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Motivation

• When modelling preferences following the outranking
approach, the sign of the majority margins do sharply
distribute validation as well as invalidation of pairwise
outranking situations.

• How can we be confident in the resulting outranking digraph,
when we acknowledge

1. the usual imprecise knowledge of criteria significance weights,
and

2. a small majority margin?
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Modelling uncertain criteria significances

We consider the criterion significance weight to be independent random
variable W , distributing the potential significance weight of the given
criterion around a mean value E (W ) with variance V (W ).

1. A continuous uniform distribution on the range 0 to 2 ∗ E (W ).
Thus W ∼ U(0, 2E (W )) and V (W ) = 1

3E (W )2;

2. A symmetric beta(a, b) distribution with, for instance, parameters
a = 2 and b = 2. Thus, W ∼ Beta(2, 2)× 2E (W ) and
V (W ) = 1

5E (W )2.

3. A symmetric triangular distribution on the same range with mode
E (W ). Thus W ∼ T r(0, 2E (W ),E (W )) with V (W ) = 1

6E (W )2;

4. A narrower beta(a, b) distribution with for instance parameters
a = 4 and b = 4. Thus W ∼ Beta(4, 4)× 2E (W ),
V (W ) = 1

9E (W )2
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Decreasing uncertainty

The four potential uncer-
tainty models all admit
the same expected value,
E(W ).

However, with a respec-

tive standard deviation

which goes decreasing

from
√

1/3 = 0.58, to√
1/9 = 1/3 of |E(W )|.
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Notation

• A = {x , y , z , ...}: a finite set of n potential decision actions;

• F = {1, ..., n}, a finite and coherent family of m performance
criteria;

• [0;Mj ]: Performance measurement scale used on criterion j ;

• indj : Upper-closed indifference threshold;

• prj : Lower-closed preference threshold with
0 6 indj < prj 6 Mj ;

• xj : The marginal performance of any object x on criterion j ;

• Wj : The random rational significance weight of criterion j .
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Performing marginally at least as good as

Each criterion j is characterizing a marginal double threshold order <j on A in
the following way:

r(x <j y) =





+1 if xj − yj > −indj
−1 if xj − yj 6 −prj
0 otherwise.

(1)

+1 signifies x is performing
at least as good as y
on criterion j ,

−1 signifies that x is not
performing at least as
good as y on criterion
j .

0 signifies that it is
unclear whether, on
criterion j , x is
performing at least as
good or not as y .

jj

j

j j jx  − y

+1

0

−1

r(x  >= y )

−pr

−ind
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Performing globally “at least as good as”

Each criterion j contributes the random significance Wj of his
marginal “at least as good as” characterization r(<j) to the global
characterization r̃(<) in the following way:

r̃(x < y) =
∑

j∈F
[
Wj · r(x <j y)

]
(2)

r̃ > 0 signifies x is globally performing at least as good as y ,

r̃ < 0 signifies that x is not globally performing at least as good as
y ,

r̃ = 0 signifies that it is unclear whether x is globally performing at
least as good or not as y .
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Likelihood of “at least as good as” situations

From the Central Limit Theorem (CLT), we know that r̃(x < y) (Eq. 2)
leads, with m getting large, to a Gaussian variable Y with:

E (Y ) =
∑

j

E (Wj)× r(x <j y),

V (Y ) =
∑

j

V (Wj)× |r(x <j y)|.

Hence, the bipolar likelihood (lh) of validation, respectively invalidation
of a (x < y) situation may be assessed as follows:

lh(x < y) = 2× P(Y > 0.0)− 1.0 = − erf
( 1√

2

−E (Y )√
V (Y )

)
.

The range of lh(x < y) is [−1.0; +1.0], and −lh(x < y) = lh(x 6< y),

i.e. a negative value represents the likelihood of the negated outranking

relation. A value +1.0 (resp. −1.0) means the outranking situation is

certainly validated (resp. invalidated).
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Example 1: equi-significant criteria

x and y are evaluated wrt 7 equi-significant criteria;

Four criteria positively support that x outranks y
and three criteria support that x does not outrank y .

Suppose E (Wj) = w for j = 1, ..., 7;

And Wj ∼ T r(0, 2w ,w) for j = 1, ...7;

Hence E (r̃(x < y)) = 4w − 3w = w ,

And V (r̃(x < y)) = 7× 1
6w

2.

If w = 1, E [r̃(x < y)] = 1 and sd [r̃(x < y)] = 1.08.

By the CLT, lh(x < y) = 0.66 ≈ 83%,

10 000 MC runs confirm r̃(x < y) Y = N (1.03, 1, 089)
with P(Y 6 0) ≈ 17%.
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Example 1 - continue
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10000 simulations with 4 positive and 3 negative i.i.d. Tr(0,w,2w) weights 

r(x S y)
N(1.0325,1.0885)

17%

Test statistic for normality:
Chi-square(2) = 9.607 [0.0082]
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Example 2: various significance weights

Table : Pairwise comparison of two decision alternatives

gj g1 g2 g3 g4 g5 g6 g7

E(Wj) 7 8 3 10 1 9 7

a1 14.1 71.4 87.9 38.7 26.5 93.0 37.2
a2 64.0 87.5 67.0 82.2 80.8 80.8 10.6

a1 − a2 -49.9 -16.1 +20.9 -43.5 -54.3 +12.2 26.5
r(<j) −1 0 +1 −1 −1 +1 +1

E
(
r̃(a1 < a2)

)
=

7∑

j=1

r(a1 <j a1)× E(Wj)

= −7 + 0 + 3− 10− 1 + 9 + 7 = +1

If now Wj ∼ T r
(
0, 2E(Wj),E(Wj)

)
,

how confident can we be about the actual positiveness of r̃(a1 < a2)?

13 / 29

Example 2 - continue

• r̃(a1 < a2)  N (µ, σ)
with

µ = E(r̃(a1 < a2)) =
+1

σ =
√∑

i 1/6E(Wi )2

= 6.94.

• lh(a1 < a2) = +0.114,
hence

P(r̃(a1 < a2) 6 0.0)

= (0.114 + 1.0)/2

≈ 55.7%.
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The confident outranking relation %
From an epistemic point of view, we say that:

1. action x outranks action y , denoted (x % y), if

1.1 a confident majority of criteria validates a global outranking
situation between x and y , and

1.2 no veto is observed on a discordant criterion,

2. action x does not outrank action y , denoted (x 6% y), if

2.1 a confident majority of criteria invalidates a global outranking
situation between x and y , and

2.2 no counter-veto is observed on a concordant criterion.
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Considerably better or worse performing situations

On a criterion j , we characterize a considerably less performing situation,
called veto and denoted ≪j , as follows:

r(x≪j y) =





+1 if xj + vj 6 yj

−1 if xj − vj > yj

0 otherwise.

. (3)

where vj represents a veto discrimination threshold. A corresponding dual
considerably better performing situation, called counter-veto and denoted
≫j , is similarly characterized as:

r(x≫j y) =





+1 if xj − vj > yj

−1 if xj + vj 6 yj

0 otherwise.

. (4)
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Veto and counter-veto situations

A global considerable worst performaning (veto) situation, or
considerably better perform ing (counter-veto) situation is now
defined as follows:

r(x≪ y) = >j∈F r(x≪j y) (5)

r(x≫ y) = >j∈F r(x≫j y) (6)

where > represents the epistemic polarising (Bisdorff 1997) or
symmetric maximum (Grabisch et al. 2009) operator:

r > r ′ =





max(r , r ′) if r > 0 ∧ r ′ > 0,

min(r , r ′) if r 6 0 ∧ r ′ 6 0,

0 otherwise.

(7)
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Characterizing veto and counter-veto situations

1. r(x≪ y) = 1 iff there exists a criterion j such that
r(x≪j y) = 1 and there does not exist otherwise any
criterion k such that r(x≫k y) = 1.

2. Conversely, r(x≫ y) = 1 iff there exists a criterion j such
that r(x≫j y) = 1 and there does not exist otherwise any
criterion k such that r(x≪k y) = 1.

3. r(x≫ y) = 0 if either we observe no very large performance
differences or we observe at the same time, both a very large
positive and a very large negative performance difference.

Comment

r(6≪)−1 is identical to r(≫).
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Polarising the global “at least as good as ” characteristic

The outranking characteristic r̃(%) is defined as follows:

r̃(x % y) =
[
r̃(x < y) >−r(x≪ y)

]

And in particular,

1. r̃(x % y) = r̃(x < y) if no very large positive or negative
performance differences are observed,

2. r̃(x % y) = 1 if r̃(x < y) > 0 and r(x≫ y) = 1,

3. r(x % y) = −1 if r̃(x < y) 6 0 and r(x≪ y) = 1,

4. r̃(x % y) = 0 in all other cases, and especially if conjointly
r(x≫ y) = 1 and r(x≪ y) = 1.
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Confidence level α for outranking situations

By requiring now a certain level α of likelihood for confidently
validating all pairwise outranking situations, we may thus enforce
the actual confidence we may have in the valued outranking
digraph.
For any outranking situation (x % y) we obtain:

r̂α(x % y) =

{
E
[
r̃(x % y)

]
if abs

(
lh(x < y)

)
> α,

0 otherwise.
(8)

If E (Wj) = wj , E
[
r̃(x % y)

]
equals the corresponding

deterministic outranking characteristic r(x % y).
We safely preserve, hence, in our stochastic modelling, all the nice
structural properties of the deterministic outranking relation like
weak completeness and coduality.
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Example 3: Confident outranking digraph

Table : Random performance tableau

gi wi a1 a2 a3 a4 a5 a6 a7

g1 7 14.1 64.0 73.4 36.4 30.6 85.9 97.8
g2 8 71.4 87.5 61.9 84.7 60.4 54.5 45.8
g3 3 87.9 67.0 25.2 34.2 87.3 43.1 30.4
g4 10 38.7 82.2 94.1 86.1 34.1 97.2 72.2
g5 1 26.5 80.8 71.9 21.3 56.4 88.1 15.0
g6 9 93.0 80.8 23.2 57.2 81.4 16.6 93.0
g7 7 37.2 10.6 64.8 98.9 69.9 24.7 13.6

Thresholds: indi = 10.0, pri = 20, and vi = 80 for i ∈ F .
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Example 3: Confident outranking digraph

Table : Deterministic credibility of (x % y)

r(%)× 45 a1 a2 a3 a4 a5 a6 a7

a1 - +1 −5 −11 +22 +9 0
a2 +16 - +21 0 +25 +14 +22
a3 +21 +5 - −3 +21 +34 +13
a4 +21 +45 +29 - +19 +19 +45
a5 +28 −7 +10 −5 - +9 +2
a6 +6 +5 +31 −3 +7 - +20
a7 +45 +11 +1 0 +15 +13 -
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Example 3: Confident outranking digraph

Table : CLT likelihood of the (x < y) situations

lh a1 a2 a3 a4 a5 a6 a7

a1 - +.11 −.49 −.89 +1.0 +.76 +.85
a2 +.98 - +1.0 +1.0 +1.0 +.98 +1.0
a3 +.99 +.49 - −.30 +.99 +1.0 +.91
a4 +.99 +.49 +1.0 - +.99 +1.0 +.91
a5 +1.0 −.64 +.81 −.49 - +.76 +.23
a6 +.66 +.49 +1.0 −.30 +.64 - +1.0
a7 +.70 +.91 +.11 +.56 +.97 +.94 -
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Example 3: Confident outranking digraph

Table : 90% confident outranking situations

r̂90%(x % y) a1 a2 a3 a4 a5 a6 a7

a1 - 0(+1) 0(−5) −11 +22 0(+9) 0
a2 +16 - +21 0 +25 +14 +22
a3 +21 0(+5) - 0(−3) +21 +34 +13
a4 +21 0(+45) +29 - +19 +19 +45
a5 +28 0(−7) +10 0(−5) - 0(+9) 0(+2)
a6 0(−7) 0(+5) +31 0(−3) 0(+7) - +20
a7 0(+45) +11 0(+1) 0 +15 +13 -
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The confident outranking digraph
The deterministic digraph:

Condorcet winner: a4

The 90% confident digraph:

Weak Condorcet winners: {a4, a2}
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Exploiting the confident outranking digraph

Table : Pairwise comparison of alternatives a4 and a2

gj g1 g2 g3 g4 g5 g6 g7

wj 7 8 3 10 1 9 7

a4j 36.5 84.7 34.2 86.1 21.3 57.2 98.9
a2j 60.0 87.5 67.0 82.2 80.8 80.8 10.6

(a4j − a2j) -27.5 -2.8 -32.8 +3.8 -59.2 -23.6 +88.8
r(a4 <j a2) −1 +1 −1 +1 −1 −1 +1
r(a4 ≪j a2) 0 0 0 0 0 0 0
r(a4 ≫j a2) 0 0 0 0 0 0 +1

Thresholds: indj = 10.0, prj = 20, and vj = 80 for j ∈ F .

r̃(a4 < a2) = +5 and r̃(a4 % a2) = +45.
Yet, lh(a4 < a2) = 0.49 < 0.80, hence

r̂.80(a4 % a2) = 0.
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Concluding ...

• We illustrate some simple models for tackling uncertain
significance weights: uniform, triangular and beta laws.

• Applying the Central Limit Theorem, we are able to compute
the actual likelihood of any pairwise at least as good as and
not at least as good as situations.

• This operational result allows to enforce a given confidence
level on the corresponding outranking situations.

• On a small illustrative best choice problem, we eventually
show the pragmatic decision aid benefit one may expect from
exploiting a confident versus a classic deterministic outranking
digraph.
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