
On computing kernels on fuzzy simple graphs

by combinatorial enumeration

using a CLP(FD) system

Raymond BISDORFF
CRP-University Centre, Luxembourg

1996

Abstract

This paper reports our communication done at the 8th Benelux Work-
shop on Logic Programming in Louvain-la-Neuve, 9 September 1996. We
will present a constraint formulation in finite domains of the kernel con-
struction on simple graphs and give some comments on implementation in
CHIP. Application to fuzzy choice procedures will illustrate the theoretical
developments.

1 Introducing crisp kernels

Let A = {a0, a1, . . . , an} be a finite set of dimension n and R ⊆ A×A a simple
crisp relation on A. We call the couple G = (A,R) a simple graph. A kernel of
a simple graph G = (A,R) is defined as a conjointly interior and exterior stable
subset of A.

A given homogeneous relation R may be represented as a boolean matrix of
dimension n × n. The opposite or inverse relation R−1 is given by the trans-
posed matrix Rt and the negated relation ¬R is denoted as R, that is the 1-
complemented matrix. Composition of conformable relations is represented by
the boolean product ◦ of their associated matrices and finally, crisp implication
is represented by the associated subset ordering ’≤’ on the boolean matrices.

Let G = (A,R) be a simple graph and YR a subset of A:

YR is interior right stable ⇔ R′ ◦ YR ≤ YR,

YR is interior left stable ⇔ R′
t ◦ YR ≤ YR,

YR is exterior absorbent) (right) stable ⇔ R′ ◦ YR ≥ YR,

YR is exterior dominant (left) stable ⇔ R′
t ◦ YR ≥ YR.

where matrix R′ is constructed from R in the following way: ∀a, b ∈ A with
(a 6= b), R′(a, b) = R(a, b) and ∀a ∈ A,R′(a, a) = 0, where R′

t
is the transposed

matrix R′ and where YR is the 1-complement of YR.
We may now propose four different conjunctions of interior and exterior

stability conditions as required by the kernel concept. Let G = (A,R) be a

1

simple graph and KR respectively YR a subset of A:

KR is a right absorbent kernel ≡ KR ∈ ΥR
ar = {YR : R′ ◦ YR = YR},

KR is a right dominant kernel ≡

KR ∈ ΥR
dr = {YR : (R′ ◦ YR ≤ YR) ∧ (R′

t ◦ YR ≥ YR)},
KR is a left absorbent kernel ≡

KR ∈ ΥR
al = {YR : (R′

t ◦ YR ≤ YR) ∧ (R′ ◦ YR ≥ YR)},

KR is a left dominant kernel ≡ KR ∈ ΥR
dl = {YR : R′

t ◦ YR = YR}.

Taking the set union of admissible solutions for each of these relational con-
straints systems gives the dominant, respective absorbent kernels.

KR is a dominant (initial) kernel ⇔ KR ∈ ΥR
d = {ΥR

dr ∪ΥR
dl},

KR is an absorbent (terminal) kernel ⇔ KR ∈ ΥR
a = {ΥR

ar ∪ΥR
al}.

Terminal kernels on simple graphs were originally introduced by J. Von Neu-
mann and O. Morgenstern (1944) under the name ‘game solution’ in the context
of game theory. J. Riguet(1948) introduced the name ‘noyau (kernel)’ for the
Von Neumann ‘game solution’ and B. Roy (1958, 1969) introduced the reversed
terminal or initial kernel construction as possible dominant choice procedure in
the context of the multi-criteria Electre decision methods. Terminal kernels were
studied by C. Berge (1958, 1970) in the context of the Nim game modelling. Re-
cent results on such terminal kernels on graphs for solutions of different games
have been reported by G. Schmidt and T. Ströhlein (1985). Fuzzy initial or
dominant kernels were very recently deeply investigated by L. Kitäınik (1993).

In this paper we will extend this crisp kernel concept to fuzzy simple graphs.

2 Generalizing kernels to fuzzy simple graphs

In order to illustrate this extension, we will first shortly introduce an algebraic
framework for a fuzzy truth calculus applied to our relational calculus. In a
second step we will extend the crisp kernel constructive definition to this fuzzy
case. In a third part, we will shortly discuss the computational complexity of
the fuzzy kernel construction.

2.1 Basic semantics for a fuzzy truth calculus

To be able to manipulate the truth of a particular relation between elements of
some finite sets, we choose to introduce a completely ordered discrete set V of
degrees of truthfulness conveniently represented by the rational unit interval,
that is the bounded unit segment of the rational line: V = {0, 1

m ,
2
m , . . . ,

m
2m =

1
2 , . . . ,

m−1
m , mm = 1}, where m is any finite positive integer (generally m = 100,

so that truth values may be seen as percents). We suppose that V supports ∧
(meet) and ∨ (join) operations, implementing a convenient fuzzy conjunction
or t-norm and associated fuzzy disjunction or t-co-norm (cf. Fodor & Roubens
1994). In order to be able to deal with multi-valued logical negation, as needed
in the kernel construction, we will furthermore assume on V an unary strong
symmetric negation or contradiction operation ’¬’ defined as a strict antitonic

2

order reversing bijection on V , such that the operator triplet (∧,∨,¬) gives a
De Morgan triplet on V and, if present, 1

2 is the unique ¬-fix-point in V . We
shall introduce on V an implication operator defined as binary operation ’→’ on
V being antitonic in the first and isotonic in the second argument and verifying
the following condition: ∀u ∈ V : u → u = 1. Concrete candidates for such an
implication operator are for instance the classic Zadeh inclusion or the Gödel-
Brouwer or residual implication. We shall call the complete algebraic structure
L = (V,≤,∧,∨,¬,→, 0, 12 , 1) a symmetric truth evaluation domain (s.t.e.d.) for
our relational truth calculus. The size of a given s.t.e.d. is determined by the
cardinal number n of set V , that is | V |= n which we indicate as Ln.

We may now introduce L-valued binary relations (L-vbr for short) between
two finite sets A and B, as a function R from the cartesian product A×B to the
set V of L-valued truth values. And finally a fuzzy simple graph GL = (A,R)
is given by an L-valued homogeneous relation on a given finite set A.

A concrete examples may be shown with the help of the following diagram:

G = a

1

��

b
.55tt

1

��
c

.55

^^

.55

AA

where A = {a, b, c} and the relation R is evaluated in a commonly used s.t.e.d.
L100 with fuzzy truth values expressed as percents of credibility. The absence
of a relation between two nodes, that is a link evaluated as 0 is generally not
depicted in the diagram, that is R(a, b) = 0 in this example.

2.2 Defining L-valued kernels

Let GL = (A,R) be a given fuzzy graph and {κR} a singleton set. We assume
YR to be an L-valued binary relation defined on A × {κR}, that is a function
YR : A× {κR} → V , where each YR(a, κR), ∀a ∈ A, is supposed to indicate the
degree of truth associated with the proposition that the ‘element a is included
in the kernel κR’. As κR is a constant, we will simplify our notation by dropping
the second argument and in the sequel YR(a),∀a ∈ A, is to be seen as an L-
valued characteristic vector for the kernel membership function defined on a
given L-vbr R. In order to construct such an L-valued membership relation
YR, we define the following credibility degrees on necessary implicative stability
conditions similar to those imposed for kernel constructions on crisp relations.

YR is right interior stable ≡ R′ ◦ YR ≤ YR,

YR is left interior stable ≡ Rt′ ◦ YR ≤ YR,

YR is right exterior stable ≡ R′ ◦ YR ≥ YR,

YR is left exterior stable ≡ Rt′ ◦ YR ≥ YR.

where R′ is constructed from R in the following way: ∀a, b ∈ A with (a 6=
b), R′(a, b) = R(a, b) and ∀a ∈ A,R′(a, a) ∈ [0, 12]. The classic boolean matrix
product is naturally extended to our L-algebra.

3

In accordance with the crisp case, we may now define L-valued kernel solu-
tions. Let KR and YR be subsets of A:

KR is a right absorbent kernel ≡ KR ∈ ΥR
ar = max

(�)
{YR : R′ ◦ YR = YR},

KR is a right dominant kernel ≡

KR ∈ ΥR
dr = max

(�)
{YR : (R′ ◦ YR ≤ YR) ∧ (R′

t ◦ YR ≥ YR)},

KR is a left absorbent kernel ≡

KR ∈ ΥR
al = max

(�)
{YR : (R′

t ◦ YR ≤ YR) ∧ (R′ ◦ YR ≥ YR)},

KR is a left dominant kernel ≡ KR ∈ ΥR
dl = max

(�)
{YR : R′

t ◦ YR = YR}.

In this construction, we say that Y is sharper than Y ′, noted Y � Y ′ iff
∀a ∈ A either (Y (a) ≤ Y ′(a) ≤ 1

2) or (1
2 ≤ Y (a) ≤ Y ′(a)). Naturally all crisp

kernels are maximal sharp, so that this requirement does not make sense in the
crisp case. But in the general L-valued case, we retain thus as efficient kernel
solution only the sharpest ones.

Finally, we denote KR
k with k = {ra, rd, la, ld} the different solution sets for

the corresponding L-valued relational inequality systems, where R′ represents
the L-anti-reflexive transform of R and for a given L-vbr R, we shall call the
set KR

d = {YR : YR = max�(KR
rd ∪ KR

ld} its dominant kernels and the set

KR
a = {YR : YR = max�(KR

ra ∪KR
la} its absorbent kernels.

The above shown fuzzy simple graph admits two such fuzzy dominating ker-
nel solutions: Kd

1 = [.45, 1, 0], Kd
2 = [.45, .45, .55], and two such fuzzy absorbent

kernels solutions: Ka
1 = [.55, 0.45, 0.45], Ka

2 = [0, 0, 1].
Before presenting a Prolog implementation of our kernel calculus, we will

shortly discuss the computational complexity of our formal constructions.

2.3 Complexity of the L-valued kernel construction

Let R be a L-vbr defined on finite set A = a1, a2, . . . , ai, . . . , an with L =
(V,≤,∧,∨,¬,→, 0, 12 , 1) being a s.t.e.d. of size 2m + 1, that is the set V is of
finite dimension 2m + 1. Computing the sets KR of maximal kernel L-valued
characteristic vectors defined on R will necessitate to solve several constraint
satisfaction problems (CSP’s) of size O((2m+ 1)n). The CSP class of decision
problems is known to be NP -complete and in general for even small finite
s.t.e.d.’s, enumeration procedures to compute the sets KR will not be practically
achievable.

In the crisp case however, the corresponding CSP’s are of size O(2n) and
a clever enumeration procedures may give results for small finite L-vbr’s. But
for acyclic relations, efficient constructive algorithms to exhibit all dominant or
absorbent kernels for a given crisp relation R do exist (Roy 1969). For complete
L-vbr’s, there exists an algebraic computation method of linear complexity O(n)
for lower bounds in fuzziness of the n corresponding maximal L-valued kernels.
The stability of this method w.r.t. the strong L-negation allows to use a similar
approach of linear complexity O(n) to compute lower bounds of fuzziness for the
left and right unique kernel solutions in the case of L-empty relations (Bisdorff
&Roubens 1996a).

4

In the presence of general L-valued relations with associated infinite s.t.e.d.
L, as given for instance by the rational [0, 1] interval, there does not exist
any known direct algebraic procedure for the kernel construction, except for
the one-dimensional case. For the class of mononuclear crisp relations, that is
with a unique maximal kernel solution, there exists a fix-point method, initially
invented by Von Neumann, to compute the unique dominant or absorbent L-
valued kernel in a convergence depending linearly on the size of the relation
underlying set A. A variant of this method has been adapted or invented by B.
Roy for the kernel construction in his Electre methods (Roy & Bouyssou 1993).
The fix-point approach is extensively discussed by Schmidt & Ströhlein (1989)
and has been reinvented or adapted by Kitäınik to the fuzzy case (1993).

Practical experimentation however has shown that maximal kernel solutions
for general L-vbr’s are always computable in a restricted finite minimal LFD

sub-algebra of L generated by the finite subset of degrees of credibility under-
lying the evaluation of a given finite L-vbr R (Bisdorff & Roubens 1996).

But instead of determining all dominant or absorbent kernel solutions, it is
generally more efficient to search immediately for the most discriminating kernel
solution in the sense that it will thus have the overall highest degrees of truth
for kernel-membership and by the same the overall lowest degrees of truth for
not kernel-membership. In other words, we directly look for the overall sharpest
maximal kernels.

Formally, assume R to be an L-vbr defined on a finite set A and taking
values in a given s.t.e.d. and let LR be the associated restricted minimal truth
evaluation domain. Let KR

k be the sets of all admissible LR-valued kernel
characteristic vectors where k = {ra, rd, la, ld}. We define on ∀YR ∈ KR

k a
sharpness index σ2 as follows:

σ2 =
∑
a∈A

(Y (a)− 1

2
)
2

Thus, choosing a most sharp or optimal K̂R L-valued kernel solution for any
of the four partial kernel construction, may be summarised as follows:

K̂R = max
YR∈KR

k
(σ2(YR))

And determining the L-valued optimal kernel solutions, appears to be a
combinatorial constraint optimisation problem.

3 CLP(FD) implementation of the kernel con-
struction

In order to be able to solve in reasonable time and space limits such enumer-
ation problems, we propose to use a finite domain solver of type CLP(FD),
i.e. a finite domain solver embedded in a constraint logic programming sys-
tem. As generally noticed (Jaffar 1994), such finite domains solvers appear to
be particularly useful as a formal specification and implementation tools for
combinatorial optimisation problems defined on finite domains (Dincbas & al.
1990). We choose as specific CLP system, the CHIP (Constraint Handling In
Prolog) system (Aggoun & al. 1991). Our CHIP LFD model will be presented
briefly below.

5

3.1 CHIP formulation

The set A, the evaluation domain underlying integer number set V and the
LFD-vbr R is formulated in Prolog as follows:

action_set([a1, a2, a3, a4, a5, a6, a7, a8]).

evaluation_domain(V) :- L :: 0..100, dom(L, V).

relation(a1, a1, 0).

relation(a1, a3, 70).

relation(a1, a4, 62).

...

The LFD lattice operators are implemented by two primitive predicates
minimum and maximum and the corresponding L-negation is implemented as ad-
ditive complementing. The crisp true part of the L-implication corresponds to
the natural relational inequality operators on finite domains.

The predicate kernel solution calculates kernel solutions YR ∈ KR
k for

k = {ra, rd, la, ld} on the basis of a valid data set. We will illustrate the pro-
gram on the right dominant case. The other cases are similar and the fully
implemented Prolog programs are actually parametric to produce the four pos-
sible kernel solutions.

kernel_solution(Relation, Y):-

[-Relation],

% include the data set predicates

action_set(A),

% get the elements of set A

length(A, N)

evaluation_domain(V),

Min :: V, minimum(Min, V),

Max :: V, maximum(Max, V),

% get the evaluation domain underlying truth values

% with Min and Max the bottom, respective the top element

length(Y, N), Y :: V,

% constructing the kernel solution vector with

% appropriate value domains

construct_relation(N, A, A, 0, [], R),

% constructing the L_FD-anti-reflexive representation R’

prodmat(R, Y, [], X1),

% composing the relation R’ with Y to give X1

length(Yn, N), Yn :: V,

negation(Min, Max, Y, Yn),

% constructing the L_FD-negation Yn of Y

inequality(X1, Yn),

% right interior stability constraint

construct_relation(N, A, A, 1, [], Rt),

% constructing the reversed (transposed) relation

prodmat(Rt, Y, [], X2),

% composing the transposed relation Rt with Y

6

inequality(Yn, X2),

% dominant stability constraint

labelling(Y, 0, first_fail, indomain(Y, max)).

% conditional enumeration with a first_fail instantiating

% order and starting with highest possible truth values

% first.

The declarative aspect of Prolog programming style follows closely the mathe-
matical formulation of the problem and the code is in itself illustrating.

For small LFD-vbr’s we may use the above kernel solution predicate in
conjunction with the Prolog primitive findall for collecting the set Kk of all
admissible kernel solutions:

findall(Y, kernel_solution(Relation, Y), Kk),

on which we apply a special sorting algorithm to filter out all maximal sharpest
solutions in the sense of relation ‘�’. Re-applying the same sorting algorithm to
the union of the resulting right and left dominant kernel solutions or to the union
of the corresponding right and left absorbent kernel solutions gives finally the
effective dominant, respective absorbent, maximal fuzzy kernels. Unfortunately,
this straight forward or ‘brute force’ solving procedure is only operational for
small relations or for small evaluation domains as in the crisp case for instance.

For larger relations, we may use the CHIP inbuilt branch and bound enumer-
ation predicate min max to search directly, with the help of our overall sharpness
index σ2, an optimal discriminating dominant or absorbent kernel solution.

3.2 Implementing the stability constraints

But, what makes our CHIP implementation generally interesting, from an op-
erational point of view, is the embedded dynamic propagation mechanism for
binary linear and interval constraints (Van Hentenryck & al. 1989). This prop-
agation is based on techniques for node- and arc-consistency and interval prop-
agation on the constraints graph associated with the finite domain variables Y,
Yn, X1 and X2 (cf. Jaffar & al. 1994).

To illustrate the formal specification of this mechanism, we will present in
some detail the prodmat, negation and inequality predicates.

prodmat([], _, Z, Z) :- !.

prodmat([M|Tm], Q, Z, Z3):-

prodvectmat(M, Q, [], Z1),

append(Z, [Z1], Z2),

prodmat(Tm, Q, Z2, Z3).

If the first input matrix is empty the predicate gives back an unchanged result.
Otherwise the first evaluation vector is composed with the second relation ma-
trix. And this process is recursively repeated for all relation vectors of the first
relation matrix.

The composition of an evaluation vector with a relation matrix is done by
the prodvectmat predicate:

7

prodvectmat(_, [], Z, Z) :- !.

prodvectmat(M, [Q|Tq], Z, Z2) :-

evaluation_domain(V),

[X, X1] :: V, minimum(X, V),

% initialisation of the result X to the bottom element;

prodvect(M, Q, X, X1),

append(Z, [X1], Z1),

prodvectmat(M, Tq, Z1, Z2).

If the input vector is empty, the predicate returns an unchanged result. Oth-
erwise, the result of vector composition is stored in the X1 variable and this
calculus is recursively repeated for all vectors of the second argument. The
composition of two evaluation vectors is achieved by the prodvect predicate.

prodvect(_, [], X, X) :- !.

prodvect([M|Tm], [Q|Tq], X, X2) :-

maxmin(M, Q, X, X1),

prodvect(Tm, Tq, X1, X2).

maxmin(M, Q, X, X2) :-

evaluation_domain(V),

[X1, X2] :: V,

minimum(X1, [M, Q]),

maximum(X2, [X, X1]).

If the vectors on input are empty, the evaluation stays unchanged. Otherwise,
the maxmin predicate computes the actual valuation by using primitive maximum
and minimum predicates implementing dynamic constraints on the unbounded
resulting domain variables.

The negation predicate implements the LFD-negation on a truth evaluation
vector Y :

negation(_, _, [], []) :- !.

negation(Min, Max, [Y|Ty], [Yn|Tyn]) :-

Y + Yn #= Max + Min,

negation(Min, Max, Ty, Tyn).

If the first input relation vector is empty, the predicate gives back an empty
result. Otherwise the first component of the result Yn is additively comple-
mented with the first component of Y. And this process is recursively repeated
for all the components of the input vector Y. The relational FD-operator ‘#=’
installs an equality constraint on the corresponding domain variables. Thus,
at instantiation of Y, dynamic propagation of these domain equations result in
automatically implied instantiation of Yn.

The inequality predicate implements in a same manner the implicative in-
equalities for credibility vectors.

inequality([], []):- !.

inequality([X|Tx], [Y|Ty]) :-

X #<= Y,

inequality(Tx, Ty).

8

If the input relation vectors are empty the predicate does nothing. Otherwise
the first domain variable X is constrained through the relational FD-operator
‘#<=’ to take lower or equal values to the second domain variable Y. And this
process is recursively repeated for all domain variables of the input vectors X

and Y. Thus again, at instantiation, dynamic propagation of these domain in-
equations results in automatically implied limits on the values taken respectively
by X and Y.

4 Practical application to fuzzy choice

To illustrate the operational performances of our CHIP implementation for gen-
eral L-valued kernel constructions, we choose a concrete example out of the con-
text of preference modelling, where constructing choice functions on degrees of
credibility associated to out-ranking relations on a set A of alternatives through
an out-ranking index (cf. Roy & Bouyssou 1993) is a natural candidate for the
search of kernels on non trivial L-vbr’s. Our computation are done on a Cray
CS6400 Super-server under Solaris 2 with the CHIP V.4.1.0 version.

The considered set A contains 8 alternatives: A = {a, b, c, d, e, f, g, h}. The
L-vbr R defined on this set A corresponds to an out-ranking index, constructed
as two digits decimal truth values for the out-ranking relation supposed to hold
on the set of alternatives (Roy & Bouyssou 1993). Here R is represented as a
valued matrix in a Prolog programming syntax as used in our CHIP implemen-
tation. The dummy reflexive part ‘ ’ of the relation is confined to take only
L-anti-reflexive values.

R = [[_, 75, 70, 62, 0, 0, 0, 0],

[76, _, 90, 100, 82, 82, 82, 80],

[70, 86, _, 100, 100, 46, 80, 91],

[64, 65, 94, _, 88, 22, 94, 74],

[33, 57, 93, 100, _, 0, 80, 86],

[0, 73, 64, 92, 76, _, 96, 80],

[0, 63, 73, 85, 82, 70, _, 81],

[0, 60, 64, 60, 77, 0, 0, _]].

The associated integer evaluation domain uses truth values expressed as two
digits integer percents, that is V = {0, 1, . . . , 50, . . . , 99, 100}, and for instance
R(a, b) = 75 means here that the truth value of the proposition ‘alternative a is
out-ranking alternative b’ is supposed to be 75%.

We obtain three maximal dominant kernel solutions:

Y_Rd = [[24, 76, 24, 24, 24, 24, 24, 24],

[70, 30, 30, 30, 30, 30, 70, 30],

[70, 30, 30, 30, 30, 70, 30, 30]].

The sharpest dominant kernel is selecting the action {b} with credibility 76%,
rejecting on the other hand all other actions with credibility 100−76 = 24%. The
other two maximal dominant kernel solutions, equivalent in overall credibility,
select either the couple {a, f} or the couple {a, g} with same credibility of 70%.
Overall computation time is about 18 seconds with approximately 9 seconds for
generating the right respectively the left dominant maximal solutions.

9

By the way, the CHIP primitive predicate min max, implementing the combi-
natorial optimization of our overall sharpness index σ2, returns following optimal
right dominant kernel solution.

THE SOLUTION IS

labelling([24, 76, 24, 24, 24, 24, 24, 24], 0, first_fail, indomain)

ITS COST IS 14586

min_max -> proven optimality

The optimization step iterates in a kind of branch and bound mechanism through
the set ΥR

rd, improving the kernel solution by augmenting the difference be-
tween L-true and L-untrue values, to return finally, in about 8 seconds, the
above solution with proven optimality. The calculated optimal kernel selects
again element {b} as kernel member with a credibility of 76% and de-selects
or rejects all the other elements with complement credibility of 24%. From an
optimal unique choice point of view, the above overall sharpest dominant kernel
thus proposes action {b} as best first choice with associated credibility of 76%.

5 Concluding remarks

Our CHIP implementation of the kernel construction allows us to compute in
reasonable time and space limits kernel solutions for only small L-valued graphs.
But it allows to explore the solution space and discover its internal structure.
Furthermore, the Prolog formulation is generic in the sense that any other fuzzy
disjunction and conjunction as for instance the Lukasiewicz operators may be
used instead of the standard max and min operators.

Research is actually ongoing in this direction and some efficient algorithms,
mixing constraint enumeration and fix-point iteration have been successfully
applied to fuzzy kernel construction.

Finally, it is worthwhile mentioning that the support of the CLP(FD) tool,
allowed us, through its efficient constraint enumeration procedure, to uncover
the interesting theoretical properties of the kernel solution spaces in standard
min/max logical algebras (cf. Bisdorff & Roubens 1996).

References

[1] Aggoun, A., and Beldiceanu, N., Overview of the CHIP compiler system,
in proc. ICLP 91,MIT Press, 1991

[2] Berge, Cl., Théorie des graphes et ses applications, Dunod, Paris, 1958

[3] Berge, Cl., Graphes and Hypergraphes, Dunod, Paris, 1970

[4] Bisdorff, R. and Roubens, M., On defining fuzzy kernels from L-valued
simple graphs, in proceedings of IPMU’96 (Information Processing and
Management of Uncertainty in Knowledge-Based Systems), Granada, July,
1996a

10

[5] Bisdorff, R,and Roubens, M., On defining and computing fuzzy kernels
from L-valued simple graphs, in proceedings of FLINS’96 workshop on In-
telligent Systems and Soft Computing for Nuclear Science and Industry,
Mol, Belgium, September 1996b

[6] Bolc, L. and Borowik, P., Many-valued Logics: Theoretical foundations,
Springer-Verlag, Berlin, 1992

[7] Dincbas, M., Van Hentenryck, P., Simonis, H, Solving large combinatorial
problems in logic programming J. Logic Programming, New York, vol. 8,
N 1&2, January/ March, 1990

[8] Fodor, J. and Roubens, M., Fuzzy preference modelling and multi-criteria
decision support, Kluwer Academic Publishers, 1994

[9] Jaffar, J. and Maher, M. J., Constraint logic programming: a survey J.
Logic Programming, New York, vol. 19/20, pp. 503-581, May/July, 1994

[10] Kitäınik, L., Fuzzy decision procedures with binary relations: towards a
unified theory, Kluwer Academic Publ., Boston, 1993

[11] Roy, B. and Bouyssou, D., Aide multicritère à la décision: Méthodes et
cas, Economica, Paris, 1993, chap. 5

[12] Schmidt, G. and Ströhlein, Th., Relationen und Graphen, Springer-Verlag,
Berlin, 1989

[13] Schmidt, G. and Ströhlein, Th., On kernels of graphs and solutions of
games: A synopsis based on relations and fix-points, SIAM, J. Algebraic
Discrete Methods, 6 (1985), pp. 54-65

[14] Von Neumann, J. and Morgenstern, O., Theory of games and economic
behaviour, Princeton Univ. Press, Princeton, N.J., 1944

[15] Van Hentenryck, P., Constraint satisfaction in logic programming, MIT
Press, 1989

11

