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Notations

e A= {x,y,z, ..} is a finite set of decision alternatives.

n} is a finite and coherent family of performance

criteria.

For each criterion i in F, the alternatives are evaluated on a
real performance scale [0; Mj],

supporting an indifference threshold g;

and a preference threshold p; such that 0 < q; < pi < M;.

The performace of alternative x on criterion i is denoted x;.
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Motivation

1. Let x and y be integers.
e Either: x <y, orx=y, orx>y.
e Thus, saying that x 7 y, means in fact that y > x.
o Obviously, this is due to the fact that the ordering of integer
numbers is complete |
2. Let x and y be two decision alternatives.
* What does mean the sentence: “x does not outrank y” ?
e Does it means that consequently “y strictly outranks x" 7
* Not necessarily!
o The classic outranking relation, due potential veto situations,
may be partial only.
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Performing at least as good as on a single criterion

Each criterion i is characterising a double threshold order >; on A
in the following way:

+1
-1
0 otherwise.

if xi+qi>yi

=
<VYi

1)

if x;i+pi

+1
-1

signifies x is performing at least as good as y on criterion i,

signifies that x is not performing at least as good as y on
criterion /.

o

signifies that it is unclear whether, on criterion i, x is
performing at least as good as y.
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Performing globally at least as good as

Each criterion / contributes the significance w; of his “at least as
good as” characterisation r(>;) to the global characterisation r(>)
in the following way:

rx=y) =Y [wi-r(x>y)] (2)

icF

r > 0 signifies x is globally performing at least as good as y,

r < 0 signifies that x is not globally performing at least as good as
Y

r = 0 signifies that it is unclear whether x is globally performing at
least as good as y.
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First result

Proposition
The global better than relation (>) is the codual of the “global at
least as good” (#) relation.

Proof.
On each criterion i:

-1 if x+gqi >y
r(x2iy) = —r(xziy) = q+1 if xi+p<y - (5)
0 otherwise.

Performing better than on a single criterion
Each criterion i is characterising a double threshold order >;
(better than) on A in the following way:

11 if x—pi
rx>jy)=4q-1 if x—q

Yi

2
<yi (3)

0 otherwise.

And, the global better than relation is defined as:

rix>y)= Z [W,‘ cr(x > y)] (4)

ieF
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The classic veto principle

Roy introduced the concept of veto threshold v; (p; < vi < M; +€)
to characterize the observation of seriously less performing
situations on the family of criteria. This leads to a single threshold
order, denoted <; which represents seriously less performing
situations as follows:

+1 if xi+vi<y
rx<iy) = s ®)
—1 otherwise.
And a global veto situation x < y is characterised as:
<) =r(Vx<iy) =maxrix<iy)] (@)

ieF

The classic outranking concept Outranking with v Conclusior



nt he classic outranking concept Outrankin

ceo

The classic outranking relation

An alternative x outranks an alternative y , denoted (x = y),
when:

1. a significant majority of criteria validates the fact that x is
performing at least as good as s, i.e. (x = y).
2. And, there is no veto raised against this claim, i.e. =(x < y).
The corresponding charactistic gives:

rixzy) = rl(x>y)A-(x <y)] ®
= min [r(x > y),—r(x < y)] ©)

Seriously better or worse performing on a criterion

We redefine a single threshold order, denoted <<; which represents
seriously less performing situations as follows:

L
=1
0 otherwise.

Yi

<
r(x Kiy) = if xi—vi>yi (10)

And a corresponding dual seriously better performing situation >>;
characterised as:

+1 i x— v
-1 if x+v
0 otherwise.

Yi
Yi

>
r(x>>iy) <

(11)
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Second result

Proposition (Pirlot & Bouyssou 2009)
Let = be a classic outranking relation.

o The asymmetric part  of =, i.e. (x = y) and —(y 3= x), is in
general not identical to its codual relation %.

e The absence of any veto situation is sufficient and necessary
for making % identical to 4.
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Gloablly seriously better or worse performing

A global veto, or counter-veto situation is now defined as follows:

rix<y) = Qierr(x Kiy) (12)
r(x>>y) = Qierr(x>>iy) (13)
where @ represents the epistemic polarising (Bisdorff 1997)
aggregation operator (Grabisch et al. 2009):
max(r,r') if r=0Ar >0,
r@r' = dmin(r,r') if r<0Ar <0, (14)

0 otherwise.



Outranking with bipolar veto Conclusion
ooe

Characterising very large performance differences

1. r(x << y) = 1iff there exists a criterion i such that
r(x << y) =1 and there does not exist otherwise any criteria
J such that r(x >>; y) = 1.

N}

. Conversely, r(x > y) = 1 iff there exists a criterion i such
that r(x >>; y) = 1 and there does not exist otherwise any
criteria j such that r(x << y) = 1.

w

r(x >> y) = 0 if either we observe no very large perforemance
differences or we observe at the same tiem, both a very large
positive and a very large negative performance difference.

Lemma

r(&) ! is identical to r(>>).
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Polarising the global “at least as good as’ characteristic

The bipolar characteristic r() is defined as follows:

()= 0 if [FieF:r(x<iy)]A [Sj.e Fir(xs>)y)
[r(x>y)© —r(x << y)] otherwise

And in particular,

r(x Z y) = r(x = y) if no very large positive or negative
performance differences are observed,
rixzy)=1ifr(x>y)>0and r(x>y) =1,
rixzy)=-lifr(x>y)<0and r(x << y) =1,
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From an epistemic point of view, we say that:

1. x outranks y, denoted (x 7 y), if a significant majority of
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criteria validates a global outranking situation between x and

y and no serious counter-performance is observed on a

discordant criterion,

2. x does not outrank y, denoted (x Z y), if a significant
majority of criterxia invalidates a global outranking situation

between x and y and no seriously better performing situation
is observed on a concordant criterion.

Proposition

Final result

The codual ()~ of the bipolar outranking relation - is identical
to the strict outranking 7 relation.

Proof.

r(xZ y)

[ —r(x=2y)@r(x < y)]
[r(x 2 y) © —r(x>>y)|
[ry>x)@-rly <y)] =

rly

X

—r(xz y) = —[rx2y) 0 —r(x < y)]

).
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Concluding ...

We have shown that the strict version of the classic
outranking is not identical with its codual.

This is due to the unipolar definition of the veto principle.

When considering an extended bipolar veto and counter-veto
principle one gets back this identity.

Time for a didactical example ... 7.



