	The classic outranking concept 0000 000	Outranking with bipolar veto		Content	The classic outranking concept 0000 000	Outranking with bipolar veto			
					Motivation				
	On a bipolar foundation	on of the outranking			1. Let x and y be integers.				
concept Raymond Bisdorff			 Either: x < y, or x > y, or x > y. Thus, saying that x ≥ y, means in fact that y > x. Obviously, this is due to the fact that the ordering of integer numbers is complete ! Let x and y be two decision alternatives. 						
									Université du Luxembourg FSTC/ILAS URPDM2010, Coimbra April 2010
	 Not necessarily! The classic outranking relation, due potential veto situations, may be partial only. 								

Notations

- A = {x, y, z, ...} is a finite set of decision alternatives.
- $F = \{1, ..., n\}$ is a finite and coherent family of performance criteria.
- For each criterion *i* in *F*, the alternatives are evaluated on a real performance scale [0; *M_i*],

supporting an indifference threshold q_i

and a preference threshold p_i such that $0 \leq q_i < p_i \leq M_i$.

The performace of alternative x on criterion i is denoted x_i.

Performing at least as good as on a single criterion

Each criterion *i* is characterising a double threshold order \ge_i on *A* in the following way:

$$r(x \ge_i y) = \begin{cases} +1 & \text{if } x_i + q_i \ge y_i \\ -1 & \text{if } x_i + p_i \le y_i \\ 0 & \text{otherwise.} \end{cases}$$
(1)

- +1 signifies x is performing at least as good as y on criterion i,
- -1 signifies that x is not performing at least as good as y on criterion i.
- 0 signifies that it is unclear whether, on criterion i, x is performing at least as good as y.

Outranking with 000 Conclusio

The classic outranking concept 0000 Outranking with bipolar vete

Conclusion

Performing globally at least as good as

The classic outranking concept

0000

Each criterion *i* contributes the significance w_i of his "at least as good as" characterisation $r(\ge_i)$ to the global characterisation $r(\ge)$ in the following way:

$$r(x \ge y) = \sum_{i \in F} \left[w_i \cdot r(x \ge_i y) \right]$$
(2)

r > 0 signifies x is globally performing at least as good as y,

- r < 0 signifies that x is not globally performing at least as good as y,
- r = 0 signifies that it is *unclear* whether x is globally performing at least as good as y.

Performing better than on a single criterion

Each criterion *i* is characterising a double threshold order $>_i$ (*better than*) on *A* in the following way:

$$r(x >_i y) = \begin{cases} +1 & \text{if } x_i - p_i \ge y_i \\ -1 & \text{if } x_i - q_i \le y_i \\ 0 & \text{otherwise.} \end{cases}$$
(3)

And, the global better than relation is defined as:

$$r(x > y) = \sum_{i \in F} \left[w_i \cdot r(x >_i y) \right]$$
(4)

First result

Proposition

The global better than relation (>) is the codual of the "global at least as good" (\gtrless) relation.

Proof.

On each criterion i:

$$r(x \not\geqslant_i y) = -r(x \geqslant_i y) = \begin{cases} -1 & \text{if } x_i + q_i \geqslant y_i \\ +1 & \text{if } x_i + p_i \leqslant y_i \\ 0 & \text{otherwise.} \end{cases}$$
(5)

The classic veto principle

Roy introduced the concept of veto threshold v_i ($p_i < v_i \leq M_i + \epsilon$) to characterize the observation of seriously less performing situations on the family of criteria. This leads to a single threshold order, denoted \ll_i which represents seriously less performing situations as follows:

$$r(x \ll_i y) = \begin{cases} +1 & \text{if } x_i + v_i \leqslant y_i \\ -1 & \text{otherwise.} \end{cases}$$
(6)

And a global veto situation $x \ll y$ is characterised as:

$$r(x \ll y) = r\left(\bigvee_{i \in F} (x \ll_i y)\right) = \max_{i \in F} \left[r(x \ll_i y)\right]$$
(7)

The classic outranking concept	Outranking with bipolar veto	Conclusion	Content	The classic outranking concept 0000 000	Outranking with bipolar veto 000 000			
The classic outranking relation				Second result				

An alternative x outranks an alternative y , denoted $(x \succcurlyeq y)$, when:

- 1. a *significant majority* of criteria validates the fact that x is performing at least as good as s, i.e. $(x \ge y)$.
- 2. And, there is *no veto* raised against this claim, i.e. $\neg(x \ll y)$.

The corresponding charactistic gives:

$$r(x \succcurlyeq y) = r[(x \geqslant y) \land \neg(x \ll y)]$$
(8)

$$= \min \left[r(x \ge y), -r(x \ll y) \right]$$
(9)

Proposition (Pirlot & Bouyssou 2009)

Let \succ be a classic outranking relation.

- The asymmetric part \(\geq \cong f\(\not \), i.e. (x \(\not y\)) and ¬(y \(\not x\)), is in general not identical to its codual relation \$\not \.
- The absence of any veto situation is sufficient and necessary for making \(\geq \) identical to \(\not\).

Seriously better or worse performing on a criterion

We redefine a single threshold order, denoted \ll_i which represents seriously less performing situations as follows:

$$r(x \lll_i y) = \begin{cases} +1 & \text{if } x_i + v_i \leqslant y_i \\ -1 & \text{if } x_i - v_i \geqslant y_i \\ 0 & \text{otherwise.} \end{cases}$$
(10)

And a corresponding dual seriously better performing situation \gg_i characterised as:

$$r(x \ggg_i y) = \begin{cases} +1 & \text{if } x_i - v_i \ge y_i \\ -1 & \text{if } x_i + v_i \le y_i \\ 0 & \text{otherwise.} \end{cases}$$
(11)

Gloably seriously better or worse performing

A global veto, or counter-veto situation is now defined as follows:

$$r(x \ll y) = \bigotimes_{i \in F} r(x \ll_i y)$$
 (12)

$$r(x \gg y) = \bigotimes_{i \in F} r(x \gg_i y)$$
 (13)

where \odot represents the epistemic polarising (Bisdorff 1997) aggregation operator (Grabisch et al. 2009):

$$r \otimes r' = \begin{cases} \max(r, r') & \text{if } r \ge 0 \land r' \ge 0, \\ \min(r, r') & \text{if } r \le 0 \land r' \le 0, \\ 0 & \text{otherwise.} \end{cases}$$
(14)

Characterising very large performance differences

- 1. $r(x \ll y) = 1$ iff there exists a criterion *i* such that $r(x \ll_i y) = 1$ and there does not exist otherwise any criteria *j* such that $r(x \gg_j y) = 1$.
- Conversely, r(x ≫ y) = 1 iff there exists a criterion i such that r(x ≫ y) = 1 and there does not exist otherwise any criteria j such that r(x ≪ y) = 1.
- r(x ≫ y) = 0 if either we observe no very large perforemance differences or we observe at the same tiem, both a very large positive and a very large negative performance difference.

Lemma

$$r(\not\ll)^{-1}$$
 is identical to $r(\gg)$

			13 / 17
Content	The classic outranking concept 0000 000	Outranking with bipolar veto	Conclusion

Polarising the global "at least as good as" characteristic

The bipolar characteristic $r(\succeq)$ is defined as follows:

$$r(x \succeq y) = \begin{cases} 0 & \text{if } [\exists i \in F : r(x \ll_i y)] \land [\exists j \in F : r(x \gg_j y)] \\ [r(x \ge y) \oslash -r(x \ll y)] & \text{otherwise} \end{cases}$$

And in particular,

- r(x ≿ y) = r(x ≥ y) if no very large positive or negative performance differences are observed,
- $r(x \succeq y) = 1$ if $r(x \ge y) \ge 0$ and $r(x \ggg y) = 1$,
- $r(x \succeq y) = -1$ if $r(x \ge y) \le 0$ and $r(x \ll y) = 1$,

The bipolar outranking concept

From an epistemic point of view, we say that:

- x outranks y, denoted (x ≿ y), if a significant majority of criteria validates a global outranking situation between x and y and no serious counter-performance is observed on a discordant criterion,

4/17

Final result

Proposition

The codual $(\not\gtrsim)^{-1}$ of the bipolar outranking relation \succeq is identical to the strict outranking \succcurlyeq relation.

Proof.

$$\begin{aligned} r(x \gtrsim y) &= -r(x \gtrsim y) = -[r(x \geqslant y) \odot -r(x \lll y)] \\ &= [-r(x \geqslant y) \odot r(x \lll y)] \\ &= [r(x \geqslant y) \odot -r(x \ggg y)] \\ &= [r(y > x) \odot -r(y \lll y)] = r(y \gtrsim x). \end{aligned}$$

- We have shown that the strict version of the classic outranking is not identical with its codual.
- . This is due to the unipolar definition of the veto principle.
- When considering an extended bipolar veto and counter-veto principle one gets back this identity.
- Time for a didactical example ... ?.

17/17