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Abstract. In this paper we discuss the clustering of the set of criteria in
a multicriteria decision analysis. Our approach is based on a generalisa-
tion of Kendall’s rank correlation resulting in the definition of a bipolar
ordinal correlation index. A factorial decomposition of this index allows
to compute the principal inertia planes of the criteria correlations. The
same ordinal correlation index, modelling a symmetric bipolar-valued
similarity digraph, allows us to compute a criteria clustering from its
maximal cliques.

Introduction

The PROMETHEE authors [1,2] consider very accurately that one of the
methodological requisites for an appropriate Multicriteria Decision Aid (MCDA)
method is the necessity to provide information on the conflicting nature of
the criteria. The classical Electre methods [3,4] as well as the recent Rubis
best choice method [5] do not provide any such information. In this paper we
therefore present several tools that, similar in their operational purpose to the
PROMETHEE GAIA plane [2], help illustrating concordance and/or discordance
of the criteria with respect to the preferential judgments they show on the given
set of decision alternatives. The following example will illustrate our discussion
all along the paper.

Example 1 (The Ronda choice decision problem). A family, staying during their
holidays in Ronda (Andalusia), is planning the next day’s activity. The alterna-
tives shown in Table 1 are considered as potential action. The family members
agree to measure their preferences with respect to a set of seven criteria such
as the time to attend the place (to be minimised), the required physical invest-
ment, the expected quality of the food, touristic interest, relaxation, sun fun &
more, ... (see Table 2). The common evaluation of the performances of the nine
alternatives on all the criteria results in the performance table shown in Table 3.
All performances on the qualitative criteria are marked on a same ordinal scale
going from 0 (lowest) to 10 (highest). On the quantitative Distance criterion (to
be minimized), the required travel time to go to and return from the activity
is marked in negative minutes. In order to model only effective preferences, an
indifference threshold of 1 point and a preference threshold of 2 points is put
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Table 1. Ronda example: The set of alternatives

Identifier Name Comment

ant Antequerra An afternoon excursion to Antequerra and surroundings.
ard Ardales An afternoon excursion to Ardales and El Chorro.
be beach Sun, fun and more.
crd Cordoba A whole day visit by car to Cordoba.
dn fa niente Doing nothing.
lw long walk A whole day hiking.
mal Malaga A whole day visit by car to Malaga.
sev Sevilla A whole day visit by car to Sevilla.
sw short walk Less than a half day hiking.

Table 2. Ronda example: The set of criteria

Identifier Name Comment

cult Cultural Interest Andalusian heritage.
dis Distance Minutes by car to go to and come back from the activity.

food Food Quality of the expected food opportunities.
sun Sun, Fun, & more No comment.
phy Physical Investment Contribution to physical health care.
rel Relaxation Anti-stress support.

tour Tourist Attraction How many stars in the guide ?

Table 3. Ronda example: The performance table

Criteria ant ard be crd dn lw mal sev sw

cult 7.0 3.0 0.0 10.0 0.0 0.0 5.0 10.0 0.0
dis -120.0 -100.0 -30.0 -360.0 0.0 -90.0 -240.0 -240.0 0.0
phy 3.0 7.0 0.0 5.0 0.0 10.0 5.0 5.0 5.0
rel 1.0 5.0 8.0 3.0 10.0 5.0 3.0 3.0 6.0

food 8.0 10.0 4.0 8.0 10.0 1.0 8.0 10.0 1.0
sun 0.0 3.0 10.0 3.0 1.0 3.0 8.0 5.0 5.0
tour 5.0 7.0 3.0 10.0 0.0 8.0 10.0 10.0 5.0

on the qualitative performance measures. On the Distance criterion, an indiffer-
ence threshold of 20 min, and a preference threshold of 45 min. is considered.
Furthermore, a difference of more than two hours to attend the activity’s place
is considered to raise a veto (see Table 4).

The individual criteria each reflect one or the other member’s preferential
point of view. Therefore they are judged equi-significant for the best action to
be eventually chosen.

How do the criteria express their preferential view point on the set of al-
ternatives? For instance the Tourist Attraction criterion appears to be in its
preferential judgments somehow positively correlated with both the Cultural In-
terest and the Food criteria. It is also apparent that the Distance criterion is
somehow negatively correlated to these latter criteria. How can we explore and
illustrate these intuitions?

In a given MCDA, where a certain set of criteria is used for solving a given deci-
sion problem, it is generally worthwhile analysing to what extent the
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Table 4. Ronda example: Preference discrimination thresholds

Criterion Thresholds
indifference preference veto

cult 1pt 2pts -
dis 20min. 45min. 121min.
food 1pt 2pts -
sun 1pt 2pts -
phy 1pt 2pts -
rel 1pt 2pts -
tour 1pt 2pts -

criteria vary in their relational judgments concerning the pairwise comparison of
performances of the alternatives. Illustrating such similarities and dissimilarities
between criteria judgments is indeed the very purpose of this paper. First, we
present a bipolar-valued ordinal criteria correlation index, generalising Kendall’s
τ [6], and illustrating the preferential distance between the criterial judgments.
In a second section we show how to decompose this correlation index into its
principal components. In a third section, following an earlier work of ours [11],
we propose a credibility level indexed clustering of the criteria based on the
extraction of maximal bipolar-valued cliques observed in the associated criteria
similarity digraph.

1 A Bipolar-Valued Ordinal Criteria Correlation Index

Let us introduce our notations. We consider a finite set A of n alternatives and
denote by x and y any two alternatives. We consider also a set F of outranking
criteria [4] denoted by variables i or j, with k = 0, 1, ... discrimination thresholds.
The performance of an alternative x on criterion i is denoted by xi.

Example 2. The four discrimination thresholds we may observe on each criterion
i for instance in the Rubis choice method [5] are: – “weak preference”1 wpi

(0 < wpi), – “preference” pi (wpi � pi), – “weak veto” wvi (pi < wvi), and –
“veto” vi (wvi � vi). Each difference (xi − yi) may thus be classified into one
and only one of the following nine cases:
(≫) “veto against x � y” ⇔ vi � (xi − yi)
(�) “weak veto against x � y” ⇔ wvi � (xi − yi) < vi

(>) “x better than y” ⇔ p � (xi − yi)
(�) “x better than or equal y” ⇔ wpi � (xi − yi) < pi

(=) “x indifferent to y” ⇔ −wpi < (xi − yi) < wpi

(�) “x worse than or indifferent to y” ⇔ −pi < (xi − yi) � −wpi

(<) “x worse than y” ⇔ −wpi < (xi − yi) � −pi

(�) “weak veto against x � y” ⇔ −vi < (xi − yi) � −wpi

(≪) “veto against x � y” ⇔ (xi − yi) � −vi

1 In some cases it may be useful to replace the weak preference threshold, defining an
open indifference interval on the criterion scale, with an indifference threshold 0 � h
defining a closed indifference interval and leaving open the weak preference interval
(see [5]).
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In general, let us consider on each criterion i, supporting a set of discrimination
thresholds pr (r = 1, .., k) such that 0 < p1 � ... � pk, the Kendall vector
(see [7]) gathering the classification of all possible differences (xi − yi) into one
of the following 2k + 1 cases:

(xi − yi) ∈

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(>k) if pk � (xi − yi)
(>r) if pr � (xi − yi) < pr+1, for r = 1, ...k − 1
(=) if − p1 < (xi − yi) < p1

(<r) if − pr+1 < (xi − yi) � −pr, for r = 1, ...k − 1
(<k) if (xi − yi) � −pk

(1)

Comparing the preferential view point of two criteria i and j, we say that x and
y are concordantly (resp. discordantly) compared if (xi − yi) and (xj − yj) are
classified into the same category (resp. different categories) on both criteria. This
is the case if position (i, j) in both Kendall vectors is of the same (resp. different)
value. There are n(n − 1) distinct ordered pairs of performances and each pair
(x, y) is thus either concordantly or discordantly classified. Please notice that
we may well compare two criteria with a different number of discrimination
thresholds. The only semiotic restriction we require here is that the preferential
meanings of the k thresholds are the same for all criteria in the given family F .
Denoting by Sij the number cij of concordantly classified minus the number dij

of discordantly classified ordered pairs, the ordinal criteria correlation index T̃
is defined on F × F as

T̃ (i, j) =
cij − dij

cij + dij
=

Sij

n(n − 1)
. (2)

Property 1. The ordinal criteria correlation index T̃ is symmetrically valued in
the rational bipolar credibility domain [−1, 1] (see [8,5]).

Proof. If all pairs of alternatives are concordantly (discordantly) classified by
both criteria, dij = 0 (resp. cij = 0) and T̃ (i, j) = 1.0 (resp. −1.0). If T̃ (i, j) > 0
(resp. < 0) both criteria are more similar than dissimilar (resp. dissimilar than
similar) in their preferential judgments. When T̃ (i, j) = 0.0, no conclusion can
be drawn. The linear structure of the criterion scale and the relational coherence
of the discrimination thresholds imply that a performance difference (xi − yi) is
classified in one and only one case. Furthermore, the case of (xi −yi) corresponds
bijectively to a unique symmetric case classifying the reversed difference (yi−xi).
Hence, the pair (x, y) is concordantly classified by criteria i and j if and only if
the symmetric pair (y, x) is concordantly classified by the same two criteria. ��

Property 2. If i and j are two perfectly discriminating criteria, i.e. they admit a
single preference threshold p1 = ε, and we don’t observe ties in the performance
table then T̃ (i, j) is identical with the classical τ of Kendall [6].

Proof. In this case, both the Kendall vectors of criteria i and j contain only the two
possible cases: – case (>1): (xi − yi) � ε, and – case (<1): (xi − yi) � ε. Denoting
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by pij the number of pairs (x, y) in A × A such that conjointly (xi − yi) � ε and
(xj − yj) � ε we obtain indeed

T̃ (i, j) = (2 × 2pij

n(n − 1)
) − 1, ∀(i, j) ∈ F × F, (3)

i.e. Kendall’s original τ definition (see [6]). ��

It is worthwhile noticing that the classical problem for applying Kendall’s τ to
a situation with ties is here coherently resolved. Indeed, Equation 2 generalises
Kendall’s rank correlation index to any family of homogeneous semiorders (see
[9] Chapter 3).

Example 3 (The Ronda decision problem – continued). Computing our ordinal
criteria correlation index T̃ (see Equation 2) on the set of seven criteria we
obtain the results shown in Table 5. As initially suspected, on the one hand, we
observe here that the performances on the criteria Cultural interest and Tourist
Attraction, and Physical Investment lead to positively correlated preferential
judgments (T̃ (cult, tour) = +0.28 and T̃ (phy, tour) = +0.33). On the other
hand, the performances observed on criteria Distance and Cultural Interest or
Tourist Attraction lead to nearly completely opposed preferential statements
(T̃ (dis, tour) = −0.92 and T̃ (dis, cult) = −0.89).

As these couples of concordant and/or discordant criteria play an essential role
in the actual difficulty of the decision making process, we look for a systematic
graphical illustration of the ordinal criteria correlation index.

Table 5. Ronda example: The ordinal criteria correlation table

T̃ dis phy rel food sun tour

cult −0.89 −0.17 −0.81 +0.00 −0.39 +0.28
dis −0.72 −0.08 −0.67 −0.39 −0.92
phy −0.17 −0.39 −0.28 +0.33
rel −0.25 −0.17 −0.53

food −0.56 −0.17
sun −0.03

2 Principal Component Analysis of the Criteria
Correlation

A most suitable tool is given by the classical Principal Component Analysis –
PCA [10]. We may uncover the principal components of T̃ by computing the
eigen-vectors of its associated covariance. Projecting the criteria points in the
covariance eigen-space along the principal coordinates explaining the largest
part of the total variance reveals the major agreements and oppositions be-
tween the preferential judgments as expressed by the criteria on the given set of
alternatives.
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Fig. 1. Ronda example: Results of the PCA

Example 4 (The Ronda decision problem – continued). Such PCA results, com-
puted from the T̃ index observed in the Ronda example, are shown in Figure 1.
As expected, the first and largely prominent opposition – gathering 55.7% of
the total variance – is observed between, on the one hand, both criteria Cultural
Interest and Tourist Attraction, and, on the other hand, criterion Distance and,
to a lesser extent, criterion Relaxation. The second factorial axis – already much
less prominent (only 19.5% of total variance) – shows an opposition between, on
the one hand, the Food criterion and, on the other hand, both the Sun, Fun &
more and the Physical Investment criteria. It is furthermore worthwhile notic-
ing that all seven criteria appear in a more or less elliptic layout in the main
principal plane (gathering 75.1% of all variance) and thereby indicate that each
one owns a specific preferential judgment behaviour, somehow different from all
the others.

The PCA of T̃ is much like the well known PROMETHEE Gaia approach [2].
Main difference is that the Gaia PCA is realized on the covariance of the rows
– describing the alternatives – of the single net flows matrix (see [2]). Recall
that the single net flow for alternative x on criteria i is the normalized differ-
ence between the number of times x is preferred to the other alternatives minus
the number of times the other alternatives are preferred to x. The Gaia plane
therefore shows the projection of the alternatives in the plane of the two most
prominent principal axes. The criteria are there only indirectly represented as
supplementary points, the unit vectors of the coordinate axis representing each
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criteria. Practical experiments have shown that very similar result to ours would
however appear when realizing a PCA on the covariance, not of the rows, but of
the columns – describing the criteria – of the single net flows matrix. Main ad-
vantage of our T̃ measure is, nonetheless, that the distance between the criteria’s
preferential judgments is not computed from a compound preference situation,
but takes into account the indifference situation as well as all k discriminated
preference levels a criterion may, the case given, attach to a given performance
difference on all pairs of alternatives.

If the PCA of the criteria correlation index T̃ reveals very convincingly the
most prominently opposed criteria, the projection of the criteria into the main
principal planes also illustrates quite well the potential proximities between cri-
teria (see the position of criteria Cultural Interest and Tourist Attraction for
instance in Figure 1). In order to qualify the credibility of such proximities, we
finally propose a bipolar-valued clustering based again on the ordinal criteria
correlation index T̃ .

3 Bipolar-Valued Clustering from the Criteria
Correlation Index T̃

For this last approach, we make use of Property 1 which tells us that the in-
dex T̃ represents a bipolar-valued characteristic denotation of the propositional
statement “criteria i and j express similar preferential statements on A”. We
consider indeed this statement to be more or less validated if both criteria are
concordant on a majority of pairwise comparisons and discordant on a minor-
ity ones. In this sense, T̃ is characterising a bipolar-valued similarity graph, we
denote by S̃(F, T̃ ) or S̃ for short. Following from the logical denotation of the
bipolar valuation, we say that there is an arc between i and j if T̃ (i, j) > 0
(see [8]). Similarly, a clique C in S̃ is a subset of criteria such that for all i and
j in C, we have T̃ (i, j) � 0. 2

In general, we may associate a crisp graph S(F, T ) with S̃, where T =
{(i, j)|T̃ (i, ) > 0}. All properties of S are canonically transferred to S̃. For in-
stance, S is a symmetric digraph (see Property 1), so is S̃.

Example 5 (The Ronda decision problem – continued). The criteria similarity
graph in the Ronda example contains only three edges: – between Physical In-
vestment and Tourist Attraction (T̃ (phy,tour) = 0.33), – between Tourist Attrac-
tion and Cultural Interest (T̃ (tour,cult) = 0.28), and – the weak (or potential)
similarity between criteria Food and Cultural Interest (T̃ (food,cult) = 0.0). No-
tice that the similarity relation is not transitive (a fact easily explainable from
Figure 1).

2 We admit here a weak notion of a bipolar-valued clique by including possibly inde-
terminate similarity situations. A strict bipolar-valued clique concept would require
a strictly positive valuation.
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What we are looking for are maximal cliques, i.e. subsets C of criteria which
verify both the following properties:

1. Internal stability: all criteria in C are similar, i.e. the subgraph (C, T̃|C) is a
clique;

2. External stability: if a criteria i is not in C, there must exist a criteria j in
C such that T̃ (i, j) < 0 and T̃ (j, i) < 0.

For any C ∈ F , we denote by Δint(C) (resp. Δext(C)) its credibility of being
internally (resp. externally) stable:

Δint(C) =

{
1.0 if |C| = 1,

mini∈C minj �=i
j∈C

(
T̃ (i, j)

)
otherwise.

(4)

Δext(C) =

{
1.0 if C = F,

mini�∈C
i∈F maxj∈C

(
− T̃ (i, j)

)
otherwise.

(5)

Property 3. A subset C of criteria is a maximal clique of the similarity graph
S̃ ≡ (F, T̃ ) if and only if both Δint(C) � 0 and Δext(C) > 0.

Proof. Condition Δint(C) � 0 directly implies that (C, T̃|C) is a clique and
condition Δext(C) > 0 implies that, for any criterion i not in C, there exists at
least one criterion j in C such that T̃ (i, j) < 0. ��

Computing maximal cliques in a graph is equivalent to the problem of comput-
ing maximal independent sets in the dual graph. These problems are in theory
algorithmically difficult [12]. Considering however the very low dimension of the
set of criteria in a common MCDA problem, there is no operational difficulty
here for the decision aid practice. The credibility level min(Δext, Δint) of the
resulting maximal cliques may eventually lead to a bipolar-valued clustering of
the family of criteria (see [11]).

Example 6 (The Ronda decision problem – continued). The clustering results
are shown in Table 6.

The most validated maximal cliques (at credibility level 58.33%3) are the pairs
(Physical Investment, Tourist Attraction) and (Tourist Attraction, Cultural In-
terest). At level 54.17%, both the criteria Distance and Relaxation are singleton
maximal cliques, followed at level 51.39% by the criterion Sun, Fun & more.
Finally, a potential maximal clique is the pair (Cultural Interest, Food). The
credibility level indexed clustering results are shown in Figure 2.

With non-redundant and preferentially independent criteria, we may expect in
general very small maximal cliques and singletons. Monte Carlo experiments
with random performance tableaux confirm indeed this sparsity of the criteria
clustering in normal MCDA problems.
3 The credibility levels are expressed as (min(Δext, Δint)+1.0)/2.0 in the [0, 1] interval.
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Table 6. Ronda example: Clustering the criteria

Maximal credibility stability
cliques level (in%3) external internal

{phy,tour} 58.33 +0.167 +0.333
{tour,cult} 58.33 +0.167 +0.278

{dis} 54.17 +0.083 +1.00
{rel} 54.17 +0.083 +1.00
{sun} 51.39 +0.028 +1.00

{cult,food} 50.00 +0.167 0.0

food

cult

tour

phy sun

rel

dis

credibility levels:
58.33%

54.17%

51.39%

50.00%

Fig. 2. Ronda example: The bipolar-valued criteria clusters

Conclusion

Despite the obvious importance of the methodological requisite for a suitable
MCDA approach to offer tools for illustrating preferential agreements and/or
oppositions between the criteria, no specific formal methodological contribution,
apart from the PROMETHEE Gaia plane, has been made in the general context
of the outranking based MCDA methods. This paper fills this gap with a gener-
alisation of Kendall’s rank correlation τ measure to the pairwise comparison of
the preferential judgements the criteria apply to a given set of alternatives. This
new ordinal criteria correlation index may be used, on the one hand, for graph-
ically illustrating oppositions and agreements between criteria with the help of
a PCA similar to the Gaia approach. On the other hand, the same ordinal cor-
relation index may also be used for extracting in a decreasing level of credibility
the maximal cliques from a bipolar-valued criteria similarity graph.
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