
On enumerating chordless circuits in directed

graphs

Raymond BISDORFF

University of Luxembourg

FSTC/ILIAS

6, rue Richard Coudenhove-Kalergi

L-1359 LUXEMBOURG

http://charles-sanders-peirce.uni.lu/bisdorff

January 30, 2010

Abstract

We introduce and discuss an algorithm using O(p) time and O(n(n +
m)) space for enumerating the m > 0 chordless circuits in a digraph of
order n and containing p chordless paths. Running it on random digraphs
yields some statistical insight into its practical performance.

Keywords Directed Graphs, Chordless Circuits, Circuits Enumeration.

MSC Classification (2000) 05C20, 05C38.

Introduction

We consider directed graphs (digraphs) with a finite number of vertices and
no multiple arcs. A list of k distinct such vertices [v0, v1, · · · , vk−1] (k > 3) is
called a chordless circuit of length k if there is a link from vi to vi+1 for all
i = 0, · · · , k − 2 and from vk−1 back to v0, and there is no other link between
any two of these vertices. Such a chordless circuit corresponds to an induced
oriented cyclical subgraph.

Both, detecting and enumerating these chordless circuits of odd length in
outranking digraphs (Roy and Bouyssou, 1993; Bisdorff, 2002) are required for
computing their outranking kernels, i.e. the maximal independent and outrank-
ing sets of vertices, representing potential best choice recommendations in the
context of multiple criteria decision aid (Bisdorff et al., 2006). Indeed, the ab-
sence of chordless circuits of odd length guarantees the existence of at least one
such kernel in an outranking digraph (Bisdorff et al., 2008).

1

Seminal work on this kind of enumeration problem goes back to the early
seventies (Tiernan, 1970; Weinblatt, 1972; Tarjan, 1973). Our algorithmic elab-
oration here is closely inspired by corresponding recent work on the detection
of holes, i.e. chordless cycles in (non oriented) graphs (Nikolopoulos and Palios,
2007). This similar algorithmic problem is most important for the recogni-
tion of perfect graphs (Chudnovsky et al., 2005a,b; Haas and Hoffmann, 2006),
a problem which regained much attention (Wild, 2008) after the spectacular
recent proof of Berge’s conjecture (Chudnovsky et al., 2006) that a graph is
perfect if, and only if, it contains no holes or antiholes (holes in the complement
graph) on an odd number of vertices.

This paper is organized into three sections. In the first section we introduce
and discuss our basic approach for detecting chordless circuits. The second is
devoted more specifically to the complete enumeration of all chordless circuits
contained in a given digraph. We close with a third offering some run time
statistics from enumerating the chordless circuits in samples of random digraphs.

1 Detecting the chordless circuits

1.1 Notations

Let G be a directed graph (digraph) with no multiple arcs. We denote G(V) and
G(A) respectively the vertex and the arc set of G. The number of its vertices
is called the order and the number of its arcs is called the size of the digraph.

Let v0 and vk be two vertices in V . A (directed) path in G of length k > 0
from v0 to vk is a list of vertices [v0, v1, · · · , vk] such that (vi, vi+1) ∈ G(A) for
i = 0, ..., k − 1. A path is called simple if none of its vertices occur more than
once. A simple path is called chordless if neither (vi, vj) ∈ A nor (vj , vi) ∈ A for
any two non-consecutive vertices vi, vj in the path. In particular, the smallest
chordless paths are given by the asymmetrically related pairs of vertices in V .
We say that a path [v0, v1, · · · , vk] is adjacent to a path [w0, w1, · · · , wk] if
vk = w0.

A list of vertices [v0, · · · , vk−1] with k > 1 forms a circuit (resp. simple
circuit) if [v0, · · · , vk−1] is a (resp. simple) path from v0 to vk−1 and (vk−1, v0) ∈
A; its length is equal to k. A simple circuit [v0, v1, · · · , vk−1] is called chordless
if no arc (vi, vj) exists in A such that i − j 6≡ k − 1 mod k. The chordless
circuit of length k is denoted by Ck; note C3 is the smallest possible circuit in
a digraph. It consists of a list of three adjacent arcs. For instance, two such
chordless circuits [2, 6, 4] and [1, 5, 6, 3] appear in the sample digraph of order 7
shown in Figure 1.

We call a pre-chordless-circuit (of length k) a list of vertices [v0, v1, · · · ,

vk−2, vk−1] from V with k > 3 when both partial sublists [v0, v1, · · · , vk−2], as
well as [v1, · · · , vk−2, vk−1], are chordless paths of length k − 2.

The (dominated) strict neighbourhood N(v1) of a vertex v1 ∈ V is the set of
all vertices v2 ∈ G such that (v1, v2) ∈ A and (v2, v1) 6∈ A.

2

1

2

34 5

7

6

Figure 1: A sample digraph with two chordless circuits ([2, 6, 4] and [1, 5, 6, 3])
of lengths 3 and 4.

1.2 Detecting a chordless circuit

The following Lemma provides the basis of our approach for detecting chordless
circuits in a given digraph.

Lemma 1.1. A digraph G contains a chordless circuit starting from a vertex v0

if, and only if, there exists a pre-chordless-circuit [v0, v1, · · · , vk−1] with k > 3
starting from v0 which is followed by an adjacent chordless path of length 1 from
vk−1 back to v0.

Proof. (⇒) Suppose that G contains a chordless circuit [v0, v1, · · · , vk−1] with
k > 3, then the conditions of the lemma follow directly from the definition of a
pre-chordless-circuit above.
(⇐) Suppose that G contains a pre-chordless-circuit Pk = [v0, v1, · · · , vk−1] of
length k, with k > 3, followed by the adjacent chordless path [vk−1, vk]. Then
both [v0, v1, · · · , vk−2] and [v1, v2, · · · , vk−1] must have a length of at least
1. Suppose now that vk = v0 and that the circuit thus given by the adjacent
paths Pk and [vk−1, v0] is not chordless. Following from the pre-chordless-circuit
definition, the only chord that might exist in this circuit would be the arc
(v0, vk−1). But [vk−1, v0] is supposed to be a chordless path, hence (v0, vk−1) 6∈
A; a contradiction.

Associated with a given digraph G, we consider now the auxiliary line di-
graph L with vertices set L(V) gathering all chordless paths of length 1 and all
possible pre-chordless-circuits [v0, . . . , vk−1] of length k > 3 in G, and edges set
L(E) defined for k > 2 as follows:

L(V) := {[vi, vj] : (vi, vj) ∈ G(A) ∧ (vj , vi) 6∈ G(A)} (1)

∪ {Ck : Ck is a pre-chordless-circuit in G } (2)

L(E) := {
(

[v0, . . . , vk−1], [v1, . . . , vk]
)

∈ L(V)2 s. t. [vk−1, vk] ∈ L(V)}(3)

3

Note that, if [v0, . . . , vk−2, vk−1] for k > 3 is a pre-chordless circuit in G, then
L contains both the vertices [v0, . . . , vk−2] and [v0, . . . , vk−1] with an edge in
between. Enumerating all chordless circuits in G is thus equivalent to pro-
ceeding from vertex to vertex of L with a Depth-First Search (DFS) algo-
rithm (Heinemann et al., 2009) while checking the conditions of Lemma 1.1 on
the fly.

Lemma 1.2. Let G be a digraph and let L be its associated line digraph L with
vertices and edges sets defined as described in Definitions (1),(2), and (3) above.

1. G contains a chordless circuit of length k if, and only if, the DFS algo-
rithm, when running on L, finds a sequence of chordless paths of increasing
length that eventually yields a pre-chordless-circuit of length k that meets
the conditions of Lemma 1.1.

2. Running the complete DFS algorithm on L will in turn deliver all chordless
circuits to be found in a given digraph G.

Proof. (1) Suppose we run the DFS algorithm on L starting from a vertex
v0. If we obtain a sequence of increasing pre-chordless circuits [v0, v1, v2],
· · · , [v0, . . . , vk−2, vk−1] such that [v0, v1, · · · , vk−2] and [v1, · · · , vk−2, vk−1] are
chordless paths of length k − 2, and [vk−1, v0] is a chordless path, we meet the
conditions of Lemma 1.1 and [v0, · · · , vk−1] is therefore a chordless circuit in
G. Suppose now that G contains a chordless circuit [v0, · · · , vk−1], then, fol-
lowing the DFS algorithm on L starting from [v0, v1], we will necessarily find a
sequence of pre-chordless-circuits of increasing length that eventually yields a
path [v0, · · · , vk−1] meeting the conditions of Lemma 1.1.

(2) Let U be the set of chordless circuits that are not delivered by the DFS
algorithm running on L, and let u be an element of U . This circuit u being
chordless by assumption, a corresponding sequence of adjacent chordless paths
of length 1 must exist. As these paths correspond by definition to the set of
vertices of L, the DFS algorithm will, during its complete execution on L, at
one point or another, deliver the corresponding sequence of pre-chordless-circuits
which will, following from (1), in turn be recognized as chordless circuit. Thus
u cannot be in U ; hence a contradiction and U is indeed empty.

2 Enumerating the chordless circuits

From the results of Lemma (1.2), we may define the following algorithm for
enumerating the chordless circuits in a given digraph G.

2.1 The chordless circuits enumeration (CCE) algorithm

If g contains p chordless paths and circuits, the associated auxiliary line digraph
L has |L(V)| = p vertices and, as it represents in fact the explicite DFS search
tree, p − 1 edges. Running the DFS algorithm directly on L would therefore
require O(p) space. To reduce this space, we are going to run the DFS implicitly

4

on L by working from the asymmetric neighbourhoods in the underlying digraph
G.

Algorithm 1 (Chordless-Circuit-Enumeration (CCE) algorithm).

1: Input: a digraph G; Output: a list of chordless circuits.
2: def enumerateChordlessCircuits (In: G):
3: chordlessCircuits ← []:
4: visitedLEdges ← {}:
5: toBeV isited ← a copy of V :
6: while toBeV isited 6= {}:
7: v ← toBeV isited.pop()
8: P ← [v]
9: vCC ← []
10: if chordlessCircuit(P ,v):
11: chordlessCircuits ← chordlessCircuits + vCC:
12: return chordlessCircuits

where the procedure chordlessCircuit() is defined as follows:

13: Input: a path P = [· · · , vk−1], and a target vertex vk.
14: Output: a Boolean variable detectedChordlessCircuit

15: def chordlessCircuit (In: P , vk ; Out: detectedChordlessCircuit):
16: vk−1 ← last vertex of P

17: visistedLEdges ← add {vk−1, vk}
18: if vk ∈ N(vk−1):
19: detectedChordlessCircuit ← True

20: print ’Chordless circuit’s certificate: ’, P

21: vCC ← append P

22: else

23: detectedChordlessCircuit ← False

24: N ← a local copy of N(vk−1)
25: while N not empty:
26: v ← pop a neighbour of vk−1 from N

27: if {vk−1, v} 6∈ visistedLEdges:
28: NoChord← True

29: Pcurrent ← a copy of the current P

30: for x ∈ Pcurrent − {vk−1}:
31: if x = vk:
32: if (x, v) ∈ A:
33: NoChord← False

34: else

35: if (x, v) ∈ A ∨ (v, x) ∈ A:
36: NoChord← False

37: if NoChord:
38: Pcurrent ← append v

39: if chordlessCircuit(Pcurrent ,vk):
40: detectedChordlessCircuit ← True

41: return detectedChordlessCircuit

Analysis and proof of algorithm CCE.
The CCE algorithm tries to find all chordless circuits by starting in turn from all
available vertices in G(V) (lines 5–6). For each such vertex v ∈ G(V) (line 7) the
algorithm collects all detected chordless paths from v to v (line 9–10, list vCC)
and adds them, if there are any, to a global list (line 11, list chordlessCircuits)
that is eventually returned (line 12).

5

A recursive call to a chordlessCircuit() DFS procedure, returning a
Boolean variable detectedChordlessCircuit, allows for each vertex v to signal
the presence, or not, of chordless paths starting from and ending at this vertex
v (see lines 8–10 and 38).

The invariant of the recursive chordlessCircuit() procedure guarantees
that from a pre-chordless-circuit [v0, · · · , vk−1] with k > 3, we may only pro-
ceed to a path [v0, · · · , vk−1, vk] which is again a pre-chordless-circuit. Indeed,
[vk−1, vk] is necessarily an yet unvisited chordless path of the input digraph (see
lines 24–26), (v0, vk) is not in G(A) (see line 30–32), and [v0, · · · , vk−1] as well as
[v1, · · · , vk] are necessarily two chordless paths of length k− 1 (see lines 34–35).
Furthermore, if vk = v0, we may hence conclude, following Lemma 1.2, that
we are in fact in the presence of a chordless circuit of length k. In the initial
cases when k = 1 (resp. k = 2), i.e. potential loops (resp. circuits of length 1),
the condition vk ∈ N(vk−1) (see line 18) will fail and we consequently augment
the current path in accordance with the conditions of Lemma 1.1 until we get
a chordless path which verifies from k > 3 on the invariant of the recursive call.

With the help of the global visitedLEdges set (see line 17), which memorizes
each visited pair {vi, vj} of G, the chordlessCircuit() procedure recursively
visits only once each pre-chordless-circuit of the input digraph G and vertex
of L. For each each following vertex of L we check the pre-chordless-circuit
conditions on the current path (see lines 28–36).

That we therefore eventually gather all the existing chordless circuits in the
digraph G follows directly from Lemma (1.2).

When assuming that the access times to all involved global sets and local
lists – A, N(vi), visitedLEdges, and P – may be kept constant, the time com-
plexity of the CCE algorithm is O(p), i.e. the time complexity O(p) of the
DFS algorithm (Heinemann et al., 2009) visiting all pre-chordless circuits of a
digraph. This time complexity is thus linear in the order of the associated line
digraph L.

The space required by the CCE algorithm is firstly determined by the storage
of the set V of vertices (O(n)) with their strict neighbourhoods N(x) (O(n2)),
the current path P with its copy Pcurrent (O(n)), and the global visitedLEdges

set which occupies O(n2) space. Furthermore, as we store all m detected chord-
less circuits in a global list, we will need further O(nm) space.

These results may be summarized as follows:

Theorem 2.1. Enumerating the m > 0 chordless circuits of a digraph G of
order n, containing p pre-chordless-circuits, may be achieved with an algorithm
using O(p) time and O(n(n + m)) space.

2.2 Variants of the CCE algorithm

Note a slight variant of the CCE algorithm provides us with a chordless circuit
detection algorithm.

6

A chordless k-circuit detection algorithm
We are more specifically interested in detecting the presence or not of a chordless
circuit of length k, for 3 6 k 6 n. Therefore, in the given case, we do not add
the detected chordless k–circuit to a current list vCC (line 21 in Algorithm 1).
Instead, after this first detection of a chordless k–circuit, we immediately empty
the neighbourhood of vk−1, and thus interrupt the enumeration procedure. The-
orem 2.1 hence leads to the following corollary:

Corollary. Detecting (with a certificate when there is one) whether a digraph
G, of order n and containing p pre-chordless circuits, has a chordless k–circuit
(3 6 k 6 n), may be computed with an algorithm using O(p) time and O(n2)
space.

Proof. Indeed, due to the constant maximal length k of the circuit, the required
space will reduce here to O(n(n + 1)).

Finally, we mention a further slight variant of the CCE algorithm for de-
termining both the minimal and the maximal length of a chordless circuit in a
given digraph.

Finding the minimum and maximum sizes of the chordless circuits
We may start with procedure enumerateChordlessCircuits() from an Hamil-
tonian circuit of maximal possible length, respectively an empty path of possible
minimal length. This time we inspect the actual length of all the chordless cir-
cuits of digraph G and readjust, if necessary, the minimal, respectively maximal
length observed until that moment. The eventually observed minimal and and
maximal lengths are printed out under the condition that at least one chordless
circuit has been detected.

As a further consequence of Theorem 2.1, we therefore obtain that:

Corollary. Determining the minimal or maximal length of a chordless circuit in
a digraph G, of order n and containing p pre-chordless circuits, may be achieved
(with certificates if G contains at least one) with an algorithm using O(p) time
and O(n2) space.

Let us now consider some operational results we may achieve with the CCE
algorithm in enumerating chordless circuits in a given digraph.

3 Operational results

Practical experiences with a Python-2.6 implementation of the CCE algorithm,
using the digraphs module (Bisdorff, 2009a) on a standard application server
running under Ubuntu 9.04, may give us average execution statistics for samples
of 1 000 random digraphs.

7

Chordless circuit enumeration in samples of 1 000 random digraphs

order time total mean frequency (in %) per circuit length
(n) (sec.) (stdev) freq. length 3 4 5 6 7 8 ...

10 0.0005 0.0001 4 3.00 100
20 0.0037 0.0007 43 3.19 80 16 5
30 0.0148 0.0022 174 3.29 73 25 2
40 0.0466 0.0060 473 3.39 66 31 4
50 0.1148 0.0127 1035 3.47 59 35 6
60 0.2575 0.0252 1996 3.55 53 39 8
70 0.5038 0.0447 3506 3.62 48 41 10 1
80 0.9393 0.0761 5796 3.69 44 43 12 1
90 1.6204 0.1241 9054 3.75 41 45 13 1
100 2.6509 0.1917 13526 3.81 37 46 15 1
110 4.1251 0.2786 19596 3.87 34 47 17 2
· · · · · · · · · · · · · · · · · ·
150 22.787 1.2848 68079 4.06 25 47 24 3 · · ·

Table 1: Average execution statistics for the CCE algorithm

Enumerating chordless circuits in random digraphs
In Table 1, note that the complete enumeration of chordless circuits is achieved
in less than 5 seconds for random digraphs of order up to 110 with constant arc
probability 0.5. All circuits remain very limited in length: less than 7 nodes and
with mean length lower than 4. For digraphs of order 100, for instance, more
than one third of the average number of 13 526 chordless circuits are of length
3. And, for random digraphs of order up to 150, we still observe that a fourth
of the average number of 68 052 circuits are of the smallest possible length 3.

Chordless circuits in samples of 1 000 random digraphs of order 50

arc time total mean frequency (in %) per circuit length
prob. sec. stdev freq. length 3 4 5 6 7 8 9 ...

0.8 0.015 0.001 181 3.01 99 1
0.7 0.031 0.003 410 3.07 97 3
0.6 0.061 0.006 691 3.21 80 19 1
0.5 0.115 0.013 1035 3.47 59 35 6
0.4 0.234 0.028 1469 3.90 36 42 19 3
0.3 0.489 0.077 1981 4.58 17 32 31 15 4
0.25 0.671 0.117 2194 5.07 11 23 30 23 10 3
0.2 0.888 0.177 2215 5.70 6 15 24 26 18 8 2
0.15 0.946 0.240 1816 6.53 4 9 16 21 21 16 9 · · ·
0.1 0.535 0.218 728 7.40 3 6 10 14 17 17 14 · · ·
0.05 0.025 0.022 22 6.19 9 14 14 9 9 9 9 · · ·

Table 2: Average execution statistics for the CCE algorithm

Varying the arc probability for random digraphs of constant order
If we now vary the arc probability for random digraphs of constant order 50, we
notice in Table 2 that the total number, as well as the lengths, of the circuits
augment as the arc probability diminishes until a threshold probability of circa

8

0.2, where a maximum number of circuits (2 215) is observed. For smaller arc
probabilities, the number of circuits falls drastically whereas the average length
of the circuits that are there grows. For arc probability 0.1 for instance, more
than 80% of the circuits have length 6 or more. It is also worthwhile noticing
that the distribution of the circuits’ lengths spreads, and consequently flattens,
when the arc probability is lowered.

Finally, as expected, run times are related to the total number of chordless
chordless circuits. Furthermore, for equal numbers one may notice that they
are, due to the cardinality of the chordless paths graph, essentially related to
the average lengths distribution of the detected circuits. This is clearly apparent
when comparing average run times: 691 circuits of mean length 3.21 in 0.06 sec.
for arc probability 0.6 versus 728 circuits of mean length 7.40 in 0.5 sec. for arc
probability 0.1 .

Circuits in samples of 1 000 random tournaments

order frequency run time
(n) (#) (stdev) (sec.) (stdev)

10 30 5 0.0008 0.0001
20 286 15 0.0057 0.0005
30 1015 27 0.0019 0.0011
40 2470 43 0.0490 0.0027
50 4897 60 0.1018 0.0056
60 8553 77 0.2530 0.0445
70 13864 106 0.4272 0.0767
80 20544 128 0.8038 0.1357
90 29365 153 1.3800 0.1981
100 40430 172 2.2979 0.2630
110 53949 199 3.1396 0.4101
120 70207 226 4.4086 0.6939

Table 3: Average execution statistics for the CCE algorithm

Random tournaments
This is also apparent when considering tournaments, i.e. complete asymmetrical
digraphs with the largest possible order of the associated paths graph L. As
there are no ’holes’ – i.e. incomparable vertices – in a tournament, all chordless
circuits will necessarily be of unique length 3. It is well known (Moon, 1968)
that the expected of number of chordless circuits in random tournaments is
1

4
(n
3). With a sample of 1 000 such random tournaments of order 100, we obtain

a mean run time of 2.3 seconds for enumerating in average 40 430 circuits (see
Table 3). Whereas in a comparable sample of random digraphs of the same
order, we observe a similar mean run time of 2.65 seconds for enumerating
roughly a third of this number (see Table 1).

Corollary. Enumerating m > 0 chordless circuits of a tournament of order n

may be achieved with an algorithm using O(n4) time and O(n2 + m) space.

9

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

ex
ec

ut
io

n
tim

e
(s

ec
.)

n^4/10^8

Least square regression of time versus O(n^4)

Y = 0.0101 + 0.462X

120

110

100

90

80

70

R-squared 0.998391

Figure 2: Empirical verification of the CCE algorithm’s time complexity for
samples of 1 000 random tournaments

Proof. Indeed, when restricting the application of the CCE algorithm to the
class of tournaments, i.e digraphs with only 3–circuits, the number of pre-
chordless-cicuits contained in G is O(n) times the actual number of possible
chordless circuits which is 1

4
(n
3) + O(n3) (Moon, 1968), and the storage space

for the resulting m circuits of constant length 3 is no more depending on the
order n of the digraph.

The regression of the mean CCE run time1 for random tournaments of order
10 to 120 against O(n4) , shown in Figure 2, statistically confirms again (R2 =
0.998) the theoretical run time complexity.

Implementation of the CCE algorithm
For readers who would like to undertake practical experiments with the CCE al-
gorithm, a Python 2.6 source code, using the digraphsmodule (Bisdorff, 2009a),
and a C++ source code, using the aGrUM C++ library (Gonzales and Wuillemin,
2009), may be found on the personal web pages of the author (Bisdorff, 2009b).
The latter C++ implementation is roughly ten times faster than the correspond-
ing Python code.

1with a Python 2.6.4 implementation of the CCE algorithm on a standard application
server.

10

Conclusion

In this paper, we have analyzed and proved an algorithm in O(p) time and
O(n(n + m)) space for enumerating m chordless circuits in a digraph of order n

containing p chordless paths. Sampling run times for the enumeration of chord-
less circuits shows that for random digraphs of order up to 100, the operation is
generally unproblematic. The total number of chordless circuits, as well as the
distribution of their lengths, determine these statistics.

With an eye to recent work on the maximal length of the longest chord-
less circuit (Van Nuffelen and Van Rompay, 2005), it would be interesting to
analyze furthermore the probability distribution of the lengths of the chord-
less circuits in random digraphs with various orders and arc probabilities and
show the probability distribution’s effect on the run time performances of our
algorithms.

acknowledgement The author is most grateful for the valuable comments
of an anonymous reviewer whose contribution has greatly enhanced the final
version of the paper.

References

Bisdorff, R. (2002). Logical foundation of multicriteria preference aggregation.
In et al., B. D., editor, Aiding Decisions with Multiple Criteria, pages 379–403.
Kluwer Academic Publishers.

Bisdorff, R. (2009a). The Python digraphs module for Rubis. University of
Luxembourg, http://ernst-schroeder.uni.lu/Digraph/.

Bisdorff, R. (2009b). Software ressources for practical exper-
imentation with the CCE algorithm. http://charles-sanders-
peirce.uni.lu/bisdorff/ChordlessCircuits/.

Bisdorff, R., Meyer, P., and Roubens, M. (2008). Rubis: a bipolar-valued out-
ranking method for the best choice decision problem. 4OR: A Quarterly
Journal of Operations Research, 6(2):143 – 165.

Bisdorff, R., Pirlot, M., and Roubens, M. (2006). Choices and kernels from
bipolar valued digraphs. European Journal of Operational Research, 175:155–
170.

Chudnovsky, M., Cornuéjols, G., liu, X., Seymour, P., and Vuskovic, K. (2005a).
Recognizing Berge graphs. Combinatorica, 25:143–187.

Chudnovsky, M., Karwarabayashi, K., and Seymour, P. (2005b). Detecting even
holes. J. Graph Theory, 48:85–111.

Chudnovsky, M., Robertson, N., Seymour, P., and Thomas, R. (2006). The
strong perfect graph theorem. Ann. of Math., 164:51–229.

11

Gonzales, C. and Wuillemin, P.-H. (2009). The aGrUM C++ library. Lip6,
Université Pierre et Marie Curie, Paris, http://agrum.lip6.fr.

Haas, R. and Hoffmann, M. (2006). Chordless paths through three vertices.
Theor. Comput. Sci., 351(3):360–371.

Heinemann, G. T., Pollice, G., and Selkow, S. (2009). Algorithms in a nutshell.
O’Reilly.

Moon, J. (1968). Topics on Tournaments. Holt, Rinehart and Winston, New
York.

Nikolopoulos, S. D. and Palios, L. (2007). Detecting holes and antiholes in
graphs. Algorithmica, 47:119–138.

Roy, B. and Bouyssou, D. (1993). Aide Multicritère à la Décision : Méthodes
et Cas. Economica, Paris.

Tarjan, R. E. (1973). Enumeration of the elementary circuits of a directed
graph. SIAM J. Comput., 2(3):211–216.

Tiernan, J. C. (1970). An efficient search algorithm to find the elementary
circuits of a graph. Comm. ACM, 13:722–726.

Van Nuffelen, C. and Van Rompay, K. (2005). On the length of longest chordless
cycles. 4OR, 3(2):133–138.

Weinblatt, H. (1972). A new search algorithm for finding the simple cycles of a
finite directed graph. J. Assoc. Comput. Mach., 19:43–56.

Wild, M. (2008). Generating all cycles, chordless cycles, and hamiltonian cycles
with the principle of exclusion. Journal of Discrete Algorithms, 6(1):93 –
102. Selected papers from AWOCA 2005, Sixteenth Australasian Workshop
on Combinatorial Algorithms.

12

	Detecting the chordless circuits
	Notations
	Detecting a chordless circuit

	Enumerating the chordless circuits
	 The chordless circuits enumeration (CCE) algorithm
	Variants of the CCE algorithm

	Operational results

