
- As an example, if g_i has an integer weight of 3 and if we decide that M = 5, then the *i*th row of P_{m×5} is given by (1, 1, 1, 0, 0).
- Every weight w_i is strictly positive: $\sum_{g_i \in F} p_{i,1} = m$.
- The cumulative constraints require that:

$$p_{i,u} \ge p_{i,u+1}$$
 ($\forall i = 1, ..., m, \forall u = 1, ..., M-1$).

The CONDORCET robustness constraint

The $\ensuremath{\operatorname{CONDORCET}}$ robustness test may be formulated as:

$$[\widetilde{\mathsf{S}}^{W}](x,y) = 2 \iff \begin{cases} \forall u \in 1, ..., \max w_i : C_u^{W}(x,y) \geqslant \overline{C_u^{W}}(x,y) ; \\ \exists u \in 1, ..., \max w_i : C_u^{W}(x,y) > \overline{C_u^{W}}(x,y) ; \end{cases}$$

where $C_u^{\prime w}(x, y)$ (resp. $\overline{C_u^{\prime w}}(x, y)$) is the sum of all $S_i^{\%}(x, y)$ (resp. $\overline{S}_i^{\%} = 1 - S_i^{\%}(x, y)$) such that the significance weight $w_i \leq u$.

For all pairs $(x, y) \in A^2_{+2}$ we get

$$\sum_{g_i\in F}\left(p_{i,u}\cdot\left[S_i^{\%}(x,y)-\overline{S}_i^{\%}(x,y)\right]\right) \geq b_u(x,y),$$

where the $b_u(x, y)$ are Boolean (0, 1) variables for each pair of alternatives and each equi-significance level u in $\{1, \ldots, M\}$,

which allow us to impose at least one case of strict inequality for each $(x, y) \in A_{\pm 2}^2$: $\sum_{u=1}^m b_u(x, y) \ge 1$.

The objective function

 $\min_{P_{m \times M}} O =$

$$\begin{split} & \mathcal{K}_{1}\Big(\sum_{g_{i}\in F}\sum_{u=1}^{M}p_{i,u}\Big) \quad \text{Minimize the sum of the weights;} \\ & - \quad \mathcal{K}_{2}\Big(\sum_{u=1}^{M}\Big(\sum_{(x,y)\in A_{\pm 2}^{2}}b_{u}(x,y)\Big)\Big) \quad \text{Maximise the } \pm 2 \text{ robustness;} \\ & + \quad \mathcal{K}_{3}\Big(\sum_{(x,y)\in A_{\pm 1}^{2}}s^{\pm 1}(x,y)\Big) + \mathcal{K}_{4}\Big(\sum_{(x,y)\in A_{0}^{2}}(s^{0}_{+}(x,y)+s^{0}_{-}(x,y))\Big) \end{split}$$

Comment

- s^{±1} as well as s⁰_± are slack variables for softening, the case given, the ±1 and 0 robustness constraints,
- *K*₁...*K*₄ are parametric constants used for the correct hierarchical ordering of the four sub-goals.

lotivation	The CONDORCET robustness	InverseAnalysis	Practical Application	Concluding remarks	Motivation	The CONDORCET robustness	InverseAnalysis	Practical Application	Concluding remarks
	000	00	0			000	00	0	
	00	000	0			00	000	0	
	00000	000	0			00000	000	0	

The mixed-integer MP model

MILP

Variables:

$$\begin{array}{ll} p_{i,u} \in \{0,1\} & \forall g_i \in F, \ \forall u = 1,..,M \\ b_u(x,y) \in \{0,1\} & \forall (x,y) \in A_{\pm 2}^2, \forall u = 1,..,M \\ s^{\pm 1}(x,y) \ge 0 & \forall (x,y) \in A_{\pm 1}^2 \\ s^0_+(x,y) \ge 0, \ s^0_-(x,y) \ge 0 & \forall (x,y) \in A_0^2 \end{array}$$

Parameters:

Objective function:

 $K_i > 0$

min
$$K_1\left(\sum_{g_i \in F} \sum_{u=1}^M p_{i,j}\right) - K_2\left(\sum_{u=1}^M \sum_{(x,y) \in A_{\pm 2}^2} b_u(x,y)\right) + K_3\left(\sum_{(x,y) \in A_{\pm 1}^2} s^{\pm 1}(x,y)\right) + K_4\left(\sum_{(x,y) \in A_0^2} (s^0_+(x,y) + s^0_-(x,y))\right)$$

 $\forall i = 1...4$

The mixed-integer MP model (continue)

Constraints:	
$\sum_{g_i \in F} p_{i,1} = m$	
$oldsymbol{ ho}_{i,u} \geqslant oldsymbol{ ho}_{i,u+1}$	$\forall g_i \in F, \ \forall u = 1,, M-1$
$\sum_{g_i \in F} \left(p_{i,u} \cdot \left[S_i^{\%}(x,y) - \overline{S}_i^{\%}(x,y) \right] \right) \stackrel{\geq}{\leq} b_u(x,y)$	$\forall (x,y) \in A_{\pm 2}^2, \ \forall u = 1,, M$
$\sum_{u=1}^M b_u(x,y) \geqslant 1$	$\forall (x,y) \in A^2_{\pm 2}$
$\sum\limits_{g_i \in F} \left(\left(\sum_{u=1}^M p_{i,u} ight) \cdot \pm \left(S_i^{\%}(x,y) - \overline{S}_i^{\%}(x,y) ight) \ \pm s^1_{\pm}(x,y) \geqslant 1$	$\forall (x,y) \in A_{\pm 1}^2, \ \forall u = 1,,M$
$\sum_{g_i \in F} \left(\sum_{u=1}^{M} p_{i,u} \right) \cdot \left(S_i^{\%}(x,y) - \overline{S}_i^{\%}(x,y) \right) \\ + s_+^0(x,y) - s^0(x,y) = 0$	$\forall (x,y) \in A_0^2, \ \forall u = 1,,M$

Result of the Inverse Analysis

	g1	g ₂	g ₃
р	1.0	1.0	1.0
W	3.0	1.5	2.0
а	10	4	8
b	5	6	4
с	7	2	3
d	5	7	2
<i>W</i> *	3.0	2.0	2.0

Cond	а	b	с	d
а	-	2	3	2
b	-2	-	-1	2
С	-3	1	3	2
d	-2	2	-2	-

	\widetilde{S}^W	а	b	с	d
	а	-	.54	1.0	.54
	b5	54	-	.08	.54
	С	-1.0	08	-	.54
Ì	d	-0.54	0.38	54	-

\widetilde{S}^W	а	b	с	d	
а	-	.43	1.0	.43	
b	43	-	.14	.43	
с	-1.0	14	-	.43	
d	-0.43	0.43	43	-	

Valued outranking relation from estimated weight vector [3, 2, 2].

• We solve the MILP model with Cplex 11.0, associated with an AMPL front end modeler:

Solving the MILP

Practical Application

- On more or less real-sized random multiple criteria decision problems (20 alternatives evaluated on 13 criteria) we observe quite reasonable solving times on an 6 threaded standard application server;
- Depending on the maximal value *M* allowed for an individual criterion significance weight we indeed obtain:
 - average computation times of 2.5 seconds for M = 7,
 - up to 2 minutes for M = 13.

Motivation	The CONDORCET robustness	InverseAnalysis	Practical Application	Concluding remarks	Motivation	The CONDORCET robustness	InverseAnalysis	Practical Application	Concluding remarks
	000	00	0			000	00	0	
	00	000	•			00	000	•	
		000	0				000	•	

Partial preference information

Partial preference information may be easily integrated in the previous MILP model, like

- 1. fix or confine the a priori significance of some criterion;
- 2. make a criterion, or a coalition of criteria, more significant than others;
- 3. allocate a significant majority to a coalition of criteria.

A progressive and robust decision aid approach

- When no information concerning the significance of the criteria is available, we solve the problem with equi-significant criteria, i.e. one single weight equivalence class.
- Some apparent outranking situations may be aknowledged, some others not. Under this partial preference information, the most robust valued outranking relation is estimated.
- As long as the resulting outranking digraph is too indeterminate, we may ask further partial preference information until the decision maker is satisfied with the overall result.

- We present an innovative approach for constructing criteria significance weights from the CONDORCET robustness of a bipolar-valued outranking relation.
- The corresponding MILP model may be solved in reasonable time for realistic decision aid problems.
- A new progressive and robust decision aid methodology may be based on an interactive and specificaly focused inverse MCDA.