
EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

ELSEVIER European Journal of Operational Research 84 (1995) 82-95

Industrial linear optimization problems solved by constraint
logic programming

R. Bisdorff *, S. Laurent
Centre de Recherche Public - Centre Universitaire, 162a av. de la FaYencerie, L-1511 Luxemburg, Luxemburg

Abstract

In this article we try to illustrate that constraint logic programming (CLP) systems allow easy expression and
solution of constrained decision problems. In order to do so, this paper proposes CLP solutions for two industrial
linear optimization problems respectively using the Prolog III and the CHIP language. The first problem, a mixed
linear multicriteria selection problem, illustrates the general linear rational solver. In order to fix some integer
variables a branch and bound rounding heuristic is formulated. The second problem, a linear integer multicriteria
location problem, is only concerned with integer finite domain variables and is particularly adapted to the CHIP
system that provides a computation domain handling such variables.

Keywords: Constraint logic programming; Branch-and-bound techniques; Finite domain computation; Linear opti-
mization; Goal-programming; Multicriteria selection; Industrial disposing problem; Industrial production scheduling

1. Introduction

This article presents the studies that were con-
ducted at the Centre de Recherche Public -
Centre Universitaire of Luxembourg in collabora-
tion with the ARBED Luxembourg s.a. steel in-
dustry about the solving capacities of constraint
logic programming (CLP) systems [9] in industrial
linear optimization problems. Indeed, the declar-
ative power of logic programming and the avail-
ability of integrated constraints system solvers
make these CLP systems, like C L P (~) [9], Prolog
III [4,5], or CHIP [6-8], to some extent potential

* Corresponding author.

alternatives for the traditional mathematical pro-
gramming (MP) modelling environments and
solvers, like MPSIII from Ketron and XPRESS,
or OSL from IBM and the MP Fortran library
proposed by NAG.

Originally, Prolog systems, based on the solv-
ing principle of logic unification of Horn clauses
in a Herbrand universe, were designed to deal
with natural language problems. Very soon how-
ever, when dealing with numerical problems, it
became interesting to replace the simple Prolog
unification with a general constraints solving
mechanism, which led to the CLP systems like
the Prolog III system [4]. The kernel of this
Prolog system consists in a general constraints
system solver, which first tests if a constraints

0377-2217/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI 0377-2217(94)00319-X

R. Bisdorff, S. Laurent / European Journal of Operational Research 84 (1995) 82-95 83

system is solvable and then tries to simplify the
system in order to make the solutions appear.
The numerical sub-kernel which is used for the
resolution of rational linear equations and in-
equalities, includes a specially adapted simplex
solver and a special dynamic simplification mech-
anism.

A first industrial problem, formulated as a
mixed linear goal-programming problem, con-
cerns a multicriteria selection tool for the daily
production in a coil rolling mill at the ARBED
Dudelange plant [1,2]. This problem is solved
with the help of the Prolog III system. Thus we
can illustrate the generic linear-programming fa-
cilities of the CLP systems. To solve the complete
mixed problem, we furthermore show the imple-
mentation of a simple branch-and-bound round-
ing heuristic.

The introduction of consistency-checking and
constraint solving techniques also characterizes
the CHIP system [7]. In addition to Prolog III, it
offers these techniques as well in finite positive
integer domains [8]. Some higher-order predi-
cates for optimization by means of a kind of
depth-first branch-and-bound technique thus al-
low combinatorial optimization and integer lin-
ear-programming problems to be solved.

To illustrate these features we present a sec-
ond industrial problem, appearing as a complete
integer problem, that concerns the optimal dis-
posing of steel girders before expedition at the
ARBED Differdange plant [3]. This problem is
solved with the help of finite domain computa-
tions in the CHIP system. As a normal Prolog
execution easily allows enumeration of a set of
discrete solutions, this example will illustrate the
ease of use of the CHIP integrated branch-and-
bound solver.

2. Introducing the industrial problems

The problems considered appeared at the
ARBED Luxembourg s.a. steel industry. The first
one, entitled 'coils selection problem', is con-
cerned with the production schedule of the rolling
mill for coils at the ARBED Dudelange plant
[1,21.

2.1. The coils selection problem

In order to reach a particular thickness, coils
are rolled at the ARBED Dudelange plant. Coils
are defined by a set of characteristics such as
weight, width, postrolling thickness, postrolling
treatment and ultimate delay of production. Coils
having all the same characteristics are gathered
to form an order post.

The list of coils that will be produced during
the next 8 hours has to be determined. These
coils are selected among each post available in
the stock and the following criteria restrict the
possible choices.

The selected coils amount to a total weight
that cannot exceed the production capacity of the
rolling mill.

For each postrolling treatment, percentages
are defined in order to restrict the number of
selected coils that have to undergo this process-
ing.

All the coils in stock belong to several width
classes. In order to reduce the presetting checks
occurring when a width class is changed, if a coil
is selected in one of them, then at least a defined
number of coils has to be chosen in this class.

Finally, the most urgent coils must be selected
in order to respect the delivery delays.

The second industrial problem we consider, is
related to the disposing of finished girders in the
expedition parks at the ARBED Differdange
plant [3]. We shall later on refer to this problem
as the 'girders disposing problem'.

2.2. The girders disposing problem

A lot of finished girders produced at the
ARBED Differdange plant are not immediately
shipped and have to be disposed until they leave.
The plant uses expedition parks which are di-
vided into zones of different lengths and capaci-
ties where these products can be stocked. Be-
tween two parks, wagons come to load the girders
ready for expedition and rolling bridges help to
carry the girders into a zone or onto a wagon.

A girder is characterized by length, weight,
order and customer. Girders sharing all four

84 R. Bisdorff, S. Laurent / European Journal of Operational Research 84 (1995) 82-95

characteristics are gathered to create an order
post.

Posts having the same order or customer are
usually loaded on a same wagon for a common
destination. Therefore, they must be disposed in
one zone or in several zones near each other in
order to minimize the moves of the wagons and
rolling bridges at the time of their expedition.
The distance between two posts is expressed by
the distance between the zones in which they are
placed.

Because of the specific characteristics of gird-
ers and zones, only a limited number of posts of a
certain length can be disposed in a same zone.

In the following section we will illustrate the
linear optimization capacities of CLP systems by
solving the coils selection problem.

3. Solving general linear problems with CLP

In order to illustrate the use of a simplex
solver in a CLP system, we shall first formulate
the coils selection problems as a mixed goal-pro-
gram. As the Prolog I I I system at the time of our
experimentation did not provide any primitive
predicate for immediate solving of a mixed MP
problem, first, a relaxed rational solution in Pro-
log I I I is proposed. To fix the integrity constraints
we then show the implementat ion of a branch-
and-bound rounding heuristic. Incidentally this
also allows us to show the Prolog programming
style.

3.1. Mathematical formulation o f the coils selection
problem

The multicriteria coils selection problem can
be viewed as a mathematical-programming prob-
lem where the last criterion - specifying that the
most urgent coils have to be selected first -
figures as an objective function:

min F = c . x.
x > 0

x is a vector of n unknowns, i.e. the number of
selected coils in each post available in the stock

and c is a vector of estimated delays for the end
of the milling process related to each post.

The limitation of the stock and the other crite-
ria, defined above, give rise to the following con-
straints:

a) Availability o f coils in the stock:

x < _ u

where u is a constant vector representing the
number of available coils in each post in stock.

b) The selected coils x amount to a total weight
confined to a given interval [bin, bM]:

b m --X~ <a "x < b M + x ~

where a is a constant vector which associates a
unit weight with each coil of the corresponding
post. The unknowns x~ are deviational variables
which have to be minimized according to the
relative preference priority given to this selection
criterion.

c) The percentage o f selected coils x which haue
to undergo the postrolling treatment t is confined to
a given interval [ptm, p~]:

pt m a ' (x " vt) pt u

100 x~ <_ < _ - - + x e a • x 100

where v t is a characteristic vector filtering the
posts related to t reatment t and ' . ' represents
the term by term product operator. This con-
straint may be activated for each possible
postrolling t reatment t. As in the preceding con-
straint, x e represents a vector of deviational vari-
ables.

d) i f a coil is selected in a given width class w,
then at least k coils have to be selected in this class:

b b U w . x w b w < v W ' X <Xw(u)

where v w is a characteristic vector filtering the
b is a binary variable posts of width class w and x w

specifying when coils have been selected or not in
the width class w. We define b w as follows:

b w = min (k , v w ' u)

i.e. either k if there are at least k coils having
the width w in stock or vW.u, the rest of coils
having the width w in stock.

R. Bisdorff, S. Laurent / European Journal of Operational Research 84 (1995) 82-95 85

According to constraints b) and c), the objec-
tive function becomes

min F =pe. (F , x e, X b)
x>O,Xe,X b

where pe represents the relative priorities of the
selection criteria.

This problem appears as a mixed-linear goal-
programming problem, where the x are integer
variables, the x e are rational variables and the x b
are binary variables. It can be formulated as a
Prolog I I I program on the basis of the following
general solution.

3.2. Solving rational linear programming problems

CLP systems like Prolog I I I or CHIP provide
facilities to state and solve linear programming
problems. As a concrete example, we consider
the following general case:

min F = c ' x
x ~ 0

s.t. ,4x = b.

Prolog I I I [4,5], like CHIP [6,7], can easily
express this constraints system with coefficients
and variables represented by rational numbers of
possibly infinite precision. Moreover, these lan-
guages allow this problem to be solved by an
adapted simplex method. The corresponding Pro-
log I I I program could be the following (The syn-
tax of Prolog I I I follows the 'Marseil le ' style, that
is (. . .) indicates a list, and constraints are
enclosed in accolades):

min(c, b, x, F)->
constraint(A, x, b)
scat_prod(c, x, F)
minimize(F),
{x=<xl, x2,..., xn>,
c=<cl, c2,..., cn>,
A=<<a11, a12,..., aln>,

<a21, a22,..., a2n>,

<am1, am2,..., amn>>,
b=<bl, b2,..., bm>};

where the vectors x and c are represented by
lists of n terms, the vector b is expressed as a list

of m values, and the matrix A as a list of m
vectors represented again by lists of n coeffi-
cients.

The predicate c o n s t r a i n t dynamically con-
structs the linear constraints system:

constraint(<>, _, <>)->;
constraint(<a>. A, x, .b')->

scat_prod(a, x, r),
constraint(A, x, b'),
{r<=b};

On the other hand, the s c a l_p r o d predicate
calculates the scalar product of two vectors in a
recursive call:

scat_prod(<>, <>, 0)->;
scal_prod(<x>.X, <y>.Y, x*y+s)->

scal_prod(X, Y, s);

Finally, the primitive predicate m i n i m i z e
computes, via an adapted simplex solver, the opti-
mum solution value m of F considering the cur-
rent system of constraints, adds the constraint
(F = m} to this constraints system and simplifies
it.

The simple and straightforward specification
of a general linear MP problem demonstrates the
declarative power of CLP systems. The Prolog
text is quite close to the mathematical formula-
tion and to some extent, the CLP system acts like
a modelling environment. This interesting charac-
teristic can be well illustrated with the help of the
coils selection problem.

3.3. Solving the relaxed rational coils selection
problem

In order to formulate the constraints a), b) and
c), we construct the following i n r a n g e predicate
which restricts term by term the elements of a list
to particular boundary values t. m and L M:

inrange(<>, <>, <>)->;
inrange(<x>.X, <m>.L_m, <M>.L_M)->

inrange(X, L_m, L_M),
{x>=m, x<=M};

The availability constraint a), combined with
the fact that x > = O, can be expressed with the

86 R. Bisdorff S. Laurent / European Journal of Operational Research 84 (1995) 82-95

help of the i n r a ng e predicate called with ap-
propriate arguments:

i n r a n g e (x , v_O, u) ;

with v 0 being the null vector of same dimension
as x.

By combining this i n r a n g e predicate with
the previously defined s e a l_p r o d predicate, the
production capacity constraint b) is again easily
formulated:

seal_prod(a, x, r),
inrange(<r>, <b m-x eb>,

<b M+x eb>);

where x eb is the deviational variable attached
to this constraint.

For each postrolling t reatment t, the con-
straint c) is expressed in the same manner:

vect_prod(x, v_t, x_t),
scat_prod(a, x_t, r_t),
inrange(<r_t>, <p_mt/1OO*r-x_et>,

<p_Mt / lO0*r + x_et>) ;

with the following vect_prod predicate realizing
the term by term product of two vectors:

veet_prod(<>, <>, <>)->;
vect_prod(<x>.X, <y>.Y, <x*y>.Z)->

vect_prod(X, Y, Z);

Finally, the objective function is stated as fol-
lows:

scat_prod(c, x, F),
scal_prod(p_e, <F>.x_e, F'),
minimize(F');

assuming that x_e and p_e take the following
form:

x_e=<x_el, x_e2,..., x_et, ...>,
p_e=<p_F, p_el, p_e2,..., p_et,

• . .>;

The CLP formulation thus appears as a formal
model rather close to the mathematical formula-
tion. In this sense the CLP systems appear as
modelling environments for linear MP problems.

As mentioned above, the Prolog I I I system
actually does not provide any primitive predicate
for immediate solving of an integer or a mixed
linear MP problem. Instead, we used a simple

rounding procedure in order to transform the
optimal values of x found with the m i n i m i z e
predicate into integers. This approach, quite ac-
ceptable in a goal-programming context, has
proved fairly adequate in practice. At this point,
it is important to note the impossibility to imple-
ment a traditional rounding procedure based on
the dual solution of the problem as the simplex
tableau and the rational solution base are not
accessible through the m i n i m i z e predicate.

Experimentation also showed that the rational
b values of the x w vector are not uniquely deter-

mined. To get a single rational solution, we first
solved the relaxed problem which does not con-
sider the 'width class' constraint d). In a second
step, we implemented a progressive branch-and-
bound like rounding procedure in order to satisfy
the omitted constraints. This also allows us to
show the Prolog programming style.

3.4. Satisfying the 'width class' constraint

The optimal values of the x vector which
satisfy the relaxed rational problem being found,
we use a progressive branch-and-bound tech-
nique to find a solution satisfying the constraint
d).

First, all the selected coils which do not re-
spect the constraint d) are eliminated from the
solution and the corresponding width classes are

b variables associated with kept in a list W. The x w
these classes are non-integers. We get a feasible
solution z and its objective function's value G.
The process is decomposed into three steps.

The bounding step consists in searching, for all
unsatisfied width classes W, for the correspond-
ing list of possible improvements L due to the
fact that coils are selected in these classes as
explained before:

b o u n d (, , <> , < >) - > ;
b o u n d (z , G, <w>.W, < I > . L) - >

c o m p u t e (z , w, GO),
max imum(G-GO, O, 1) ,
b o u n d (z , G, K, L) ;

The e o m p u t e predicate is a predefined exter-
nal user-rule written in C, which calculates the
value of the objective function if we select the

R. Bisdorff, S. Laurent / European Journal of Operational Research 84 (1995) 82-95 87

coils of class w (The possibility of defining exter-
nal user-rules in C makes the Prolog I I I system
very attractive for developers). The m a x i m u m
predicate chooses the best possible improvement
related to this class. Again, we miss any informa-
tion about the simplex tableau and therefore it is
not possible to use dual variables to select the
best improvements. Instead we used a simple
heuristic selecting rule like ' the most urgent coils'.

At the separating step, we consider the maxi-
mum improvement p 1 found in the list L related
to a width class w. We compute the solutions z0,
z 1 and their objective functions G 0 and G 1 corre-

b sponding to the two possible values of the x w

variable:

separate(z, G, L, W, zO, zl,
G-pl, W')->
max dif(L, W, w, pl),
remove(W, w, W'),
new solution(z, w, zl),
{zO=z, pO=O};

G-pO,

branch bound(z, G, <>, z, G)->;
branch bound(z, G, W, z, G)->

bound(z, G, W, L)
max list(L, p),
{p=O};

branch bound(z init, G init, W,
z fin, G fin~->
bound(z init, G init, W, L)
max dif(L, W, , p)
separate(z init, G init, L, W,
zO, zl, GO, GI, W')
branch(zO, zl, GO, G1, W', z fin,
G fin),
{p>O};

If the list w of width classes is empty, the
problem is solved. If the list of possible improve-
ments only contains zero values then the actual
solution z is the final one. Otherwise, the bound-
ing, separating and branching steps are executed.

3.5. Experimental results and discussion

Of course, the solution associated with the
b O, for which no coils of the class w choice Xw =

are selected, is the actual solution z and the
objective function's value is G.

The max d i f predicate determines the class
w which h a s the maximum improvement in the
list L. The r e m o v e predicate takes the class w
out of the set w and the n e w so l u t i o n predi-
cate is again a C user-rule which computes the
solution vector z 1 associated with the choice of
the class w.

The branching step chooses either the solution
b 1 according to the b = 0 or the solution x w= Xw

improvement associated with these respective
possibilities.

branch(zO, zl, GO, G1, W, z', G')->
branch bound(zO, GO, W, z', G'),
{GO<=GI};

branch(zO, zl, GO, GI, W, z', G')->
branch bound(zl, G1, W, z', G'),
{GO>GI};

Finally, the main predicate b r a n c h b o u n d
gathers the three cases developed above : -

This solution was tested on a real selection
problem. 100 coils had to be selected among 429
coils divided into 167 order posts. The total weight
of the chosen coils had to be confined between
2000 and 2200 tons. The percentage of selected
coils for each of the three postrolling treatments
had to be respectively between 18 and 32%, 28
and 32%, 48 and 52%. Finally, at least four coils,
if possible, had to be selected in each width class.

On a Sun Sparc Station IPC the generation of
the constraints system required 8 seconds while
the simplex resolution for the relaxed rational
problem takes 65 seconds. This model can easily
be translated into a CHIP program (this transla-
tion requires only syntactic modifications due to
the different underlying Prolog dialects) which
would demand, for the same data, 9 seconds for
constraints generation and 19 seconds for the
optimization part.

The coils selection solution illustrates not only
the declarative power of CLP systems but also
their solving capacities. The execution times are
quite satisfying and may be compared to tradi-
tional MP solvers. To some extent, they appear as
modelling environments for linear MP problems

88 R. Bisdorff, S. Laurent / European Journal of Operational Research 84 (1995) 82-95

as they provide not only an integrated simplex
solver but also an integrated dynamic manage-
ment of the constraints system.

But at this point the first drawback of the
actual CLP systems for solving linear MP prob-
lems appears. The CLP simplex solver is embed-
ded as a black box and it returns only the primal
solution without any information about the con-
text of the solution as described for instance in
the simplex tableau (A reasonable suggestion for
the CLP software industry would be to try to
include optionally an access to the simplex tableau
for experienced MP users).

But if rational variables could be avoided, these
techniques should not be necessary for solving an
integer linear programming problem. In fact, the
coils selection problem could be reformulated as
a complete integer problem. However, the CHIP
system gives an answer to these kinds of problems
because it provides the possibility of working with
positive finite integer domain variables. The fol-
lowing solution of the girders disposing problem
is a representative example using this powerful
tool.

4. Solving integer linear programming problems
in CHIP

Indeed, CHIP ' s positive finite integer domains
facilitate the modelling and solving of discrete
combinatorial problems [7,8].

4.1. Finite domain computat ions in CHIP

CHIP uses finite domain variables whose val-
ues range over a finite set of constants of natural
numbers. Moreover, constraints between these
variables can easily be established: arithmetic
constraints, symbolic constraints (which state a
logical or functional dependence between domain
variables) and even user-defined constraints.
CHIP also treats the constraints in an active way
by solving them immediately or by reducing the
search space as much as possible. The following
example, defining a relation between two vari-
ables, illustrates these characteristics (The syntax
of CHIP follows the 'Edingburgh' style, that is,

lists are delimited with square brackets. The %-
phrases comment on the actual domains of the
variables):

relation(N, V):-
N::1..5, %N={I, 2, 3, 4, 5}
Image=[5, 3, 9, I, 4],
element(N, Image, V), %V={5, 3,
9, I, 4}
V#>=4, %N={1, 3, 5}, V={5, 9, 4}
N#>=3, %N={I, 3}, v={5, 9}
indomain(N). % {(N--I, V=5),
(N=3, V=9)}

First, a domain variable N is defined. Its values
range over the finite set of consecutive integers
from 1 to 5. The e l e ment predicate defines a
functional relation between N and V. In fact, N
specifies an index to the list [5 , 3 , 9 , 1 , 4] for
the variable v (if N -- 1 then v = 5 . . .) . Therefore,
the domain of v, that is the image of the r e t a-
t i on (N, V), corresponds to this finite set of
constants. The next constraint requires that V
must be superior or equal to 4. This implies that
the values 1 and 3 are removed from the domain
of v and, according to the e t e m e n t constraint, N
is now restricted to the integers set r 1 , 3 , 5 3.
Thus co-restrictions on the r e t a t i o n (N, V)
may be activated. The last constraint acts like a
restriction on the domain of the relation. It ex-
cludes the integer 5 from N's domain and conse-
quently, V can only take the values 5 and 9.

Thus, by simply testing the constraints, the
CHIP system deduces the restricted domains of
the concerned variables. Then a predefined i n-
d oma i n predicate generates the different solu-
tions of this example. It instantiates N to the
smallest value in its domain. On backtracking it
assigns the next higher value in the domain to the
variable and it tries all possible values from the
smallest to the biggest. To each generated value
of N corresponds a particular value of V with
respect to the e t e m e n t constraint. Therefore,
we obtain two solutions: N = I , V=5 and N=3,
V=9.

This labeling process can be exploited in order
to find values of domain variables which optimize
some objective function by using a kind of depth-

R. Bisdorff, S. Laurent / European Journal of Operational Research 84 (1995) 82-95 89

first branch-and-bound technique as we did for
the coils selection problem [8].

A generic example of such an optimization
procedure is given below:

optimize(Varlist, Objective) :-

define domains (Varlist),
generate contraints (Varlist),
objective function (Varlist,

Objective),
min max (labeling (Var li st),

[Objective]).

First a list of finite domain variables, v a r I i s t,

is defined Then a second predicate generates
constraints on these domains. A third call will
construct an objective function in order to evalu-
ate the possible instantiations of v a r l i s t by
means of the 0 b j e c t i v e value. And finally, a
higher-order predicate m i n m a x will search
among the possible instantiations of v a r l i s t ,
generated by the following l a b e l i n g predicate,
for the solution v a r l i s t which is optimal for
the O b j e c t i v e .

labeling([]) .
labeling([VIVs]) :-

indomain(V),
labeling(Vs).

In cases where such an optimal solution is
difficult to obtain, variants of these predicates
allow the adaptation of the searching strategy by
using e-optimality or time-out to shorten the
search time.

The solution of the girders disposing problem,
which we present in the following section, takes
advantage of these finite domain facilities.

First the mathematical formulation of the
problem is described. Then the essential points of
the corresponding CHIP program are presented
and finally, the results are discussed.

4.2. Mathematical formulation o f the girders dis-
posing problem

Assume that Z = {z 1, z 2 , z m} is the set of
m zones composing the expedition parks and that
P = {Pl, P2 p,} is a set of n posts, where the
first p posts are already in stock and the follow-

ing n-p posts still have to be stocked. The final
disposing of all the posts can be formulated as a
correspondence A = (P, Z, L), where L repre-
sents a relation between the set P of posts and
the set Z of zones.

To simplify the presentation we suppose that
each post may only be disposed entirely onto one
of the existing zones and each post is actually
disposed somewhere. Thus the correspondence A
describes a functional relation between P and Z
and the inverse relation L - 1 defines a partition
P / L - 1 on P that describes the final gathering of
posts in the zones.

The disposing problem can now be formulated
as the search for a particular relation L such that
the resulting partition P / L -1 satisfies our dis-
posing criteria, for instance it should gather those
posts that have the same order or customer.

In a lot of real cases, the dimension of the set
of all possible relations between posts becomes
important. For instance, if 150 new posts have to
be disposed among parks composed of 40 zones
where 500 other posts are already in stock, there
are in theory about 4015° possibilities. But the
disposing capacity of different zones and other
access restrictions, like length considerations,
limit the zones to be taken into consideration for
each post. Indeed, the girders that form a partic-
ular post Pi have all the same length lp i and a
certain total weight wi (i = 1 N). On the
other hand, each zone zj (j = 1 m) is charac-
terized by its length lzj and its capacity cj. There-
fore, only a limited number of posts of a certain
length can be stocked in the same zone. This
leads to the following capacity and length con-
straints.

Let P / L ~ -1 denote the set of posts stocked in
the zone zj.

Vzj ~ Z:

Length constraint : Vp i ~ P / L ~ l, lzj > Ipi ,

Capacity constraint : Y'. w i < cj.
Pi ~E P / L j - }

We shall note A the set of all possible rela-
tions L between posts and zones under the above
constraints.

90 R. Bisdorff, S. Laurent / European Journal of Operational Research 84 (1995) 82-95

Now, our first disposing criterion concerns the
gathering of the posts of the same customer. In
order to evaluate the possible partitions P / L -
according to this criterion, we need to introduce
an evaluation of the geographical spreading of
the posts over the zones. To do so, we define a
distance between the location of the posts. If zj
and z j, represent the zones where the posts Pi
and Pi' are disposed, i.e. we have the correspon-
dences piLz~ and pi, Zzj,, their distance dii, is
evaluated in the following way:

'd~ if z j = z j , ,

d 2 if zj and z~, are contiguous,

d 3 if zj and zf are separated

by r zones (r > 1),

dii' = d 4 if zj and z / a r e in different parks

linked by a rolling bridge or a

common access road,
d 5 if zj and z / a r e in different parks

not linked,

with d x < d2 < d3 < d4 < ds, in order to match
our underlying disposing preferences.

Let G~ and Gj be groups of posts related to a
particular customer c j, where the first set of posts
is already in stock and the second has to be
disposed. In order to evaluate the resulting
spreading of these posts, we construct the corre-
sponding sets of distances:

D c j = {dii, I Pi, P i ' ~ G j A i <i '} and

Dc5 = {die, [Pi ~ a j A Pi' E G~},

where D u, represents the distance between the
zones zj and z j, where the posts Pi and Pe are
stocked such that we have the relations piLzj
and peLz f . The evaluation of the disposing of
the posts for customer j is summarized by the
following formula:

dJ = E dii'
(DcjuDc~)

and our first criterion may be formulated by the
following objective function:

min F~ = ~_~d{
L~A j

A second disposing criterion concerns the
gathering of the posts belonging to the same
order o h of a particular customer cj.

We can reuse the same spreading evaluation
as before. Let O~ and Oj~ be sets of posts of the
same order o k of customer cj, that are in stock,
respectively have to be disposed. We construct
the corresponding set of distances between these
posts.

Dojk= {dii, l P i, p i ,~ Ojk A i <i '} and

Oo;k = {dii, I P i ~ Ojk A pc ~ O}k }.

The evaluation of the disposing of posts of all
the orders o h for customer c j, is summarized by
the following formula:

k (Dojk tO DoCk)

and the second criterion gives rise to the follow-
ing objective function minimizing the above
spreading evaluation for all customers:

min F o = ~ dJo
LEA j

The overall optimal disposing of the posts con-
sidering both criteria may be achieved by a goal
programming strategy which minimizes conjointly
the sum of the two above objective functions.

As posts of the same order in the parks are
more often loaded together for expedition than
those related to the same customer, we balance
the overall objective function by two priority coef-
ficients r o and r c with r o >> r c in order to insist
on the corresponding minimization. Finally we
obtain the following goal-program:

m i n F = r c . F ~ + r o . F o.
L~A

Thus our simplified girders disposing problem
appears as a fairly simple multicriteria linear
location problem, where the decision variables
have finite domains.

This will allow us to formulate and solve this
problem with the help of the finite computations
resources of the CHIP language. As already no-
ticed above, our solution will follow closely the
above mathematical formulation.

R. Bisdorff, S. Laurent / European Journal of Operational Research 84 (1995) 82-95 91

4.3. Solving the girders disposing problem in CHIP

We must first define the decision variables and
their domain.

To identify the posts, we use an index variable
I with domain 1 . . N. This index variable I allows
us, by means of the e l e m e n t predicate (de-
scribed in Section 4.1.), to associate a post with
its characteristics like order-number, customer-
number, length of its girders and total weight of
the post.

In order to identify the disposing zones we use
a finite domain variable J with domain 1 . . M that
gives us, in a similar way, an index to the zone's
park-numbers, lengths and disposing capacities.

Now, as the correspondence A between the set
of posts and the set of zones is supposed to
describe a functional relation, we may express
this relation by a set of N location variables,
which act as our decision variables. For each post
Pi, a location variable L i represents the number
of the zone where it is or will be disposed. There-
fore, the domain of these decision variables cor-
responds to the possible zone's numbers, that is
the consecutive integers from 1 to M. Let us call l
the list of our N location variables.

L=[LI, k2,..., LN],
L::I..M.

In order to ensure that the weights, disposed
by a correspondence h onto the zones, do not
exceed the disposing capacities of the zones, we
define for each zone a charging variable indicat-
ing the actual weight disposed onto that particu-
lar zone. These charging variables take their val-
ues between 0 and the disposing capacity of the
corresponding zone.

DisposingCap=[Cal, Ca2,..., CAM],
Charges=[Chl, Ch2,..., ChM],
Chl::O:Cal, Ch2::O:Ca2,...,
ChM: :O:CaM,

In this domain declaration, the ': ' symbol spec-
ifies domains in which only the minimum and
maximum values are interesting. Here the mini-
mum value is used to represent the actual charg-
ing of the zone that we initialize to 0. On the
other hand, the '..' symbol, used in the location

variables declaration, indicates that domain val-
ues can be removed inside the indicated bounds.

In order to initialize the actual stock situation,
we assume that a list D i s p o sed gives the posts
P i that are already disposed onto the zones z i.
Thus, we have to instantiate the corresponding
location variables and to modify the charging
capacities of the zones concerned. In order to
access the location and the charging variables by
their index, we gather these variables in a L oc-
Term, respectively in a CapTerm:

Disposed
=[[P1, Zl], [P2, Z2],...,
[PQ, ZQ]],

Locterm=relation var(L1,
L2,..., LN),

CapTerm=charging_var(Chl,
Ch2,..., ChM),
PostWeights=[Wpl, Wp2,...,
in stock(Disposed, LocTerm,
CapTerm, PostWeigths).

WpN],

where the i n s t o c k predicate is defined in a
recursive way on the list of disposed posts in the
following way:

in_stock([], , ,).
in_stock([[I, J]] Ds], LocTerm,

CapTerm, PostWeights):-
arg(I, LocTerm, LI),
LI#=J,
arg(J, CapTerm, ChJ),
element(I, PostWeights, WI),
ChJ#>=WI,
in_stock(Ds, LocTerm, CapTerm,

PostWeights).

First, the a r g predicate associates I with the
I-th variable in the LocTerm. The domain of this
variable l I is then constrained to the number of
zone J. The same arg predicate is used to extract
the J-th charging variable out of the C a p T e r m
and the corresponding lower bound is restricted
to the weight of the I- th post. This weight is
extracted from the P o s t w e i g h t s list with the
help of the e l e m e n t predicate.

This concludes the definition of domains of
the decision variables and their data context.

92 R. Bisdorff, S. Laurent / European Journal of Operational Research 84 (1995) 82-95

W e must now s ta te the access res t r ic t ions im-
posed on the re la t ion L by the length const ra int .

length_constraint(ToBeDisposed,
LocTerm,
GirderLengths,
ZoneLengths).

T o Be D i s po s e d r ep resen t s the list of posts
that have to be d i sposed in the parks . This con-
s t ra int uses the fol lowing p red ica t e s in o r d e r to
r educe the doma in of each loca t ion var iab le t. r
to be n u m b e r of zones tha t are long enough.

length_constraint(l], ,) .
length_contraint ([I I T], LocTerm,
ZoneLengths) :-

element(I, GirderLengths, LpI),
arg(I, LocTerm, LI),
element(LI, ZoneLengths, LzLI),
LzLI#>=LpI,
length_constraint(T, LocTerm,
ZoneLengths).

A g a i n the e l eme n t and the a r g p red ica t e s
allow us, first to access the length of the g i rders
of pos t I , tha t is L p I , and then to access the
co r r e spond ing loca t ion var iab le L I . This dispos-
ing zone des igna ted by LI is assoc ia ted by the
e l e m e n t p r ed i ca t e with a cer ta in zone length
L z L I . But this zone length t. z L I must always be
super io r or equal to the d i sposed g i rders length
L p I . The symbolic link, ins tan t i a ted by the e l e-
m e n t p red ica te , au tomat ica l ly puts such a co-re-
s t r ic t ion on L I .

W e are now able eventua l ly to e n u m e r a t e all
feas ible co r r e spondences of the set A by using
the above -men t ioned l a b e l i n g p red ica te . But
to be feasible, we must r espec t the capac i ty con-
straint . I ndeed , if we wan t to d ispose post I onto
zone J, tha t is ins tan t ia te LZ to the value J, we
need to know the cur ren t ly r ema in ing charging
capaci ty of zone J in o r d e r to see if it still has
enough capaci ty for the pos t I . This is done by
the p r ede f ined p r e d i c a t e d d o m a i n i n f o where
c h a r g e and C M a x are the b o u n d a r y values of
the charging var iab le C h J.

arg(I, kocTerm, LI),
arg(LI, CapTerm, ChLI),
domain info(ChLI, Charge• CMax, _,
•)•

Now, we can verify the capaci ty const ra int , i.e.

element(I• PostWeights• WI)•

RestCapacity is CMax-Charge,
WI = <RestCapaci ty,

If WI does not exceed the RestCapacity,
then the d isposing of the I - t h pos t onto zone L I
raises the lower b o u n d of the co r re spond ing
charging var iable :

Chargel is Charge+WI,
ChLI#>=Chargel.

Notice that this pa r t of the p r o g r a m cannot be
execu ted unless the pos t and the co r re spond ing
zone are known, tha t is the locat ion var iable L Z is
actual ly ins tan t i a ted to a g round value. W e over-
come this difficulty by using a de lay dec la ra t ion .

W e ga the r the p reced ing l ines in one p r ed i ca t e
call:

capa c i ty_const ra i nt (ToBeD i sposed,
LocTerm,
CapTerm,
Post_weights),

and we de lay its execut ion unti l its second argu-
men t is ins tan t ia ted :

?-delay capacity_constraint
(ground• ground• any, any, any).

This conc ludes the gene ra t ing of const ra in ts
on the set of poss ible values for the decis ion

var iables L.
Now we need to fo rmula te our object ive func-

tion.
F o r the pu rpose of the exposi t ion, we concen-

t ra te on the cons t ruc t ion of the first object ive
funct ion F C = Ejd~.

In o r d e r to compu te each d{ r e l a t ed to one
cus tomer , we need to def ine and sum up the
co r r e spond ing dis tances. F o r each group Gj and
G~ of posts be long ing to the same cus tomer , we
search for the co r r e spond ing groups of loca t ion
var iables GLj and G~,j.

T h e n the recursive d i s t c o n s t r u c t and the
c o n s t r u c t p red ica t e s e l abo ra t e the sum of the
assoc ia ted sets of d is tances Dcj and Dc~, each
d is tance be tween two posts be ing r e p r e s e n t e d by
a doma in var iable whose b o u n d a r y values a re D 1

R. Bisdorff, S. Laurent / European Journal of Operational Research 84 (1995) 82-95 93

and D 5 according to the distance function. The D i j i s D 3 ,
park numbers associated with each zone are sup-
posed to be grouped in the list P a r k N u m b e r s. d i s t a n c e (L i

dist construct([], G'Lj,
ParkNumbers, 0),

dist construct([LIGLj], G'Lj,
ParkNumbers, D+D'+Ds):-
[D, D']::DI..D5,
construct(L, GLj, ParkNumbers,

D),
construct(L, G'Lj, ParkNumbers,
D'),
dist construct(GLj, G'Lj,
ParkNumbers, Ds).

construct(L1, [], ParkNumbers, 0).
construct(L1, [L21Ls], ParkNumbers,

D+Ds):-
element(L1, ParkNumbers, Parkl),
element(L2, ParkNumbers, Park2),
distance(L1, L2, Parkl, Park2,
D),
construct(L1, Ls, ParkNumbers,
Ds).

Then the d i s t a n c e predicate, described be-
low, applies the distance evaluation function. We
assume that D 1, D2, D3, D4, D5 represent
the different distance evaluations allowed be-
tween 2 posts:

distance(Li, Lj, Parki, Parkj,
Dij):-

Li=Lj,
Dij is D1, !. % Same zones

distance(Li, Lj, Parki, Parkj,
Dij):-

Parki=Parkj,
Abs is abs(Li-Lj),
Abs=1,

Dij is D2, !. % Contiguous zones
distance(Li, Lj, Parki, Parkj,
Dij):-

Parki=Parkj,
R is abs(Li-Lj),
R>I,

Dij):-
linked
Dij is

!. % Zones Sepa-
rated by R>I zones

Lj, Parki, Parkj,

parks(Parki, Parkj),
D4, !. % Parks linked by

a rolling bridge
or a common ac-
cess road

Lj, Parki, Parkj, distance(Li,
Dij):-

Dij is D5. % Parks not linked.

Again, this predicate must be delayed until its
first arguments are instantiated:

~- delay distance (ground, ground,
any, any, any).

By adding the different d{ constructed with
the preceding predicates we evaluate the objec-
tive function F 0 for all the customers.

In a similar way, we construct the objective
function F 0 related to all the orders. And the
complete solution will be the sum R c * F c +
R0*F0, where each term is multiplied by its
respective priority coefficient R c and R0. We
need a variable F:." 0 : 1 0 0 0 0 0 0 with a big
domain to represent this important sum of dis-
tances.

As mentioned above, CHIP provides a higher-
order optimization predicate m i n m a x that will
minimize this objective function on the domain of
location variables L:

min max(labeling(L), [Fc]).

This call will search for the values of the
decision variables L, which minimize the dis-
tances between posts having the same customer
and orders, while respective the constraints and
relations introduced before. It uses the above
mentioned l a be l i ng predicate that allows the
generation of values from the domain of the
location variables.

4.4. Experimental results

The efficiency of our CHIP solution depends
on the state of the expedition parks and on the

94 R. Bisdofi S. Laurent /European Journal of Operational Research 84 (1995) 82-95

number of posts having the same characteristics.
If a lot of zones are unoccupied then an optimal
solution will be found quickly. But if the parks
are full then it will be slower. This difference in
execution time is accentuated whenever the num-
ber of posts belonging to the same order or
customer grows. In this latter case the sum of all
the distances between them becomes important
and difficult to minimize.

Our solution was tested on a real disposing
problem where 148 posts divided into 38 cus-
tomers had to be stocked onto 40 unoccupied
zones. An optimal solution for this important
number of posts would have taken too much time
if we had not used a variant of the i n d om a i n
predicate which allows the generation to be
started with a specific value. Thus, for each group
of posts belonging to the same customer, we
search for an appropriate number of zone having
enough capacity and appropriate length to re-
ceive all these posts (or a big part of them). By
starting the labeling process with these numbers,
an optimal solution is found in 34.06 seconds.

However, if the availability of the zones is
restricted, i.e. there are a lot of posts already
disposed onto the zones, execution time takes
hours. To solve the problem nevertheless we sim-
plified the problem by optimizing the disposing
for each customer and his orders separately. This
relaxed solution F r gives very good results in
acceptable time (11 seconds for empty parks and
2 hours 8 minutes for full parks).

As explained before, different options of the
m i n-m ax predicate allow us to adapt the search-
ing strategy. Thus, we retried to reach a solution
to the complete problem which would be better
than the relaxed solution in a maximum of 30
minutes with E = 0, 1.

min_max(tabeting(L), 0, Fr, 10,

1800).

The complete optimal solution, better than the
relaxed solution F r, must take value between 0
and this value F r. To dismiss insignificant ame-
liorations, we limit the search to solutions at least
10% better than F r and we limit execution time
imperatively to 1800 seconds. In our concrete
tests, no such &-optimal solution could be found.

Therefore, once the global method doesn’t
succeed rapidly, we can treat each customer sepa-
rately and find an approximated solution. In or-
der to test if this result is far from the complete
optimum, we may use the above variant of the
m i n ma x predicate to try to &-ameliorate this
appr&imation in a limited time. Finally, if the
problem becomes too difficult, we still have the
possibility to divide the posts into smaller produc-
tion periods.

4.5. Discussion

The CHIP solution of the girders disposing
problem illustrates the finite domain computation
facilities proposed. The program text follows
rather closely the mathematical formulation as
already observed about the Prolog III solution
above. But when programming in CHIP the gen-
eration of the constraints on the decision do-
mains and the objective function needs basic Pro-
log programming knowledge. Because of this
problem, new versions of CHIP will provide facil-
ities to formulate cumulative constraints like our
disposing capacity constraint in a simpler way.

Nevertheless, the finite domain component of
the CHIP system appears as a kind of modelling
system for linear integer programming problems.
Our CHIP solution is small in size and may easily
be modified to adapt the solution to changing
specifications. In the same way, it is easy to
construct generic abstract solutions for interest-
ing general problems.

The integrated branch-and-bound solver gives
satisfactory results if the combinatorial size of the
problem can be kept within reasonable limits.

5. Conclusions

We have developed solutions to linear indus-
trial problems by using constraint logic program-
ming languages. The Prolog III and CHIP sys-
tems, according to their declarative aspects, allow
the modelling of problems in short programs easy
to understand and to modify. Moreover, their
constraint solving capacities permit finding the
optimal solution to constrained linear decision
problems.

R. Bisdorff, S. Laurent / European Journal of Operational Research 84 (1995) 82-95 95

The general solving capacities of linear ratio-
nal problems, illustrated in a Prolog III solution
to the coils selection, showed performances com-
parable to those of traditional MP solvers. But a
lack of information return from the integrated
simplex solver appeared. It is not possible to
access dual solutions for rounding purposes, for
instance.

Solving linear integer problems, like for in-
stance our girders disposing solution, showed the
interesting facilities of finite domain computa-
tions in CLP systems like the CHIP environment,
but good Prolog programming is welcome.

To conclude, we would say that CLP systems
should not be dismissed as potential modelling
and solving tools for linear MP problems.

References

[1] Bisdorff, R., and Gabriel, A., "Industrial linear optimiza-
tion problems solved by constraint logic programming",
First International Conference on the Practical Applica-
tion of Prolog, London, 1992.

[2] Bisdorff, R., Gabriel, A., and Laurent, S., "Optimisation
lin~aire en Prolog III", Twelfth International Conference
Avignon 92, Avignon, 1992.

[3] Bisdorff, R., and Laurent, S., "Industrial disposing prob-
lem solved in CHIP", in: D.S. Warren (ed.), Proceedings of
the lOth International Conference on Logic Programming,
MIT Press, 1993, 831.

[4] Colmerauer, A., "Opening the Prolog III Universe", Byte
Magazine, August (1987).

[5] Colmerauer, A., "An introduction to Prolog III", Commu-
nications of the ACM, 33 (1990) 69-90.

[6] Dincbas, M., Van Henteryck, P., Simonis, H., Aggoun, A.,
and Graf, T., "Applications of CHIP to industrial and
engineering problems", in: Proceedings of the First Interna-
tional Conference on Industrial and Engineering Applica-
tions of Artificial Intelligence and Expert Systems, 1988.

[7] Dincbas, M., Van Henteryck, P., Simonis, H., Aggoun, A.,
Graf, T., and Berthier, F., "The constraint logic program-
ming language CHIP", in: Proceedings of the International
Conference on Fifth Generation Computer Systems, Tokyo,
1988, 693-702.

[8] Dincbas, M., Van Henteryck, P., Simonis, H., "Solving
large combinatorial problems in logic programming",
Journal of Logic Programming 8/1-2 (1990) 75-93.

[9] Jaffar, L., and Lassez, J.-L., "Constraint Logic Program-
ming", Conference on Principles of Programming Lan-
guages, Munich, 1987.

