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Introductory example

Decision:problem: Choose the best from a set of ten
alternatives evaluated on 7 criteria as shown below.

criterion weight a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

g1 7 33 13 3 14 48 44 18 47 31 98
g2 7 9 30 23 86 63 40 79 3 83 48
g3 5 34 38 63 16 85 53 78 91 47 42
g4 5 53 24 38 3 28 93 35 12 72 5
g5 5 26 44 60 98 62 15 53 23 37 44
g6 4 26 29 100 36 4 63 54 70 24 53
g7 1 56 62 33 36 21 49 0 13 20 99

• The performance scale on each criteria is 0− 100 pts,

with a weak preference threshold of 10 points, a preference
threshold of 20 pts, and a veto threshold of 80 pts.

• We assume that the criteria are not commensurable.

Introductory example: Boxplots of the performances
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Introductory example: Boxplots of the performances
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Introductory example: Ranking the performances?

Introductory example: Pairwise comparisons

Is a10 globally at least as good as a7?

Outranking thresholds: weak preference (> 10), preference (> 20),

veto (6 −80).

criterion wi a10 a7 ∆i (10, 7) balance veto ?

g1 7 98 18 80 +7 no
g2 7 48 79 -31 -7 no
g3 5 42 78 -36 -5 no
g4 5 5 35 -30 -5 no
g5 5 44 53 -9 +5 no
g6 4 53 54 -1 +4 no
g7 1 99 0 99 +1 no

total balance 0

We observe a balanced situation.
No conclusion can be drawn.

Introductory example: Pairwise comparisions (continued)

Is a7 globally at least as good as a10?

Outranking thresholds: weak preference (> 10), preference (> 20),

veto (6 −80).

criterion wi a7 a10 ∆i (10, 7) balance veto ?

g1 7 18 98 -80 -7 yes
g2 7 79 48 +31 +7 no
g3 5 78 42 +36 +5 no
g4 5 35 5 +30 +5 no
g5 5 53 44 +9 +5 no
g6 4 54 53 +1 +4 no
g7 1 0 99 -99 -1 yes

total balance +18-34

We observe a veto situation on criteria g1 and g7.
a7 is clearly not globally at least as good as a10? !



Introductory example: Pairwise comparisions (continued)

Is a10 (resp. a6) globally at least as good as a6 (resp. a10) ?

gi wi a10 a6 ∆i (10, 6) balance veto? ∆i (6, 10) balance veto?

g1 7 98 44 54 +7 no -54 -7 no
g2 7 48 40 8 +7 no -8 +7 no
g3 5 42 53 -11 -5 no 11 +5 no
g4 5 5 93 -88 -5 yes 88 +5 no
g5 5 44 15 29 +5 no -29 -5 no
g6 4 53 63 -10 0 no 10 +4 no
g7 1 99 49 50 +1 no -50 -1 no

total balance +10 -34 total balance +8

• a10 is clearly not globally at least as good as a6 (veto (-88) on
criterion g4)!

• Note the weak preference situation on criterion g6 !

• a6 is globally at least as good as a10 (balance of +8 in favour).

Introductory example: Pairwise comparisions (continued)

Is a6 globally at least as good as a7 ?

criteria weight a7 a6 ∆i (7, 6) balance veto ?

g1 7 44 18 26 +7 no
g2 7 40 79 -39 -7 no
g3 5 53 78 -25 -5 no
g4 5 93 35 58 +5 no
g5 5 15 53 -38 -5 no
g6 4 63 54 9 +4 no
g7 1 49 0 49 +1 no

total balance 0

We observe again a balanced situation.
No conclusion can be drawn.

Introductory example: Global outranking relation

S̃ a10 a7 a6 a9 a3 a5 a4 a8 a1 a2

a10 - 0 -34 10 1 2 10 20 24 29
a7 -34 - 8 15 24 18 22 10 20 32
a6 8 0 - 10 11 0 -34 24 29 23
a9 10 11 7 - 10 7 19 9 32 32
a3 -34 8 2 -4 - -4 3 10 13 25
a5 10 19 14 2 -34 - 1 26 14 24
a4 -34 10 -34 7 6 0 - 2 10 12
a8 -34 0 -34 -34 -10 5 -34 - 22 3
a1 -9 -8 -10 5 -1 -7 6 9 - 15
a2 -34 -3 -10 3 6 -9 10 2 10 -
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Backbone of Rubis : S̃

• Let X be a finite set of p alternatives.

• Let N be a finite set of n > 1 criteria.

• Let m be the total significance of the criteria.

• Let x and y be two alternatives from X .

• Let xi be the value taken by x on criterion gi

Definition (The outranking situation)

• x outranks y (x S y) if there is a significant majority of criteria
which support an at least as good statement and there is no
criterion which raises a veto against it.

• The bipolar valued relation S̃ ∈ [−m,m] expresses the
credibility of the validation or the non-validation of the
outranking relation S.



Backbone of Rubis : S̃

Definition (The bipolar valued outranking situation)

S̃(x , y) = min
{ ( ∑

i∈N

wi · Ci (x , y)
)
, min

i∈N

(
− Vi (x , y)

)
· m

}

Ci (x , y) =


1 if xi + qi > yi ;

−1 if xi + pi 6 yi

0 otherwise

− Vi (x , y) =


1 if xi + wvi > yi ;

−1 if xi + vi 6 yi

0 otherwise

where qi , pi represent the weak preference, resp. the preference,
and wvi , vi , the weak veto, resp. the veto, threshold on criterion gi .

Backbone of Rubis : S̃

S̃ is defined on a bipolar-valued credibility scale L = [−m,m]
supporting the following demantics denotation:

• S̃(x , y) = +m means that assertion x S y is clearly validated.

• S̃(x , y) = −m means that assertion x S y is clearly
non-validated.

• S̃(x , y) > 0 means that assertion x S y is more validated than
non-validated.

• S̃(x , y) < 0 means that assertion x S y is more non-validated
than validated.

• S̃(x , y) = 0 means that assertion x S y is undetermined.

Backbone of Rubis : G̃ (X , S̃)

Definition (The bipolar valued outranking digraph)

• We denote G̃ (X , S̃) the bipolar-valued outranking digraph
modelled via S̃ on X × X .

• The associated crisp outranking relation S may be recovered
from S̃ as the set of pairs (x , y) such that S̃ > 0.

• G (X ,S) is called the crisp outranking digraph associated with
G̃ (X , S̃).

Introductory example: The crisp outranking digraph
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Rubis decision aiding approach

• A choice problem traditionally consists in the search for a
single best alternative.

• We adopt a progressive decision analysis process which allows
to uncover the best single choice via possible intermediate
recommendations.

• These intermediate choice recommendations, the case given,
have to be refined at some further stages of the decision
analysis.
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Pragmatic choice recommendation (CR) principles

P1: Non-retainement for well motivated reasons.
all eliminated alternative must be considered worse as at least
one recommended alternative.

P2: Minimal size.
the CR should be as limited as possible.

P3: Efficient and informative.
each CR must deliver a stable recommandation.

P4: Effectively better.
the CR should not correspond simultaneously to a choice and
an elimination recommendation.

P5: Maximally credible.
the CR must be as credible as possible wrt the preferential
knowedge modelled via S̃.
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Useful choice qualifications in G̃ (X , S̃)

Let Y be a non-empty subset of X , called a choice in G̃ .

• Y is said to be outranking (resp. outranked) iff
x 6∈ X ⇒ ∃y ∈ Y : S̃(x , y) > 0).

• Y is said to be independent iff for all x 6= y in Y we have X
S̃(x , y) 6 0).

• Y is called an outranking kernel (resp. outranked kernel) iff it
is an outranking (resp. outranked) and indendent choice.

• Y is called an outranking hyperkernel (resp. outranked
hyperkernel) iff it is an outranking (resp. outranked) choice
which consists of independent chordless circuits of odd order
p > 1.
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Tranlating CR principles into choice qualifications

P1: Non-retainment for well motivated reasons.
A CR is an outranking choice.

P2+3: Minimal size & stable.
A CR is a hyperkernel.

P4: Effectivity.
A CR is a stricly more outranking than outranked choice.

P5: Maximal credibility.
A CR has maximal determinateness.

Theorem
Any bipolar outranking digraph contains at least one outranking
and one outranked hyperkernel.



Introductory example: All outranking and outranked
hyperkernels
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The Rubis choice recommendation (RCR)

• A RCR verifies the five CR principles.

• A maximally determined strict outranking hyperkernel, if it
exists in G̃ , gives a RCR.

• A RCR is a provisional subset of alternatives, most certainly
containing the best alternative, if it exists !.

• A RCR must not be confused with the ultimate best choice of
the decision maker.

• The Rubis choice method is only convenient in a progressive
decision aiding approach.

Introductory example: all kernels and hyperkernels
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outranking choices:

{a10, a7, a6}
{a9}
{a3, a5}
outranked choices:

{a8}
{a2}
{a1}

Introductory example: The Rubis choice recommendation
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choice : {a10, a7, a6}
(chordless 3-circuit!)

determinateness : 72%

(weighted majority of criterion)

irredundancy : 100%

independence : 100%

outrankingness : 72%

outrankedness : 38%

characteristic vector = [

{a10, a7, a6}: 72%, a1: 28%,

a2: 28%, a3: 28%, a4: 28%,

a5: 28%, a6: 28%, a7: 28%, a8:

28%, a9: 28%, a10: 28%]



Introductory example: Potential choice recommendation
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choice : {a9}
determinateness : 60%

(weighted majority of criterion)

irredundancy : 100%

independence : 100%

outrankingness : 60%

outrankedness : 0%

characteristic vector = [ a9:

60%, a1: 40%, a2: 40%, a3:

40%, a4: 40%, a5: 40%, a6:

40%, a7: 40%, a8: 40%, a10:

40%, {a10, a7, a6}: 40% ]

Introductory example: Other potential choice
recommendation
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choice : {a3, a5}
determinateness : 53%

(weighted majority of criterion)

irredundancy : 65%

independence : 56%

outrankingness : 53%

outrankedness : 48.5%

characteristic vector = [

a3: 53%, a5: 53%, a1: 47%,

a2: 47%, a4: 47%, a6: 47%,

a7: 47%, a8: 47%, a10: 47%,

{a10, a7, a6}: 47% ]
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Concluding remarks

Properties of the Rubis choice recommendation:

• Progressiveness: intermediate solutions are proposed to the
decision maker;

• Existence: A RCR always exists in a non-symmetrical
bipolar-valued outranking digraph;

• Multiplicity: In case multiple RCR coexist, their union gives a
suitable intermediate choice recommendation;

• Missing values: They are treated as information which is not
available at a given stage of the decision analysis; which
might be determined later on;

• Efficient decision aiding: Strongly motivated conclusions can
nevertheless be drawn.
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