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Abstract 

In this article we try to illustrate that constraint logic programming (CLP) systems allow easy expression and 
solution of constrained decision problems. In order to do so, this paper proposes CLP solutions for two industrial 
linear optimization problems respectively using the Prolog III and the CHIP language. The first problem, a mixed 
linear multicriteria selection problem, illustrates the general linear rational solver. In order to fix some integer 
variables a branch and bound rounding heuristic is formulated. The second problem, a linear integer multicriteria 
location problem, is only concerned with integer finite domain variables and is particularly adapted to the CHIP 
system that provides a computation domain handling such variables. 
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1. Introduction 

This article presents the studies that were con- 
ducted at the Centre de Recherche Public - 
Centre Universitaire of Luxembourg in collabora- 
tion with the ARBED Luxembourg s.a. steel in- 
dustry about the solving capacities of constraint 
logic programming (CLP) systems [9] in industrial 
linear optimization problems. Indeed, the declar- 
ative power of logic programming and the avail- 
ability of integrated constraints system solvers 
make these CLP systems, like C L P ( ~ )  [9], Prolog 
III [4,5], or CHIP [6-8], to some extent potential 
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alternatives for the traditional mathematical pro- 
gramming (MP) modelling environments and 
solvers, like MPSIII from Ketron and XPRESS, 
or OSL from IBM and the MP Fortran library 
proposed by NAG. 

Originally, Prolog systems, based on the solv- 
ing principle of logic unification of Horn clauses 
in a Herbrand universe, were designed to deal 
with natural language problems. Very soon how- 
ever, when dealing with numerical problems, it 
became interesting to replace the simple Prolog 
unification with a general constraints solving 
mechanism, which led to the CLP systems like 
the Prolog III system [4]. The kernel of this 
Prolog system consists in a general constraints 
system solver, which first tests if a constraints 
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system is solvable and then tries to simplify the 
system in order to make the solutions appear. 
The numerical sub-kernel which is used for the 
resolution of rational linear equations and in- 
equalities, includes a specially adapted simplex 
solver and a special dynamic simplification mech- 
anism. 

A first industrial problem, formulated as a 
mixed linear goal-programming problem, con- 
cerns a multicriteria selection tool for the daily 
production in a coil rolling mill at the ARBED 
Dudelange plant [1,2]. This problem is solved 
with the help of the Prolog III system. Thus we 
can illustrate the generic linear-programming fa- 
cilities of the CLP systems. To solve the complete 
mixed problem, we furthermore show the imple- 
mentation of a simple branch-and-bound round- 
ing heuristic. 

The introduction of consistency-checking and 
constraint solving techniques also characterizes 
the CHIP system [7]. In addition to Prolog III, it 
offers these techniques as well in finite positive 
integer domains [8]. Some higher-order predi- 
cates for optimization by means of a kind of 
depth-first branch-and-bound technique thus al- 
low combinatorial optimization and integer lin- 
ear-programming problems to be solved. 

To illustrate these features we present a sec- 
ond industrial problem, appearing as a complete 
integer problem, that concerns the optimal dis- 
posing of steel girders before expedition at the 
ARBED Differdange plant [3]. This problem is 
solved with the help of finite domain computa- 
tions in the CHIP system. As a normal Prolog 
execution easily allows enumeration of a set of 
discrete solutions, this example will illustrate the 
ease of use of the CHIP integrated branch-and- 
bound solver. 

2. Introducing the industrial problems 

The problems considered appeared at the 
ARBED Luxembourg s.a. steel industry. The first 
one, entitled 'coils selection problem', is con- 
cerned with the production schedule of the rolling 
mill for coils at the ARBED Dudelange plant 
[1,21. 

2.1. The coils selection problem 

In order to reach a particular thickness, coils 
are rolled at the ARBED Dudelange plant. Coils 
are defined by a set of characteristics such as 
weight, width, postrolling thickness, postrolling 
treatment and ultimate delay of production. Coils 
having all the same characteristics are gathered 
to form an order post. 

The list of coils that will be produced during 
the next 8 hours has to be determined. These 
coils are selected among each post available in 
the stock and the following criteria restrict the 
possible choices. 

The selected coils amount to a total weight 
that cannot exceed the production capacity of the 
rolling mill. 

For each postrolling treatment, percentages 
are defined in order to restrict the number of 
selected coils that have to undergo this process- 
ing. 

All the coils in stock belong to several width 
classes. In order to reduce the presetting checks 
occurring when a width class is changed, if a coil 
is selected in one of them, then at least a defined 
number of coils has to be chosen in this class. 

Finally, the most urgent coils must be selected 
in order to respect the delivery delays. 

The second industrial problem we consider, is 
related to the disposing of finished girders in the 
expedition parks at the ARBED Differdange 
plant [3]. We shall later on refer to this problem 
as the 'girders disposing problem'. 

2.2. The girders disposing problem 

A lot of finished girders produced at the 
ARBED Differdange plant are not immediately 
shipped and have to be disposed until they leave. 
The plant uses expedition parks which are di- 
vided into zones of different lengths and capaci- 
ties where these products can be stocked. Be- 
tween two parks, wagons come to load the girders 
ready for expedition and rolling bridges help to 
carry the girders into a zone or onto a wagon. 

A girder is characterized by length, weight, 
order and customer. Girders sharing all four 
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characteristics are gathered to create an order 
post. 

Posts having the same order or customer are 
usually loaded on a same wagon for a common 
destination. Therefore,  they must be disposed in 
one zone or in several zones near each other in 
order to minimize the moves of the wagons and 
rolling bridges at the time of their expedition. 
The distance between two posts is expressed by 
the distance between the zones in which they are 
placed. 

Because of the specific characteristics of gird- 
ers and zones, only a limited number  of posts of a 
certain length can be disposed in a same zone. 

In the following section we will illustrate the 
linear optimization capacities of CLP systems by 
solving the coils selection problem. 

3. Solving general linear problems with CLP 

In order to illustrate the use of a simplex 
solver in a CLP system, we shall first formulate 
the coils selection problems as a mixed goal-pro- 
gram. As the Prolog I I I  system at the time of our 
experimentation did not provide any primitive 
predicate for immediate solving of a mixed MP 
problem, first, a relaxed rational solution in Pro- 
log I I I  is proposed. To fix the integrity constraints 
we then show the implementat ion of a branch- 
and-bound rounding heuristic. Incidentally this 
also allows us to show the Prolog programming 
style. 

3.1. Mathematical formulation o f  the coils selection 
problem 

The multicriteria coils selection problem can 
be viewed as a mathematical-programming prob- 
lem where the last criterion - specifying that the 
most urgent coils have to be selected first - 
figures as an objective function: 

min F = c .  x. 
x > 0  

x is a vector of n unknowns, i.e. the number  of 
selected coils in each post available in the stock 

and c is a vector of estimated delays for the end 
of the milling process related to each post. 

The limitation of the stock and the other crite- 
ria, defined above, give rise to the following con- 
straints: 

a) Availability o f  coils in the stock: 

x < _ u  

where u is a constant vector representing the 
number  of available coils in each post in stock. 

b) The selected coils x amount to a total weight 
confined to a given interval [bin, bM]: 

b m --X~ <a  "x < b M + x  ~ 

where a is a constant vector which associates a 
unit weight with each coil of the corresponding 
post. The unknowns x~ are deviational variables 
which have to be minimized according to the 
relative preference priority given to this selection 
criterion. 

c) The percentage o f  selected coils x which haue 
to undergo the postrolling treatment t is confined to 
a given interval [ptm, p~]:  

pt m a ' ( x "  vt)  pt u 

100 x~ <_ < _ - -  + x e a • x 100 

where v t is a characteristic vector filtering the 
posts related to t reatment  t and ' . '  represents 
the term by term product operator.  This con- 
straint may be activated for each possible 
postrolling t reatment  t. As in the preceding con- 
straint, x e represents a vector of deviational vari- 
ables. 

d) i f  a coil is selected in a given width class w, 
then at least k coils have to be selected in this class: 

b b U w . x w b w < v W ' X  <Xw( u) 

where v w is a characteristic vector filtering the 
b is a binary variable posts of width class w and x w 

specifying when coils have been selected or not in 
the width class w. We define b w as follows: 

b w = min (k ,  v w ' u )  

i.e. either k if there are at least k coils having 
the width w in stock or vW.u,  the rest of coils 
having the width w in stock. 
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According to constraints b) and c), the objec- 
tive function becomes 

min F =pe. (F ,  x e, X b) 
x>O,Xe,X b 

where pe represents the relative priorities of the 
selection criteria. 

This problem appears  as a mixed-linear goal- 
programming problem, where the x are integer 
variables, the x e are rational variables and the x b 
are binary variables. It can be formulated as a 
Prolog I I I  program on the basis of the following 
general solution. 

3.2. Solving rational linear programming problems 

CLP systems like Prolog I I I  or CHIP  provide 
facilities to state and solve linear programming 
problems. As a concrete example, we consider 
the following general case: 

min F = c ' x  
x ~ 0  

s.t. ,4x = b. 

Prolog I I I  [4,5], like CHIP  [6,7], can easily 
express this constraints system with coefficients 
and variables represented by rational numbers of 
possibly infinite precision. Moreover,  these lan- 
guages allow this problem to be solved by an 
adapted simplex method. The corresponding Pro- 
log I I I  program could be the following (The syn- 
tax of Prolog I I I  follows the 'Marseil le '  style, that 
is ( . . . )  indicates a list, and constraints are 
enclosed in accolades): 

min(c, b, x, F)-> 
constraint(A, x, b) 
scat_prod(c, x, F) 
minimize(F), 
{x=<xl, x2,..., xn>, 
c=<cl, c2,..., cn>, 
A=<<a11, a12,..., aln>, 

<a21, a22,..., a2n>, 

<am1, am2,..., amn>>, 
b=<bl, b2,..., bm>}; 

where the vectors x and c are represented by 
lists of n terms, the vector b is expressed as a list 

of m values, and the matrix A as a list of m 
vectors represented again by lists of n coeffi- 
cients. 

The predicate c o n s t r a i n t dynamically con- 
structs the linear constraints system: 

constraint(<>, _, <>)->; 
constraint(<a>. A, x, <b>.b')-> 

scat_prod(a, x, r), 
constraint(A, x, b'), 
{r<=b}; 

On the other hand, the s c a l_p  r o d predicate 
calculates the scalar product of two vectors in a 
recursive call: 

scat_prod(<>, <>, 0)->; 
scal_prod(<x>.X, <y>.Y, x*y+s)-> 

scal_prod(X, Y, s); 

Finally, the primitive predicate m i n i m i z e 
computes, via an adapted simplex solver, the opti- 
mum solution value m of F considering the cur- 
rent system of constraints, adds the constraint 
(F = m} to this constraints system and simplifies 
it. 

The simple and straightforward specification 
of a general linear MP problem demonstrates the 
declarative power of CLP systems. The Prolog 
text is quite close to the mathematical  formula- 
tion and to some extent, the CLP system acts like 
a modelling environment. This interesting charac- 
teristic can be well illustrated with the help of the 
coils selection problem. 

3.3. Solving the relaxed rational coils selection 
problem 

In order to formulate the constraints a), b) and 
c), we construct the following i n r a n g e predicate 
which restricts term by term the elements of a list 
to particular boundary values t. m and L M: 

inrange(<>, <>, <>)->; 
inrange(<x>.X, <m>.L_m, <M>.L_M)-> 

inrange(X, L_m, L_M), 
{x>=m, x<=M}; 

The availability constraint a), combined with 
the fact that x > = O, can be expressed with the 
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help of the i n r a ng e predicate called with ap- 
propriate arguments: 

i n r a n g e ( x ,  v_O,  u ) ;  

with v 0 being the null vector of same dimension 
as x. 

By combining this i n r a n g e predicate with 
the previously defined s e a l_p  r o d predicate, the 
production capacity constraint b) is again easily 
formulated: 

seal_prod(a, x, r), 
inrange(<r>, <b m-x eb>, 

<b M+x eb>); 

where x eb is the deviational variable attached 
to this constraint. 

For each postrolling t reatment  t, the con- 
straint c) is expressed in the same manner: 

vect_prod(x, v_t, x_t), 
scat_prod(a, x_t, r_t), 
inrange(<r_t>, <p_mt/1OO*r-x_et>, 

<p_Mt / lO0*r + x_et>) ; 

with the following vect_prod predicate realizing 
the term by term product of two vectors: 

veet_prod(<>, <>, <>)->; 
vect_prod(<x>.X, <y>.Y, <x*y>.Z)-> 

vect_prod(X, Y, Z); 

Finally, the objective function is stated as fol- 
lows: 

scat_prod(c, x, F), 
scal_prod(p_e, <F>.x_e, F'), 
minimize(F'); 

assuming that x_e and p_e take the following 
form: 

x_e=<x_el, x_e2,..., x_et, ...>, 
p_e=<p_F, p_el, p_e2,..., p_et, 

• . .>; 

The CLP formulation thus appears  as a formal 
model rather  close to the mathematical  formula- 
tion. In this sense the CLP systems appear  as 
modelling environments for linear MP problems. 

As mentioned above, the Prolog I I I  system 
actually does not provide any primitive predicate 
for immediate solving of an integer or a mixed 
linear MP problem. Instead, we used a simple 

rounding procedure in order to transform the 
optimal values of x found with the m i n i m i z e 
predicate into integers. This approach, quite ac- 
ceptable in a goal-programming context, has 
proved fairly adequate in practice. At this point, 
it is important to note the impossibility to imple- 
ment  a traditional rounding procedure based on 
the dual solution of the problem as the simplex 
tableau and the rational solution base are not 
accessible through the m i n i m i z e predicate. 

Experimentation also showed that the rational 
b values of the x w vector are not uniquely deter- 

mined. To get a single rational solution, we first 
solved the relaxed problem which does not con- 
sider the 'width class' constraint d). In a second 
step, we implemented a progressive branch-and- 
bound like rounding procedure in order to satisfy 
the omitted constraints. This also allows us to 
show the Prolog programming style. 

3.4. Satisfying the 'width class' constraint 

The optimal values of the x vector which 
satisfy the relaxed rational problem being found, 
we use a progressive branch-and-bound tech- 
nique to find a solution satisfying the constraint 
d). 

First, all the selected coils which do not re- 
spect the constraint d) are eliminated from the 
solution and the corresponding width classes are 

b variables associated with kept in a list W. The x w 
these classes are non-integers. We get a feasible 
solution z and its objective function's value G. 
The process is decomposed into three steps. 

The bounding step consists in searching, for all 
unsatisfied width classes W, for the correspond- 
ing list of possible improvements L due to the 
fact that coils are selected in these classes as 
explained before: 

b o u n d (  , , <> ,  < > ) - > ;  
b o u n d ( z ,  G, <w>.W, < I > . L ) - >  

c o m p u t e ( z ,  w, GO), 
max imum(G-GO,  O, 1 ) ,  
b o u n d ( z ,  G, K, L ) ;  

The e o m p u t e predicate is a predefined exter- 
nal user-rule written in C, which calculates the 
value of the objective function if we select the 



R. Bisdorff, S. Laurent / European Journal of Operational Research 84 (1995) 82-95 87 

coils of class w (The possibility of defining exter- 
nal user-rules in C makes the Prolog I I I  system 
very attractive for developers). The m a x i m u m 
predicate chooses the best possible improvement 
related to this class. Again, we miss any informa- 
tion about the simplex tableau and therefore it is 
not possible to use dual variables to select the 
best improvements.  Instead we used a simple 
heuristic selecting rule like ' the most urgent coils'. 

At the separating step, we consider the maxi- 
mum improvement p 1 found in the list L related 
to a width class w. We compute the solutions z0, 
z 1 and their objective functions G 0 and G 1 corre- 

b sponding to the two possible values of the x w 

variable: 

separate(z, G, L, W, zO, zl, 
G-pl, W')-> 
max dif(L, W, w, pl), 
remove(W, w, W'), 
new solution(z, w, zl), 
{zO=z, pO=O}; 

G-pO, 

branch bound(z, G, <>, z, G)->; 
branch bound(z, G, W, z, G)-> 

bound(z, G, W, L) 
max list(L, p), 
{p=O}; 

branch bound(z init, G init, W, 
z fin, G fin~-> 
bound(z init, G init, W, L) 
max dif(L, W, , p) 
separate(z init, G init, L, W, 
zO, zl, GO, GI, W') 
branch(zO, zl, GO, G1, W', z fin, 
G fin), 
{p>O}; 

If the list w of width classes is empty, the 
problem is solved. If  the list of possible improve- 
ments only contains zero values then the actual 
solution z is the final one. Otherwise, the bound- 
ing, separating and branching steps are executed. 

3.5. Experimental results and discussion 

Of course, the solution associated with the 
b O, for which no coils of the class w choice Xw = 

are selected, is the actual solution z and the 
objective function's value is G. 

The max d i f predicate determines the class 
w which h a s  the maximum improvement  in the 
list L. The r e m o v e  predicate takes the class w 
out of the set w and the n e w so l u t i o n predi- 
cate is again a C user-rule which computes the 
solution vector z 1 associated with the choice of 
the class w. 

The branching step chooses either the solution 
b 1 according to the b =  0 or the solution x w= Xw 

improvement  associated with these respective 
possibilities. 

branch(zO, zl, GO, G1, W, z', G')-> 
branch bound(zO, GO, W, z', G'), 
{GO<=GI}; 

branch(zO, zl, GO, GI, W, z', G')-> 
branch bound(zl, G1, W, z', G'), 
{GO>GI}; 

Finally, the main predicate b r a n c h b o u n d 
gathers the three cases developed above : -  

This solution was tested on a real selection 
problem. 100 coils had to be selected among 429 
coils divided into 167 order posts. The total weight 
of the chosen coils had to be confined between 
2000 and 2200 tons. The percentage of selected 
coils for each of the three postrolling treatments 
had to be respectively between 18 and 32%, 28 
and 32%, 48 and 52%. Finally, at least four coils, 
if possible, had to be selected in each width class. 

On a Sun Sparc Station IPC the generation of 
the constraints system required 8 seconds while 
the simplex resolution for the relaxed rational 
problem takes 65 seconds. This model can easily 
be translated into a CHIP  program (this transla- 
tion requires only syntactic modifications due to 
the different underlying Prolog dialects) which 
would demand, for the same data, 9 seconds for 
constraints generation and 19 seconds for the 
optimization part. 

The coils selection solution illustrates not only 
the declarative power of CLP systems but also 
their solving capacities. The execution times are 
quite satisfying and may be compared to tradi- 
tional MP solvers. To some extent, they appear  as 
modelling environments for linear MP problems 
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as they provide not only an integrated simplex 
solver but also an integrated dynamic manage- 
ment of the constraints system. 

But at this point the first drawback of the 
actual CLP systems for solving linear MP prob- 
lems appears. The CLP simplex solver is embed- 
ded as a black box and it returns only the primal 
solution without any information about the con- 
text of the solution as described for instance in 
the simplex tableau (A reasonable suggestion for 
the CLP software industry would be to try to 
include optionally an access to the simplex tableau 
for experienced MP users). 

But if rational variables could be avoided, these 
techniques should not be necessary for solving an 
integer linear programming problem. In fact, the 
coils selection problem could be reformulated as 
a complete integer problem. However, the CHIP  
system gives an answer to these kinds of problems 
because it provides the possibility of working with 
positive finite integer domain variables. The fol- 
lowing solution of the girders disposing problem 
is a representative example using this powerful 
tool. 

4. Solving integer linear programming problems 
in CHIP 

Indeed, CHIP ' s  positive finite integer domains 
facilitate the modelling and solving of discrete 
combinatorial problems [7,8]. 

4.1. Finite domain computat ions in CHIP  

CHIP  uses finite domain variables whose val- 
ues range over a finite set of constants of natural 
numbers. Moreover, constraints between these 
variables can easily be established: arithmetic 
constraints, symbolic constraints (which state a 
logical or functional dependence between domain 
variables) and even user-defined constraints. 
CHIP  also treats the constraints in an active way 
by solving them immediately or by reducing the 
search space as much as possible. The following 
example, defining a relation between two vari- 
ables, illustrates these characteristics (The syntax 
of CHIP  follows the 'Edingburgh'  style, that is, 

lists are delimited with square brackets. The %- 
phrases comment  on the actual domains of the 
variables): 

relation(N, V):- 
N::1..5, %N={I, 2, 3, 4, 5} 
Image=[5, 3, 9, I, 4], 
element(N, Image, V), %V={5, 3, 
9, I, 4} 
V#>=4, %N={1, 3, 5}, V={5, 9, 4} 
N#>=3, %N={I, 3}, v={5, 9} 
indomain(N). % {(N--I, V=5), 
(N=3, V=9)} 

First, a domain variable N is defined. Its values 
range over the finite set of consecutive integers 
from 1 to 5. The e l e ment predicate defines a 
functional relation between N and V. In fact, N 
specifies an index to the list [ 5 , 3 , 9 , 1 , 4  ] for 
the variable v (if N -- 1 then v = 5 . . . ) .  Therefore,  
the domain of v, that is the image of the r e t a- 
t i on (N,  V), corresponds to this finite set of 
constants. The next constraint requires that V 
must be superior or equal to 4. This implies that 
the values 1 and 3 are removed from the domain 
of v and, according to the e t e m e n t constraint, N 
is now restricted to the integers set r 1 , 3 , 5  3. 
Thus co-restrictions on the r e t a t i o n ( N, V ) 
may be activated. The last constraint acts like a 
restriction on the domain of the relation. It ex- 
cludes the integer 5 from N's domain and conse- 
quently, V can only take the values 5 and 9. 

Thus, by simply testing the constraints, the 
CHIP  system deduces the restricted domains of 
the concerned variables. Then a predefined i n- 
d oma i n predicate generates the different solu- 
tions of this example. It instantiates N to the 
smallest value in its domain. On backtracking it 
assigns the next higher value in the domain to the 
variable and it tries all possible values from the 
smallest to the biggest. To each generated value 
of N corresponds a particular value of V with 
respect to the e t e m e n t constraint. Therefore,  
we obtain two solutions: N = I ,  V=5 and N=3, 
V=9. 

This labeling process can be exploited in order 
to find values of domain variables which optimize 
some objective function by using a kind of depth- 
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first branch-and-bound technique as we did for 
the coils selection problem [8]. 

A generic example of such an optimization 
procedure is given below: 

optimize(Varlist, Objective) :- 

define domains (Varlist), 
generate contraints (Varlist), 
objective function (Varlist, 

Objective), 
min max ( labeling (Var li st), 

[Objective]). 

First a list of finite domain variables, v a r I i s t, 

is defined Then a second predicate generates 
constraints on these domains. A third call will 
construct an objective function in order to evalu- 
ate the possible instantiations of v a r l i s t by 
means of the 0 b j e c t i v e value. And finally, a 
higher-order predicate m i n m a x will search 
among the possible instantiations of v a r l i s t ,  
generated by the following l a b e l i n g predicate, 
for the solution v a r l i s t which is optimal for 
the O b j e c t i v e .  

labeling([]) . 
labeling([VIVs]) :- 

indomain(V), 
labeling(Vs). 

In cases where such an optimal solution is 
difficult to obtain, variants of these predicates 
allow the adaptation of the searching strategy by 
using e-optimality or time-out to shorten the 
search time. 

The solution of the girders disposing problem, 
which we present in the following section, takes 
advantage of these finite domain facilities. 

First the mathematical  formulation of the 
problem is described. Then the essential points of 
the corresponding CHIP  program are presented 
and finally, the results are discussed. 

4.2. Mathematical  formulation o f  the girders dis- 
posing problem 

Assume that Z = {z 1, z 2 . . . .  , z m} is the set of 
m zones composing the expedition parks and that 
P = {Pl, P2 . . . . .  p,} is a set of n posts, where the 
first p posts are already in stock and the follow- 

ing n-p posts still have to be stocked. The final 
disposing of all the posts can be formulated as a 
correspondence A = (P,  Z, L), where L repre- 
sents a relation between the set P of posts and 
the set Z of zones. 

To simplify the presentation we suppose that 
each post may only be disposed entirely onto one 
of the existing zones and each post is actually 
disposed somewhere. Thus the correspondence A 
describes a functional relation between P and Z 
and the inverse relation L - 1  defines a partition 
P / L - 1  on P that describes the final gathering of 
posts in the zones. 

The disposing problem can now be formulated 
as the search for a particular relation L such that 
the resulting partition P / L  -1 satisfies our dis- 
posing criteria, for instance it should gather those 
posts that have the same order or customer. 

In a lot of real cases, the dimension of the set 
of all possible relations between posts becomes 
important. For instance, if 150 new posts have to 
be disposed among parks composed of 40 zones 
where 500 other posts are already in stock, there 
are in theory about 4015° possibilities. But the 
disposing capacity of different zones and other 
access restrictions, like length considerations, 
limit the zones to be taken into consideration for 
each post. Indeed, the girders that form a partic- 
ular post Pi have all the same length lp i and a 
certain total weight wi (i = 1 . . . . .  N).  On the 
other hand, each zone zj ( j  = 1 . . . .  m) is charac- 
terized by its length lzj and its capacity cj. There-  
fore, only a limited number  of posts of a certain 
length can be stocked in the same zone. This 
leads to the following capacity and length con- 
straints. 

Let  P / L ~  -1 denote the set of posts stocked in 
the zone zj. 

Vzj ~ Z: 

Length constraint : Vp i ~ P / L ~  l, lzj > Ipi , 

Capacity constraint : Y'. w i < cj. 
Pi ~E P / L j -  } 

We shall note A the set of all possible rela- 
tions L between posts and zones under the above 
constraints. 
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Now, our first disposing criterion concerns the 
gathering of the posts of the same customer. In 
order to evaluate the possible partitions P / L -  
according to this criterion, we need to introduce 
an evaluation of the geographical spreading of 
the posts over the zones. To do so, we define a 
distance between the location of the posts. If  zj 
and z j, represent the zones where the posts Pi 
and Pi' are disposed, i.e. we have the correspon- 
dences piLz~ and pi, Zzj,, their distance dii, is 
evaluated in the following way: 

'd~ if z j = z j , ,  

d 2 if zj and z~, are contiguous, 

d 3 if zj and zf  are separated 

by r zones ( r  > 1), 

dii' = d 4 if zj and z / a r e  in different parks 

linked by a rolling bridge or a 

common access road, 
d 5 if zj and z / a r e  in different parks 

not linked, 

with d x < d2 < d3 < d4 < ds, in order to match 
our underlying disposing preferences. 

Let G~ and Gj be groups of posts related to a 
particular customer c j, where the first set of posts 
is already in stock and the second has to be 
disposed. In order to evaluate the resulting 
spreading of these posts, we construct the corre- 
sponding sets of distances: 

D c j =  {dii, I Pi, P i ' ~ G j  A i  <i '}  and 

Dc5 = {die, [ Pi ~ a j  A Pi' E G~}, 

where D u, represents the distance between the 
zones zj and z j, where the posts Pi and Pe are 
stocked such that we have the relations piLzj  
and peLz f .  The evaluation of the disposing of 
the posts for customer j is summarized by the 
following formula: 

dJ = E dii' 
(DcjuDc~) 

and our first criterion may be formulated by the 
following objective function: 

min F~ = ~_~d{ 
L~A j 

A second disposing criterion concerns the 
gathering of the posts belonging to the same 
order o h of a particular customer cj. 

We can reuse the same spreading evaluation 
as before. Let O~ and Oj~ be sets of posts of the 
same order o k of customer cj, that are in stock, 
respectively have to be disposed. We construct 
the corresponding set of distances between these 
posts. 

Dojk= {dii, l P i, p i ,~  Ojk A i <i '}  and 

Oo;k = {dii, I P i ~ Ojk A pc ~ O}k }. 

The evaluation of the disposing of posts of all 
the orders o h for customer c j, is summarized by 
the following formula: 

k ( Dojk tO DoCk ) 

and the second criterion gives rise to the follow- 
ing objective function minimizing the above 
spreading evaluation for all customers: 

min F o = ~ dJo 
LEA j 

The overall optimal disposing of the posts con- 
sidering both criteria may be achieved by a goal 
programming strategy which minimizes conjointly 
the sum of the two above objective functions. 

As posts of the same order in the parks are 
more often loaded together for expedition than 
those related to the same customer, we balance 
the overall objective function by two priority coef- 
ficients r o and r c with r o >> r c in order to insist 
on the corresponding minimization. Finally we 
obtain the following goal-program: 

m i n F = r c . F ~ + r o . F  o. 
L~A 

Thus our simplified girders disposing problem 
appears as a fairly simple multicriteria linear 
location problem, where the decision variables 
have finite domains. 

This will allow us to formulate and solve this 
problem with the help of the finite computations 
resources of the CHIP  language. As already no- 
ticed above, our solution will follow closely the 
above mathematical  formulation. 



R. Bisdorff, S. Laurent / European Journal of Operational Research 84 (1995) 82-95 91 

4.3. Solving the girders disposing problem in CHIP 

We must first define the decision variables and 
their domain. 

To identify the posts, we use an index variable 
I with domain 1 . .  N. This index variable I allows 
us, by means of the e l e m e n t  predicate (de- 
scribed in Section 4.1.), to associate a post with 
its characteristics like order-number, customer- 
number, length of its girders and total weight of 
the post. 

In order to identify the disposing zones we use 
a finite domain variable J with domain 1 . .  M that 
gives us, in a similar way, an index to the zone's 
park-numbers, lengths and disposing capacities. 

Now, as the correspondence A between the set 
of posts and the set of zones is supposed to 
describe a functional relation, we may express 
this relation by a set of N location variables, 
which act as our decision variables. For each post 
Pi, a location variable L i represents the number 
of the zone where it is or will be disposed. There- 
fore, the domain of these decision variables cor- 
responds to the possible zone's numbers, that is 
the consecutive integers from 1 to M. Let us call l 
the list of our N location variables. 

L=[LI, k2,..., LN], 
L::I..M. 

In order to ensure that the weights, disposed 
by a correspondence h onto the zones, do not 
exceed the disposing capacities of the zones, we 
define for each zone a charging variable indicat- 
ing the actual weight disposed onto that particu- 
lar zone. These charging variables take their val- 
ues between 0 and the disposing capacity of the 
corresponding zone. 

DisposingCap=[Cal, Ca2,..., CAM], 
Charges=[Chl, Ch2,..., ChM], 
Chl::O:Cal, Ch2::O:Ca2,..., 
ChM: :O:CaM, 

In this domain declaration, the ': '  symbol spec- 
ifies domains in which only the minimum and 
maximum values are interesting. Here the mini- 
mum value is used to represent the actual charg- 
ing of the zone that we initialize to 0. On the 
other hand, the '..' symbol, used in the location 

variables declaration, indicates that domain val- 
ues can be removed inside the indicated bounds. 

In order to initialize the actual stock situation, 
we assume that a list D i s p o sed  gives the posts 
P i that are already disposed onto the zones z i. 
Thus, we have to instantiate the corresponding 
location variables and to modify the charging 
capacities of the zones concerned. In order to 
access the location and the charging variables by 
their index, we gather these variables in a L oc-  
Term, respectively in a CapTerm: 

Disposed 
=[[P1, Zl], [P2, Z2],..., 
[PQ, ZQ]], 

Locterm=relation var(L1, 
L2,..., LN), 

CapTerm=charging_var(Chl, 
Ch2,..., ChM), 
PostWeights=[Wpl, Wp2,..., 
in stock(Disposed, LocTerm, 
CapTerm, PostWeigths). 

WpN], 

where the i n s t o c k  predicate is defined in a 
recursive way on the list of disposed posts in the 
following way: 

in_stock([ ], , , ). 
in_stock([[I, J] ] Ds], LocTerm, 

CapTerm, PostWeights):- 
arg(I, LocTerm, LI), 
LI#=J, 
arg(J, CapTerm, ChJ), 
element(I, PostWeights, WI), 
ChJ#>=WI, 
in_stock(Ds, LocTerm, CapTerm, 

PostWeights). 

First, the a r g predicate associates I with the 
I-th variable in the LocTerm. The domain of this 
variable l I  is then constrained to the number of 
zone J. The same arg predicate is used to extract 
the J-th charging variable out of the C a p T e r m 
and the corresponding lower bound is restricted 
to the weight of the I- th post. This weight is 
extracted from the P o s t w e i g h t s list with the 
help of the e l e m e n t predicate. 

This concludes the definition of domains of 
the decision variables and their data context. 
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W e  must  now s ta te  the  access res t r ic t ions  im- 
posed  on the  re la t ion  L by the length  const ra int .  

length_constraint(ToBeDisposed, 
LocTerm, 
GirderLengths, 
ZoneLengths). 

T o Be D i s po s e d r ep resen t s  the  list of  posts  
that  have to be d i sposed  in the  parks .  This  con- 
s t ra int  uses the  fol lowing p red ica t e s  in o r d e r  to 
r educe  the  doma in  of  each  loca t ion  var iab le  t. r 
to be  n u m b e r  of  zones  tha t  are  long enough.  

length_constraint(l], , ) . 
length_contraint ([I I T], LocTerm, 
ZoneLengths) :- 

element(I, GirderLengths, LpI), 
arg(I, LocTerm, LI), 
element(LI, ZoneLengths, LzLI), 
LzLI#>=LpI, 
length_constraint(T, LocTerm, 
ZoneLengths). 

A g a i n  the  e l eme n t and  the a r g p red ica t e s  
allow us, first to access the  length  of  the  g i rders  
of  pos t  I ,  tha t  is L p I ,  and  then  to access the  
co r r e spond ing  loca t ion  var iab le  L I .  This  dispos-  
ing zone  des igna ted  by LI is assoc ia ted  by the  
e l e m e n t  p r ed i ca t e  with a cer ta in  zone  length  
L z L I .  But this zone length  t. z L I must  always be 
super io r  or  equal  to the  d i sposed  g i rders  length  
L p I .  The  symbolic  link, ins tan t i a ted  by the e l e-  
m e n t p red ica te ,  au tomat ica l ly  puts  such a co-re-  
s t r ic t ion on L I .  

W e  are  now able  eventua l ly  to e n u m e r a t e  all 
feas ible  co r r e spondences  of  the  set A by using 
the above -men t ioned  l a b e l i n g p red ica te .  But 
to be  feasible,  we must  r espec t  the  capac i ty  con- 
straint .  I ndeed ,  if we wan t  to d ispose  post  I onto  
zone J, tha t  is ins tan t ia te  LZ to the  value  J, we 
need  to know the  cur ren t ly  r ema in ing  charging 
capaci ty  of  zone  J in o r d e r  to see if it still has 
enough  capaci ty  for the  pos t  I .  This  is done  by 
the p r ede f ined  p r e d i c a t e d  d o m a i n i n f o where  
c h a r g e and  C M a x are  the  b o u n d a r y  values  of  
the  charging  var iab le  C h J. 

arg(I, kocTerm, LI), 
arg(LI, CapTerm, ChLI), 
domain info(ChLI, Charge• CMax, _, 
• )• 

Now, we can verify the  capaci ty  const ra int ,  i.e. 

element(I• PostWeights• WI)• 

RestCapacity is CMax-Charge, 
WI = <RestCapaci ty, 

If  WI does  not  exceed the RestCapacity, 
then  the d isposing of  the  I - t h  pos t  onto  zone L I 
raises  the  lower b o u n d  of  the  co r re spond ing  
charging var iable :  

Chargel is Charge+WI, 
ChLI#>=Chargel. 

Notice  that  this pa r t  of  the  p r o g r a m  cannot  be  
execu ted  unless  the  pos t  and  the co r re spond ing  
zone are  known, tha t  is the  locat ion var iable  L Z is 
actual ly  ins tan t i a ted  to a g round  value.  W e  over-  
come this difficulty by using a de lay  dec la ra t ion .  

W e  ga the r  the  p reced ing  l ines in one  p r ed i ca t e  
call: 

capa c i ty_const ra i nt (ToBeD i sposed, 
LocTerm, 
CapTerm, 
Post_weights), 

and we de lay  its execut ion unti l  its second  argu-  
men t  is ins tan t ia ted :  

?-delay capacity_constraint 
(ground• ground• any, any, any). 

This conc ludes  the  gene ra t ing  of  const ra in ts  
on the  set of  poss ible  values  for  the  decis ion 

var iables  L. 
Now we need  to fo rmula te  our  object ive func- 

tion. 
F o r  the  pu rpose  of  the  exposi t ion,  we concen-  

t ra te  on the  cons t ruc t ion  of  the  first object ive 
funct ion F C = Ejd~. 

In o r d e r  to compu te  each  d{ r e l a t ed  to one  
cus tomer ,  we need  to def ine  and sum up the 
co r r e spond ing  dis tances.  F o r  each group Gj and 
G~ of  posts  be long ing  to the  same cus tomer ,  we 
search  for the  co r r e spond ing  groups  of  loca t ion  
var iables  GLj and G~,j. 

T h e n  the  recursive d i s t c o n s t r u c t and  the  
c o n s t r u c t p red ica t e s  e l abo ra t e  the  sum of  the  
assoc ia ted  sets of  d is tances  Dcj and Dc~, each 
d is tance  be tween  two posts  be ing  r e p r e s e n t e d  by 
a doma in  var iable  whose  b o u n d a r y  values  a re  D 1 
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and D 5 according to the distance function. The D i j i s D 3 ,  
park numbers associated with each zone are sup- 
posed to be grouped in the list P a r k N u m b e r s. d i s t a n c e ( L i 

dist construct([ ], G'Lj, 
ParkNumbers, 0), 

dist construct([LIGLj], G'Lj, 
ParkNumbers, D+D'+Ds):- 
[D, D']::DI..D5, 
construct(L, GLj, ParkNumbers, 

D), 
construct(L, G'Lj, ParkNumbers, 
D'), 
dist construct(GLj, G'Lj, 
ParkNumbers, Ds). 

construct(L1, [ ], ParkNumbers, 0). 
construct(L1, [L21Ls], ParkNumbers, 

D+Ds):- 
element(L1, ParkNumbers, Parkl), 
element(L2, ParkNumbers, Park2), 
distance(L1, L2, Parkl, Park2, 
D), 
construct(L1, Ls, ParkNumbers, 
Ds). 

Then the d i s t a n c e predicate, described be- 
low, applies the distance evaluation function. We 
assume that D 1,  D2, D3, D4, D5 represent 
the different distance evaluations allowed be- 
tween 2 posts: 

distance(Li, Lj, Parki, Parkj, 
Dij):- 

Li=Lj, 
Dij is D1, !. % Same zones 

distance(Li, Lj, Parki, Parkj, 
Dij):- 

Parki=Parkj, 
Abs is abs(Li-Lj), 
Abs=1, 

Dij is D2, !. % Contiguous zones 
distance(Li, Lj, Parki, Parkj, 
Dij):- 

Parki=Parkj, 
R is abs(Li-Lj), 
R>I, 

Dij):- 
linked 
Dij is 

!. % Zones Sepa- 
rated by R>I zones 

Lj, Parki, Parkj, 

parks(Parki, Parkj), 
D4, !. % Parks linked by 

a rolling bridge 
or a common ac- 
cess road 

Lj, Parki, Parkj, distance(Li, 
Dij):- 

Dij is D5. % Parks not linked. 

Again, this predicate must be delayed until its 
first arguments are instantiated: 

~- delay distance (ground, ground, 
any, any, any). 

By adding the different d{ constructed with 
the preceding predicates we evaluate the objec- 
tive function F 0 for all the customers. 

In a similar way, we construct the objective 
function F 0 related to all the orders. And the 
complete solution will be the sum R c * F c +  
R0*F0, where each term is multiplied by its 
respective priority coefficient R c and R0. We 
need a variable F:." 0 : 1 0 0 0 0 0 0  with a big 
domain to represent this important sum of dis- 
tances. 

As mentioned above, CHIP provides a higher- 
order optimization predicate m i n m a x that will 
minimize this objective function on the domain of 
location variables L: 

min max(labeling(L), [Fc]). 

This call will search for the values of the 
decision variables L, which minimize the dis- 
tances between posts having the same customer 
and orders, while respective the constraints and 
relations introduced before. It uses the above 
mentioned l a be l i ng predicate that allows the 
generation of values from the domain of the 
location variables. 

4.4. Experimental results 

The efficiency of our CHIP solution depends 
on the state of the expedition parks and on the 
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number of posts having the same characteristics. 
If a lot of zones are unoccupied then an optimal 
solution will be found quickly. But if the parks 
are full then it will be slower. This difference in 
execution time is accentuated whenever the num- 
ber of posts belonging to the same order or 
customer grows. In this latter case the sum of all 
the distances between them becomes important 
and difficult to minimize. 

Our solution was tested on a real disposing 
problem where 148 posts divided into 38 cus- 
tomers had to be stocked onto 40 unoccupied 
zones. An optimal solution for this important 
number of posts would have taken too much time 
if we had not used a variant of the i n d om a i n 
predicate which allows the generation to be 
started with a specific value. Thus, for each group 
of posts belonging to the same customer, we 
search for an appropriate number of zone having 
enough capacity and appropriate length to re- 
ceive all these posts (or a big part of them). By 
starting the labeling process with these numbers, 
an optimal solution is found in 34.06 seconds. 

However, if the availability of the zones is 
restricted, i.e. there are a lot of posts already 
disposed onto the zones, execution time takes 
hours. To solve the problem nevertheless we sim- 
plified the problem by optimizing the disposing 
for each customer and his orders separately. This 
relaxed solution F r gives very good results in 
acceptable time (11 seconds for empty parks and 
2 hours 8 minutes for full parks). 

As explained before, different options of the 
m i n-m ax predicate allow us to adapt the search- 
ing strategy. Thus, we retried to reach a solution 
to the complete problem which would be better 
than the relaxed solution in a maximum of 30 
minutes with E = 0, 1. 

min_max(tabeting(L), 0, Fr, 10, 

1800). 

The complete optimal solution, better than the 
relaxed solution F r, must take value between 0 
and this value F r. To dismiss insignificant ame- 
liorations, we limit the search to solutions at least 
10% better than F r and we limit execution time 
imperatively to 1800 seconds. In our concrete 
tests, no such &-optimal solution could be found. 

Therefore, once the global method doesn’t 
succeed rapidly, we can treat each customer sepa- 
rately and find an approximated solution. In or- 
der to test if this result is far from the complete 
optimum, we may use the above variant of the 
m i n ma x predicate to try to &-ameliorate this 
appr&imation in a limited time. Finally, if the 
problem becomes too difficult, we still have the 
possibility to divide the posts into smaller produc- 
tion periods. 

4.5. Discussion 

The CHIP solution of the girders disposing 
problem illustrates the finite domain computation 
facilities proposed. The program text follows 
rather closely the mathematical formulation as 
already observed about the Prolog III solution 
above. But when programming in CHIP the gen- 
eration of the constraints on the decision do- 
mains and the objective function needs basic Pro- 
log programming knowledge. Because of this 
problem, new versions of CHIP will provide facil- 
ities to formulate cumulative constraints like our 
disposing capacity constraint in a simpler way. 

Nevertheless, the finite domain component of 
the CHIP system appears as a kind of modelling 
system for linear integer programming problems. 
Our CHIP solution is small in size and may easily 
be modified to adapt the solution to changing 
specifications. In the same way, it is easy to 
construct generic abstract solutions for interest- 
ing general problems. 

The integrated branch-and-bound solver gives 
satisfactory results if the combinatorial size of the 
problem can be kept within reasonable limits. 

5. Conclusions 

We have developed solutions to linear indus- 
trial problems by using constraint logic program- 
ming languages. The Prolog III and CHIP sys- 
tems, according to their declarative aspects, allow 
the modelling of problems in short programs easy 
to understand and to modify. Moreover, their 
constraint solving capacities permit finding the 
optimal solution to constrained linear decision 
problems. 
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The general solving capacities of linear ratio- 
nal problems, illustrated in a Prolog III solution 
to the coils selection, showed performances com- 
parable to those of traditional MP solvers. But a 
lack of information return from the integrated 
simplex solver appeared. It is not possible to 
access dual solutions for rounding purposes, for 
instance. 

Solving linear integer problems, like for in- 
stance our girders disposing solution, showed the 
interesting facilities of finite domain computa- 
tions in CLP systems like the CHIP environment, 
but good Prolog programming is welcome. 

To conclude, we would say that CLP systems 
should not be dismissed as potential modelling 
and solving tools for linear MP problems. 
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