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initial or dominant (exterior) stability:

VacA:(ag Yp)=(3besA:(be Yl s b, a) e R

termingl or absarbent (exterior) stahility:

VaeA:{ae Yp)=QbecA:(be Y ala b)e R
Terminal kernels on simple graphs were originally introduced by I. Von Neumann and
__u.. Morgenstern [11] under the name ‘game solution’ in the context of game theory. J.
Riguet [8] introduced the name ‘noyau (kernel)' for the Von Neumann ‘game solution’
and B. Roy [6], [7] introduced the reversed terminal or initial kernel construction as pos-
sible dominant choice procedure in the context of the multicriteria Electre decision
methods. Terminal kernels were studied by C. Berge [1], [2] in the context of the _.T:E
game modelling. Recent results on such terminal kernels on graphs for solutions of dif-
ferent games have been reported by G. Schmidl and T. Strihlein [9], [10]. Finally, L.

Kitainik [5] has recently deeply investigated dominant kernels as candidates for fuzey
choice procedures.

2 Introducing L-fuzzy binary relations

2.1 Basic denotational semantics for credibility caleulus on binary relations

To be able to manipulate the credibility of a particular relation between elements of
some finite sets, we need 1o introduce a completely ordered discrete set V of degrees of
ﬂ._mEE:.G. given by the rational interval [0, 1], We suppose that V furthermore supports
min and max operations, implementing convenient t-norms and t-conorms, In order to he
able to deal with dichotomous choice representations, as needed later an in the kernel
construction, we will furthermore assume on V an unary strong negation operation —
A_.nm:nn_ as follows : ¥ ve VW —v=1-v. As our kernel concept will rely on an implica-
live construction, we introduce on V an implication operator defined as binary operation
I.w on V verifying following conditions: i) operation — is antitonic in the first and isoto-
nic in the second argument and if) ¥ u € V, u — u = 1. Important properties follow from
E___.ncnnn_#:u_ choices (cf. [3] pp 154-171, [4] pp 28-31}): /) operation — in V is an anti-
tonic bijection on V; i) the operator triplet (min, max, —) gives a De Morgan triplet on V;
iti) 1/2 is the unigue —-fixpointin Vand iv) ¥ i, ve V(nsv)= (u—v)= 1 |

We call the complete algebraic structure £ = (¥, £ min, max, —, —, 0, 1/2, 1) a sym-
metric evaluation domain (s.e.d.) for our credibility calculus. All credibility aanwM v
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&V such that v = 1/2, are designated as L-true degrees supporting the truthfielness of a
proposition and all the degrees w e V such that w =< 1/2, are designated as L-fulse
degrees supporting the untruthficlness of the proposition in question. To each truth value
v & V corresponds a unique untruth value —v = w and the evaluation domain appears as
symmetric w.r.t. the median undetermined truth value. A special mention must be made
10 the minimal three-element symmetric evaluation domain, presenting in fact a three-
valued Ly logic with V= {0, 1/2, 1}{cf. [3]). A second, possibly infinite case, is given by
ihe standard evaluation domain used in the context of fuzzy preference modelling, that
is the bounded unit segment of the rational line V= {0, 1/m, 2/m, ..., miZm =112, ..., (m-
1)(m, mim =1}, where m is any finite positive integer (generally m = 100 so that credibil-

ity values may be seen as percents).

2.2 Formal definition of L-valued binary relations

Assume that A and B are given finite sets. A crisp binary relation from A to B is a subsel
of the cartesian product A x B, If A = B we speak of a relation & on A or a finite simple
graph. Let £ = (¥ £ min, max, —, —, 0, 1/2, 1) be a s.e.d for describing the credibility of
such binary relations. To each ordered pair (a, b) € A % B, we associate an element from
vV oAn Lvalued binary relation (short L-vbr) B between finite sets A and B, is thus a
function B : AxB — V where ¥ (a, bl e Ax B, R(a, b)=ve V. This function K is under-
stood as a degree of credibility o which the relation R between clements a e A and b e
B is assumed: to hold. In this sense, R(a, b) appears to be an L-valued «truths or
wuntrith» value for the proposition ‘(a, b) € R'. If the underlying credihility values are
restricted to [0, 1}, we obtain the standard denotational case of the classic boolean biva-
lent logic, where corresponding L-vbr's represent standard crisp relations and where
degrees 0 and 1 may be assimilated respectively 1o the hoolean values “triee’ and ‘false’.
In the sequel, we shall note B = (10, 1}, min, max, —, — 0, 1} this boclean evaluation
domain and our £-valued binary relations appear as natural multi-valued gencralization
of classical Bvalued or ‘crisp’ binary relations, L-vbr’s evaluated in B will be called in
the sequel B-valued binary or crisp relations. We may define the negation —FR, the
reverse B, Lrvalued set-union B 8, L-valued sef-intersection B 8 and the implica-
tion operator on L-vbr's K as term by term extensions of the respective L-operators. Let
us denote U the universal £-vbr and 0 the null L-vbr that is: ¥ (a, b)ye AxB, Ula, b)=1
respectively O(a, b) = 0. We shall note M = —M the unigue fixpoint of the negation, that
i« the all median-valued relation M where ¥ {a, B) £ AxR, Mia, b) = 1/2. With respect o
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inclusion on crisp relations, we may define a corresponding crisp implicative ordering
‘=" ontwo L-vbr's K and 5 defined on some finite product set AB in the following way;
R =8=Y(a, b) eAxB, R(a, b) < S(a, b). Let R* be the set of all such L-vbr's, The orders
ing (RL <) is then a complete partial order with bottom element 0 and top element U
verifying the following properties: i) 8 = § <> R — § = U i) [n the B-valued case, we
recover the standard crisp inclusion order on binary relations,

Let R: AxB = Vand 8 : B<C — V be two L-vbr's defined on finite sets A, B and €.
The Lvalued relational product or composition of & and 5 is an £-vbr 8 « § defined as
a function (& « §) : AxC = V with analogy to the standard composition of crisp relations
using max and min operators on L respectively as valued disjunction and conjunction:

W(a, b) e AXC : (R + S)a, ¢) = max [min (R(a, b), S(b, e))].
=

2.3 Sharpness of L-valued binary relations and associated cut relations

We shall see in the sequel that the trivial constant median-valued L-vbr M, in fact an £-
vbr being undetermined from the credibility point of view of the modelled relations,
plays an important and central role in the kernel construction below. In the same sense is
it interesting for our further purpose, to distinguish logically determined £-vbr's, that is
relations that do not contain any undetermined median value. We shall call L-deter-
mined an L-vbr R defined between given finite sets A and B if W(a, &) e AxB, R(a, b) 2 1/
2. Tt is worthwhile noticing that B-valued relations are nccessarily £-determined. We
shall furthermore introduce, in order to judge the more or less credibility of a kernel
characterization, a reflexive «sharpnesse relation *~° on L-vbr's defined in the follow-
ing way. Let R : AxB — Vand 5: Ax8 — V be two L-vhr's defined on finite sets A, B
We say that R is «sharpers than §, noted § = R =¥ (a, &) € AxB: either (R(a, b) = S(a,
by = 12y or (112 = S(a, b) < Ria, b)),

This sharpness relation ‘' on the set B of all L-vhr's defined between any finite
sets A and B of respective dimensions n and p, gives a complete partial order (K%, )
with the constant median-valued relation M as unique minimum element and R, the 27
possible B-valued crisp relations between sets A and 8, as the set of maximal (sharpest)
elements. This property gives hint to the fact that the maximal elements in (B, #) are
linked 1o standard defuzzification techniques as F-valued w-cut relations. But this tradi-
tional c-cuts, except from the median o-cut on L-determined relations, are not semanti-
cally compatible with the symmetric organization of the evaluation domain, In order to
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respect our basic denotational semantics, we will particularize the a-cut polarization as
follows: Let B : AXB — Vbe any L-vbr.¥ P € [1/2, 1] ,we nole R.p the Li-valued P-cut
relation constructed from R as follows: ¥ (a, b) AxB, R_gla, bi=1< Ria b >p,
R.pla, b) = 0 < Ria, b) < —p and R.pla, b) = 12 = —f= Ria, &) = p We shall _.F
concerned mainly by the median-cut relation noted R.p_yz as this R.g_yp is the maxi-
mal element associated to B in the sharpness relation (8, #). In this sense, the median
[i-cut on L-vbr's acts as a natural fruth or untruth polarization functor H_.u.__ﬂ from the
category formed by the sets of all L-vbr's defined between any finite sets to the category
formed by the sets B of all £-valued relations defined between these same finite sels.
We may notice that the restriction o L-determined L-vbr's appears as an equalizer for
median o- and B-cut polarization. .

Finally, we shall call two L-vhr's & and S, defined on product set AxB, to be of
«same shapes , noted R =y25, if R and § are associated with the same median f-cut

relation: (R =45 5) = (R.poyjz = S p=iiz)-

% Defining kernels on L-valued simple graphs

i1 Lvalued formulations of interior and exterior stability conditions

Let {¥g) be a singleton set, We assume ¥y Lo be an L-vbr defined on A x {Kg], thatis a
function ¥ : A x {Kg} — V, where each ¥gla, Kg) for W ae A, is supposed to indicate
the degree of credibility of the proposition that the ‘element a is included in the kernel
Ky . As Kg is a constant, we will simplify our notation by dropping the second argument
and in the sequel Ypla), Wa = A, is Lo be seen as an Levalued characteristic vector for the
kernel membership function defined on a given Lvbr R.
As degrees of credibility of the propositions that ‘a is a right (respectively left) inte-
rior stable element of A we choose a value ¥gia) verifying the following conditions:
max | miniRia, b), Yp(b))] = =¥gla)= 1.
be A {azh
max [ min(R™La, b), Ye(b))] = —Ygla) =1.
be A lazh
where — Vg represents the L-negation of ¥p And similarly, as degrees of credibility

Yy(a) of the propositions that ‘a is an initial {respectively terminal) stable element of A’
we choose a value Ygla) verifying the following respective condition:
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max [ min(Ria, b), Yg(b))] & —¥gla)=1.
be A fa#h)

max [ min(R™*(a, b), Yg(b))] &= —¥gia) =1.
he A, (o2l

In general, for any given L-vbr B defined on a finite set A, these Y4 values are not
unique, and we shall investigate in the sequel the admissible solution sets for convenient
conjunctions of these different stability conditions. But first, it is worthwhile noticing
that these conditions may be naturally expressed in a synthetical way with the help of
relational L-valued products and inequations.

i} Vg is right interior stable ¢ R'«Yp=Tp

ii) Yy is left interior stable < R'"Y.¥u= Vi,

itf) ¥p is absarbent stable < R+ Yp2 ‘v

iv) Yg is dominant stable = R L1.¥pz2TFp

where ¥p represents the Lnegation of Y and R' is constructed from R in the
following way: W a, be Awith (a2 b), R'(a, b) = Rla, k) and ¥V ae A, R'(a, a) e
[0, 1/2].
In the B-valued case, there is only one possible way to make R irreflexive as is required
by the interior stability and this gives a sharp irreflexive relation. In our £-valued case
however, in order to assure functional completeness of our kernel constructions, an £

vilued antireflexivity transform as defined above appears more convenient (cf. subsec-
tion 3.3 below).

3.2 Definition of Lvalued dominant or absorbent kernels

On the basis of the above stated stability conditions, we may now generalize the concept
of dominant or absorbent kernel as follows:
i) Yg™ is a right absarbent (terminal) L-valued kernel if
Yp'" = max(Z){Yg : (R'Ygr < ¥p) A (R Y2 Tp)};
i) u.,w_.z_ is a right dominant (initiel) L-valied kernel if
Y = max(#){Yg : (R"Yr S Pp) A (R L¥p 2 Fo)ki
i) ﬁah_n is a left absorbent (terminal) L-valued kernel if
Y = max(7){ ¥ : (R ¥p S Fp) A (R'sYp 2 Fp));
iv) w,h__ﬁ.__ is a left dominant (initial) C-valued kernel if

ux_ﬂ_w__«__. = max(# ) Yp (R Fp Mnﬂh”_ A _|H.L\__.ﬂ - ﬂhu_»
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We denote _n_m.h with & = {ra, rd, la, ld} the different solution sets lor the corre-
sponding £-valued relational inequality systems, where R’ represents the L-anti-reflex-
we transform of R For a given L-vbr R, we shall call the sel 5 R
:..:.:.\:_ami u _A_,__E: its dominant kernels and the set Kp® ={¥p: Yp =
maxl 7 WK™ U K™} its absorbent kernels, One may see our kernel definitions as
residual constructions, in the sense that we consider as dominant or absorbent kernel
candidates, only the maximal sharpest admissible kernel solutions.

1.3 General characterization

e to space limitations, we will present in this subsection only the most important the-
oretical results concerning general characterization of L-valued kernel solutions sels as
defined above. First, a functional completencss of our four kernel constructions is
schieved through the property that the trivial median valued kernel evaluation is an
admissible solution for any given L-vbr. Going a step further, we may notice that for a
piven kernel solution, all possibly less sharper kernel evaluations are again admissible
kernel solutions, a consequence of the floating anti-reflexive diagonal terms in k', For-
mally, let ;.hn (S .ﬁmk where k = {ra, rd, la, ld} be the respective admissible Lvalued
kernel solutions sets. Let ¥'g* be any L-valued kernel evaluation such that Yt A¥EK,
then ¥ g* € d._.__%. It thus appears, that the admissible kernel solution sets ._._.th are
organized as lower closed chains in the sense of increasing sharpness from the always
present trivial all median-valued solution to the specifically observed maximal sharpest
solutions.

For any s.e.d. £, let Grph“be the category of all L-valued simple finite graphs, in
fact the subcategory of Rel* concerned by homogeneous L-vbr's on finite sets. Let i
with i e [1/2,1] . be the B-cut functor from GrphZto Grph™?, the category of all L-val-
ued simple finite graphs. Then then median B-cut functor .:P._.m is the only natural {in a
categorical sense) B-cut functor from Grph“ to Grph™. As a consequence, we may either
compute L-valued kernels and apply a fi-cut to the L-valued maximal solutions, or
apply a B-cut to the initial relation and compute the corresponding Lg-valued kernels. In
this sense, the kernel solution sets for =qp-comparable L-vbr's (of same «shapes), will
give =yp-comparable L-valued kernels of the same median B-cut «quotient-class» as the
corresponding L£;-valued kernels on .m_uuu._._u.

Furthermore, as a corollary of the above result, we may observe that the kernel con-
structions are monotone w.r.t. the sharpness ordering ‘' on L-vbr’s introduced in sub-
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section 2.3 . Formally, let & and § be two L-vbr's defined on a given finite set A with
R and let Kg* and K¢* with & = {dominant, absorbent} be the respective maximal ke
nel solutions defined on R and S. Then ¥ ¥ e K&, 3 Yg* e Kg* such that Yit \Wxn.
Sharpening thus, in the sense of augmenting £-true credibility degrees and diminishin
L-untrue ones, the credibility degrees associated to a given L-vbr R, does eventuall
sharpen in the same sense, the resulting kernel solutions ¥,* without altering the shape
of the solutions, To effectively alter the shape of the solutions, one must change L-true
values to L-untrue or L-undetermined ones and vice versa,

Finally, one may ohserve that we recover partly the commuting property of the
median B-cut polarization with the kernel constructions, in the sense that [-cutting, at a
given credibility level the maximal kernel solutions, gives, except form eventually
newly appearing kernel solutions, the same result as constructing the maximal kernel
solutions directly on the fi-cut relation,

4 L-valued dominant kernels as choice functions on general fuzzy outranking
relations

In order to illustrate the above results, we propose to consider a numerical example
based on the preference data from a well known car selection problem in multicriteria
literature concerning the Electre I method, (cf. [4], [7]). The considered set A of alterna-
tives contains 8 possible decision actions: A = {a, b, e, d, e, f, g, h}. The L-vhr R defined
on this set A corresponds to an outranking index, constructed as two digits decimal truth
values for the outranking relation supposed to hold on the set of allernatives, The

dummy reflexive part *_" of the relation is confined to take only L-antireflexive values,
R =" = 78300, edf Hrgpehl e 8t L ISR L

(76, _, 90, 100, B2, 82, 83, &0,
[Fo. 86, _, 100, 100, &6, 80, 91],
A e R e e o I R LR
(350 ST0ma 4000 0L o) ol B a6)
ST TR M T e i Tl el 1
R TRt e T 11 s Wl
{7 od PPt g SO0 g ol

The associated integer evaluation domain uses credibility values expressed as two
digits integer percents, that is V= {0, 1, ... 50, ..., 99, 100}, and for instance Ria, b=
75 means here that the truth value or credibility of the proposition *alternative a is out-
ranking alternative b’ is supposed to be 75%. To implement effective computation of £-
valued dominant kernels we use constraint finite domains enumeration techniques as
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vncountered in the context of constraint logic programming (cf. [13]). The so computed
wiedian B-cut dominant kernel solutions for the above L-vbr R are the following:

KB by phwon Lonpstony oo s bl sooalenk
(100, polo, Lok 0,0y 180, 0 0y
(100, (o, ‘0, a0, 00 0y 100, oy’

Il internal relational structure of the corresponding £-valued dominant kernel solution
sl appears as three-dimensional complete ~-semilattice with three maximal L-valued-

dominant kernel solutions of same shape as the above Brout ones:

R [20F T, a4 o34 ey [onaeaaata ol i
(70730, '30, 30, 30, 30, 70, 30],
G e T vl T kT TR T T P U T 1

I'he overall sharpest dominant kernel is selecting the action {b} with credibility 76%,
iejecting on the other hand all other actions with credibility 100 - 76 = 24%. The other
iwi maximal dominant kernel solutions, equivalent in overall credibility, select cither
ihe couple {a, f} or the couple {a, g} with same credibility of 70%. Overall L-valued
computation time on a CRAY C56412 with the CHIFP system (cf, [12]) is about 18 sec-
unds with approximately 9 seconds for generating the right respectively the left domi-

nant maximal solutions.

5  Conclusion

We have generalized in this paper the crisp kernel concept to fuzzy kernels on L-valued
linite simple graphs. First we have introduced the concepl £ of symmetric evaluation
domain, pointing out the importance of the logically undetermined median 1/2 value. In
a second part, we have introduced L-valued binary relations and an important sharpness
ordering associated with these relations where the trivial all median 1/2-valued relation
M appears as general bottom or ‘fuzziest’ relation and classic crisp relations as maximal
‘sharpest’ relations. To achieve an L-compatible defuzzification, we generalized the
standard ct-cut technigue 1o a trivalent £, -valued f-cut one. Our corresponding L-val-
ued kernel definition appears then as a relational algebraic residual construction on the
basis of this earlier introduced sharpness ordering, generalizing in a natural way, the
on to our L-valued simple graphs.

classic crisp kernel defi
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DomFLIP4+ is the knowledge engineering module of the *FLIP++ (pronounce:
StarFlipPlusPlus) project. *FLIP++ is a tool for optimizing multiple criteria
problems. [t uses fuzzy constraints to model optimizing criteria and applies algo-
rithms such as Tabu search or genetic algorithms to the problems. DomFLIP4+
is a 4+ library. It allows the definition of new optimization problems. It helps
a domain engineer to design the structure of a new problem. However, there is a
damain independent interface to other *FLIP++ modules such as OptiFLIP++,
DyvnaFLIP++, and InterFLIP 4. Alter each iteration in the optimization process,
the considered instantiations of the problem are evaluated. Each evaluation pro-
duces a list of violated constraints. For each conatraint, a list of repair steps ia
defined that can be used to increase the score of this constraint in further itera-
tions of the optimization, A domain can be fine-tuned through moedifications of
constraints, through editing their repair lists, and through change in the optimiz-
ing parameters. A well-tuned domain can be auccessfully applied for aptimization.
Ohbject-oriented design and implementation makes this module easy Lo modify and
to reuse. Definition of new domains, system extensions with new optimizing al-
gorithms, and definition of specific domain-dependent repair steps can be done
efficiently. DomFLIP++ is tested on real-world example, namely scheduling the
steel plant LD3 in Ling, Austria.

1 Introduction
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DomFLIP++ is part of the *FLIP++ library ' for real-world decision making.
The +FLIP++ library allows optimizing under vague constraints of different
importance using uncertain data, where compromises between antagonistic
criteria can be modeled. Typical application areas include scheduling, design,

configuration, planning, and classification.

1.1 FLIP++ as part of a scheduling project

+FLIP++ is composed of the following layered sub-libraries:

o FLIP++: the basic fuzzy logic inference processor library.

o ConFLIP4++: the static fuzzy constraint library,

e DynaFLIP++: the dynamic fuzzy constraint generation library.
o DomFLIP++: the domain knowledge representation library.



