Solving the introductory

Content

Introductory Example 000 00000 The Ruby choice method

Solving the introductory exampl

$\label{eq:RUBIS} \ensuremath{\mathsf{R}}\xspace{-1mu} \ensuremath{$

Raymond Bisdorff

Applied Mathematics Unit, University of Luxembourg

2nd Decision Deck workshop, Paris, November 16, 2007

1. Introductory Example

The choice problem Pairwise comparisons by balancing criterion significance weights

2. The Ruby choice method

The bipolar-valued outranking digraph The Ruby choice recommendation

3. Solving the introductory example

Computing a choice recommendation Concluding remarks

Introductory example

Decision:problem: Choose the best from a set of ten alternatives evaluated on 7 criteria as shown below.

criterion	weight	a 1	a ₂	a ₃	a4	a ₅	<i>a</i> 6	a ₇	a 8	ag	a ₁₀
g 1	7	33	13	3	14	48	44	18	47	31	98
g 2	7	9	30	23	86	63	40	79	3	83	48
g 3	5	34	38	63	16	85	53	78	91	47	42
g 4	5	53	24	38	3	28	93	35	12	72	5
g 5	5	26	44	60	98	62	15	53	23	37	44
g 6	4	26	29	100	36	4	63	54	70	24	53
g 7	1	56	62	33	36	21	49	0	13	20	99

- The performance scale on each criteria is 0 100 pts, with a weak preference threshold of 10 points, a preference threshold of 20 pts, and a veto threshold of 80 pts.
- We assume that the criteria are not commensurable.

Introductory example: Boxplots of the performances

Introductory example: Boxplots of the performances

Introductory example: Ranking the performances?

Criterion	a10	a7	a6	a9	a3	a5	a4	a8	a1	a2
"g1"	98	18	44	31	3	48	14	47	33	13
"g2"	48	79	40	83	23	63	86	3	9	30
"g3"	42	78	53	47	63	85	16	91	34	38
"g4"	5	35	93	72	38	28	3	12	53	24
"g5"	44	53	15	37	60	62	98	23	26	44
"g6"	53	54	63	24	100	4	36	70	26	29
"g7"	99	0	49	20	33	21	36	13	56	62

Introductory example: Pairwise comparisons

Is a_{10} globally at least as good as a_7 ?

Outranking thresholds: weak preference (\geqslant 10), preference (\geqslant 20), veto ($\leqslant-80).$

criterion	Wi	<i>a</i> 10	a7	$\Delta_{i}(10,7)$	balance	veto ?
g 1	7	98	18	80	+7	no
g 2	7	48	79	-31	-7	no
g 3	5	42	78	-36	-5	no
g 4	5	5	35	-30	-5	no
g 5	5	44	53	-9	+5	no
g 6	4	53	54	-1	+4	no
g 7	1	99	0	99	$^{+1}$	no

total balance

We observe a balanced situation. No conclusion can be drawn.

Introductory example: Pairwise comparisions (continued)

Is a7 globally at least as good as a10?

Outranking thresholds: weak preference (\geqslant 10), preference (\geqslant 20), veto (\leqslant –80).

criterion	wi	a7	<i>a</i> 10	$\Delta_i(10,7)$	balance	veto ?
g 1	7	18	98	-80	-7	yes
g 2	7	79	48	+31	+7	no
g 3	5	78	42	+36	+5	no
g 4	5	35	5	+30	+5	no
g 5	5	53	44	+9	+5	no
g 6	4	54	53	$^{+1}$	+4	no
g 7	1	0	99	-99	-1	yes

total balance +18-34

We observe a veto situation on criteria g_1 and g_7 .

 a_7 is clearly not globally at least as good as a_{10} ? !

Introductory example: Pairwise comparisions (continued)

Introductory example: Pairwise comparisions (continued)

gi	wi	a10	a 6	$\Delta_i(10, 6)$	balance	veto?	$\Delta_i(6, 10)$	balance	veto?
g 1	7	98	44	54	+7	no	-54	-7	no
82	7	48	40	8	+7	no	-8	+7	no
83	5	42	53	-11	-5	no	11	+5	no
g 4	5	5	93	-88	-5	yes	88	+5	no
85	5	44	15	29	+5	no	-29	-5	no
86	4	53	63	-10	0	no	10	+4	no
B 7	1	99	49	50	$^{+1}$	no	-50	-1	no
			to	tal balance	+10-34	to	tal balance	+8	

Is a10 (resp. a6) globally at least as good as a6 (resp. a10) ?

 a₁₀ is clearly not globally at least as good as a₆ (veto (-88) on criterion g₄)!

- Note the weak preference situation on criterion g₆ !
- a₆ is globally at least as good as a₁₀ (balance of +8 in favour).

criteria	weight	a7	a 6	$\Delta_i(7,6)$	balance	veto ?
g 1	7	44	18	26	+7	no
g ₂	7	40	79	-39	-7	no
g ₃	5	53	78	-25	-5	no
g 4	5	93	35	58	+5	no
g 5	5	15	53	-38	-5	no
g 6	4	63	54	9	+4	no
g 7	1	49	0	49	$^{+1}$	no

total balance

We observe again a balanced situation. No conclusion can be drawn.

Is a6 globally at least as good as a7 ?

Content	Introductory Example	The Ruby choice method 000000 000000	Solving the introductory examp 0000 0

Backbone of RUBIS : \tilde{S}

- Let X be a finite set of p alternatives.
- Let N be a finite set of n > 1 criteria.
- · Let m be the total significance of the criteria.
- Let x and y be two alternatives from X.
- Let x_i be the value taken by x on criterion g_i

Definition (The outranking situation)

- x outranks y (x S y) if there is a significant majority of criteria which support an at least as good statement and there is no criterion which raises a veto against it.
- The bipolar valued relation S̃ ∈ [-m, m] expresses the credibility of the validation or the non-validation of the outranking relation S.

Introductory example: Global outranking relation

Ŝ	<i>a</i> 10	a7	<i>a</i> 6	ag	a ₃	<i>a</i> 5	a4	a ₈	a_1	a ₂
a ₁₀	-	0	-34	10	1	2	10	20	24	29
a7	-34	-	8	15	24	18	22	10	20	32
a ₆	8	0	-	10	11	0	-34	24	29	23
ag	10	11	7	-	10	7	19	9	32	32
a ₃	-34	8	2	-4	-	-4	3	10	13	25
a ₅	10	19	14	2	-34	-	1	26	14	24
a4	-34	10	-34	7	6	0	-	2	10	12
a ₈	-34	0	-34	-34	-10	5	-34	-	22	3
a_1	-9	-8	-10	5	-1	-7	6	9	-	15
a ₂	-34	-3	-10	3	6	-9	10	2	10	-

Backbone of RUBIS : \tilde{S}

Definition (The bipolar valued outranking situation)

$$\begin{split} \widetilde{S}(\mathbf{x}, \mathbf{y}) &= \min \left\{ \left(\sum_{i \in N} w_i \cdot C_i(\mathbf{x}, \mathbf{y}) \right), \min_{i \in N} \left(-V_i(\mathbf{x}, \mathbf{y}) \right) \cdot \mathbf{m} \right\} \\ C_i(\mathbf{x}, \mathbf{y}) &= \begin{cases} 1 & \text{if } x_i + q_i > y_i; \\ -1 & \text{if } x_i + p_i \leqslant y_i \\ 0 & \text{otherwise} \end{cases} \\ - V_i(\mathbf{x}, \mathbf{y}) &= \begin{cases} 1 & \text{if } x_i + w_i > y_i; \\ -1 & \text{if } x_i + v_i \leqslant y_i \\ 0 & \text{otherwise} \end{cases} \end{split}$$

where q_i , p_i represent the weak preference, resp. the preference, and wv_i , v_i , the weak veto, resp. the veto, threshold on criterion g_i .

Backbone of RUBIS : $\widetilde{G}(X, \widetilde{S})$

Backbone of RUBIS : \tilde{S}

 \widetilde{S} is defined on a bipolar-valued credibility scale $\mathcal{L} = [-m, m]$ supporting the following demantics denotation:

- S̃(x, y) = +m means that assertion x S y is clearly validated.
- S̃(x, y) = -m means that assertion x S y is clearly non-validated.
- S
 ^(x,y) > 0 means that assertion x S y is more validated than non-validated.
- $\tilde{S}(x, y) < 0$ means that assertion x S y is more non-validated than validated.
- S(x, y) = 0 means that assertion x S y is undetermined.

Introductory example: The crisp outranking digraph

Definition (The bipolar valued outranking digraph)

- We denote G̃(X,S̃) the bipolar-valued outranking digraph modelled via S̃ on X × X.
- The associated crisp outranking relation S may be recovered from S as the set of pairs (x, y) such that S > 0.
- ${\cal G}(X,S)$ is called the crisp outranking digraph associated with $\widetilde{{\cal G}}(X,\widetilde{S}).$

The Ruby choice method

The Ruby choice method

RUBIS decision aiding approach

- · A choice problem traditionally consists in the search for a single best alternative.
- · We adopt a progressive decision analysis process which allows to uncover the best single choice via possible intermediate recommendations.
- · These intermediate choice recommendations, the case given, have to be refined at some further stages of the decision analysis.

Pragmatic choice recommendation (CR) principles

P1: Non-retainement for well motivated reasons.

all eliminated alternative must be considered worse as at least one recommended alternative

P₂: Minimal size.

the CR should be as limited as possible.

P3: Efficient and informative.

each CR must deliver a stable recommandation.

 $\mathcal{P}_{\mathbf{A}}$: Effectively better.

the CR should not correspond simultaneously to a choice and an elimination recommendation

P5: Maximally credible.

the CR must be as credible as possible wrt the preferential knowedge modelled via S.

The Ruby choice method

The Ruby choice method 000000

Useful choice qualifications in G(X, S)

Let Y be a non-empty subset of X, called a choice in G.

- · Y is said to be outranking (resp. outranked) iff $x \notin X \Rightarrow \exists y \in Y : \widetilde{S}(x, y) > 0$).
- Y is said to be independent iff for all $x \neq y$ in Y we have X $\tilde{S}(x, y) \leq 0$.
- Y is called an outranking kernel (resp. outranked kernel) iff it is an outranking (resp. outranked) and indendent choice.
- Y is called an outranking hyperkernel (resp. outranked hyperkernel) iff it is an outranking (resp. outranked) choice which consists of independent chordless circuits of odd order $p \ge 1$.

000000 Tranlating CR principles into choice qualifications

- P1: Non-retainment for well motivated reasons. A CR is an outranking choice.
- \mathcal{P}_{2+3} : Minimal size & stable. A CR is a hyperkernel.
 - P4: Effectivity.

A CR is a stricly more outranking than outranked choice.

PE: Maximal credibility. A CR has maximal determinateness.

Theorem

Any bipolar outranking digraph contains at least one outranking and one outranked hyperkernel.

Introductory example: All outranking and outranked hyperkernels

Introductory example: all kernels and hyperkernels

Introductory Example The Ruby choice method 000 00000 000000 Solving the introductory examp

The RUBIS choice recommendation (RCR)

- · A RCR verifies the five CR principles.
- A maximally determined strict outranking hyperkernel, if it exists in G
 , gives a RCR.
- A RCR is a provisional subset of alternatives, most certainly containing the best alternative, if it exists !.
- A RCR must not be confused with the ultimate best choice of the decision maker.
- The RUBIS choice method is only convenient in a progressive decision aiding approach.

Introductory example: The RUBIS choice recommendation

outranking choices: {a0, a7, a6} {a3, a5} outranked choices: {a3, {a2, a5} outranked choices: {a3, a5} {a2, a5} {a2, a5} {a3, a5} {a3, a5} {a3, a5} {a5, a5}

choice : [4₁₀, a₇, a₆] (chordless 3-circuit) detorminateness : 72¼ (weighted majority of criterion) irredundancy : 100% independence : 100% outrankingness : 72% outrankedness : 38% characteristic vector = [[4₁₀, a₇, a₈]: 72%, a₁: 28%, a₂: 28%, a₃: 28%, a₄: 28%, a₅ a₅: 28%, a₇: 28%, a₇: 28%, a₇; a₅: 28%, a₇: 28%, a₇: 28%, a₇;

Introductory example: Potential choice recommendation

Introductory example: Other potential choice recommendation

choice: { a₉ } determinateness : 60% (weighted majority of criterion) irredundancy : 100% independence : 100% outrankingness : 60% outrankingness : 60% characteristic vector = [a₉: 60%, a: 40%, a₂: 40%, a₃: 40%, a₃: 40%, a₆: 40%, a₆: 40%, a₁: 40%, a₆: 40%, a₁: 40%, a₁: 40%, a₁: 40%]

choice : {a, a} determinateness : 53% (vesighted majority of criterion) irredundancy : 65% independence : 56% outrankingness : 53% outrankingness : 43.5% characteristic vector = [a; 53%, a; 53%, a; 47%, b; 47%, a; 47%, a; 47%, b; 47%, a; 47%, b; 47%]

Content	Introductory Example	The Ruby choice method 00000	Solving the introductory example	Appendix •
	00000	000000	•	

Concluding remarks

Properties of the RUBIS choice recommendation:

- Progressiveness: intermediate solutions are proposed to the decision maker;
- Existence: A RCR always exists in a non-symmetrical bipolar-valued outranking digraph;
- Multiplicity: In case multiple RCR coexist, their union gives a suitable intermediate choice recommendation;
- Missing values: They are treated as information which is not available at a given stage of the decision analysis; which might be determined later on;
- Efficient decision aiding: Strongly motivated conclusions can nevertheless be drawn.

Bibliography I

R. Bisdorff, P. Meyer, M. Roubens (2007)

RUBIS: a bipolar-valued outranking method for the choice problem.

40R, A Quarterly Journal of Operations Research, Springer-Verlag, forthcoming. (Online) Electronic version: DOI: 10.1007/s10288-007-0045-5.

R. Bisdorff, M. Pirlot and M. Roubens (2006). Choices and kernels from bipolar valued digraphs. European Journal of Operational Research, 175 (2006) 155-170.

R. Bisdorff (2007)

The Python Digraph implementation for Ruby: User manual. University of Luxembourg, 2007, http://sma.uni.lu/bisdorff/Digraph

Bibliography II

D2-Decision-Deck Consortium (2007) The D2-Decision-Deck project. http://www.decision-deck.org/