

DA2PL'20014 Paris, 21 November 2014

- 1. the usual imprecise knowledge of criteria significance weights, and
- 2. a small majority margin?

- 1. Modelling an uncertain criterion significance
- 2. Likelihood of "at least as good as" situations

Characterizing " at least as good as" situations Assessing the bipolar likelihood Examples

3. Confidence level of "outranking" situations

Outranking situations Confidence level Example

4. Exploiting the confident outranking digraph

Modelling uncertain criteria significances

We consider the criterion significance weight to be independent random variable W, distributing the potential significance weight of the given criterion around a mean value E(W) with variance V(W).

- 1. A continuous *uniform* distribution on the range 0 to 2 * E(W). Thus $W \sim U(0, 2E(W))$ and $V(W) = \frac{1}{3}E(W)^2$;
- 2. A symmetric beta(a, b) distribution with, for instance, parameters a = 2 and b = 2. Thus, $W \sim Beta(2, 2) \times 2E(W)$ and $V(W) = \frac{1}{5}E(W)^2$.
- 3. A symmetric *triangular* distribution on the same range with mode E(W). Thus $W \sim Tr(0, 2E(W), E(W))$ with $V(W) = \frac{1}{6}E(W)^2$;
- 4. A narrower beta(a, b) distribution with for instance parameters a = 4 and b = 4. Thus $W \sim Beta(4, 4) \times 2E(W)$, $V(W) = \frac{1}{9}E(W)^2$

•
$$A = \{x, y, z, ...\}$$
: a finite set of *n* potential decision actions;

- *F* = {1, ..., *n*}, a finite and coherent family of *m* performance criteria;
- [0; *M_j*]: Performance measurement scale used on criterion *j*;
- *ind_i*: Upper-closed indifference threshold;
- pr_j : Lower-closed preference threshold with $0 \leq ind_j < pr_j \leq M_j$;
- x_j: The marginal performance of any object x on criterion j;
- W_j : The random rational significance weight of criterion j.

$$r(\mathbf{x} \succeq_j \mathbf{y}) = \begin{cases} +1 & \text{if } x_j - y_j \ge -ind_j \\ -1 & \text{if } x_j - y_j \leqslant -pr_j \\ 0 & \text{otherwise.} \end{cases}$$
(1)

- +1 signifies x is performing at least as good as y on criterion j,
- -1 signifies that x is not performing at least as good as y on criterion j.
- 0 signifies that it is unclear whether, on criterion j, x is performing at least as good or not as y.

Performing globally "at least as good as"

Each criterion *j* contributes the random significance W_j of his marginal "at least as good as" characterization $r(\succeq_j)$ to the global characterization $\tilde{r}(\succeq)$ in the following way:

$$\widetilde{r}(\mathbf{x} \succeq \mathbf{y}) = \sum_{j \in F} \left[W_j \cdot r(\mathbf{x} \succeq_j \mathbf{y}) \right]$$
(2)

- $\tilde{r} > 0$ signifies x is globally performing at least as good as y,
- $\tilde{r} < 0$ signifies that x is not globally performing at least as good as y,
- $\tilde{r} = 0$ signifies that it is *unclear* whether x is globally performing at least as good or not as y.

Likelihood of "at least as good as" situations

From the Central Limit Theorem (CLT), we know that $\tilde{r}(x \geq y)$ (Eq. 2) leads, with *m* getting large, to a Gaussian variable Y with:

$$E(Y) = \sum_{j} E(W_{j}) \times r(x \succcurlyeq_{j} y),$$
$$V(Y) = \sum_{j} V(W_{j}) \times |r(x \succcurlyeq_{j} y)|.$$

Hence, the bipolar likelihood (*Ih*) of *validation*, respectively *invalidation* of a $(x \succeq y)$ situation may be assessed as follows:

$$lh(x \geq y) = 2 \times P(Y > 0.0) - 1.0 = -\operatorname{erf} \left(\frac{1}{\sqrt{2}} \frac{-E(Y)}{\sqrt{V(Y)}}\right).$$

The range of $lh(x \ge y)$ is [-1.0; +1.0], and $-lh(x \ge y) = lh(x \ge y)$, i.e. a negative value represents the likelihood of the negated outranking relation. A value +1.0 (resp. -1.0) means the outranking situation is certainly validated (resp. invalidated).

Example 1: equi-significant criteria

x and y are evaluated wrt 7 equi-significant criteria;

Four criteria positively support that x outranks y and three criteria support that x does not outrank y.

Suppose
$$E(W_j) = w$$
 for $j = 1, ..., 7$;
And $W_j \sim \mathcal{T}r(0, 2w, w)$ for $j = 1, ..., 7$;
Hence $E(\tilde{r}(x \geq y)) = 4w - 3w = w$,
And $V(\tilde{r}(x \geq y)) = 7 \times \frac{1}{6}w^2$.
If $w = 1$, $E[\tilde{r}(x \geq y)] = 1$ and $sd[\tilde{r}(x \geq y)] = 1.08$.
By the CLT, $lh(x \geq y) = 0.66 \approx 83\%$,
10 000 MC runs confirm $\tilde{r}(x \geq y) \rightsquigarrow Y = \mathcal{N}(1.03, 1, 089)$
with $P(Y \leq 0) \approx 17\%$.

Example 1 - continue

10000 simulations with 4 positive and 3 negative i.i.d. Tr(0,w,2w) weights

Example 2 - continue

Example 2: various significance weights

Table : Pairwise comparison of two decision alternatives

g j	g_1	g_2	g 3	g_4	g_5	g_6	g ₇		
$E(W_j)$	7	8	3	10	1	9	7		
a_1	14.1	71.4	87.9	38.7	26.5	93.0	37.2		
a ₂	64.0	87.5	67.0	82.2	80.8	80.8	10.6		
$a_1 - a_2$	-49.9	-16.1	+20.9	-43.5	-54.3	+12.2	26.5		
$r(\succcurlyeq_j)$	-1	0	+1	-1	-1	+1	+1		
F (~($\overline{\gamma}$								
E(r($a_1 \succcurlyeq a_2)$) =	$\sum_{i=1} r(a_1)$	≽ _j a ₁) ×	E(VV _j)				
= -7 + 0 + 3 - 10 - 1 + 9 + 7 = +1									

If now $W_j \sim \mathcal{T}r(0, 2E(W_j), E(W_j))$, how confident can we be about the actual positiveness of $\tilde{r}(a_1 \geq a_2)$?

13 / 29

- 1. Modelling an uncertain criterion significance
- 2. Likelihood of "at least as good as" situations

Characterizing "*at least as good as*" situations Assessing the bipolar likelihood Examples

- 3. Confidence level of "*outranking*" situations Outranking situations Confidence level Example
- 4. Exploiting the confident outranking digraph

The confident outranking relation \succeq

From an epistemic point of view, we say that:

- 1. action x outranks action y, denoted $(x \succeq y)$, if
 - 1.1 a confident majority of criteria validates a global outranking situation between x and y, and
 - 1.2 no veto is observed on a discordant criterion,
- 2. action x does not outrank action y, denoted $(x \not\gtrsim y)$, if
 - 2.1 a confident majority of criteria invalidates a global outranking situation between x and y, and
 - 2.2 no counter-veto is observed on a concordant criterion.

Considerably better or worse performing situations

On a criterion j, we characterize a *considerably less performing* situation, called veto and denoted \ll_i , as follows:

$$r(\mathbf{x} \ll \mathbf{y}) = \begin{cases} +1 & \text{if } x_j + v_j \leq y_j \\ -1 & \text{if } x_j - v_j \geq y_j \\ 0 & \text{otherwise.} \end{cases}$$
(3)

where v_j represents a veto discrimination threshold. A corresponding dual *considerably better performing* situation, called counter-veto and denoted \gg_j , is similarly characterized as:

$$r(\mathbf{x} \gg_j \mathbf{y}) = \begin{cases} +1 & \text{if } x_j - v_j \ge y_j \\ -1 & \text{if } x_j + v_j \le y_j \\ 0 & \text{otherwise.} \end{cases}$$
(4)

Veto and counter-veto situations

A global considerable worst performaning (*veto*) situation, or considerably better perform ing (*counter-veto*) situation is now defined as follows:

$$r(\mathbf{x} \ll \mathbf{y}) = \bigotimes_{j \in F} r(\mathbf{x} \ll_j \mathbf{y})$$
 (5)

$$r(x \gg y) = \bigotimes_{j \in F} r(x \gg_j y)$$
 (6)

where \bigcirc represents the epistemic polarising (Bisdorff 1997) or symmetric maximum (Grabisch et al. 2009) operator:

$$r \otimes r' = \begin{cases} \max(r, r') & \text{if } r \ge 0 \land r' \ge 0, \\ \min(r, r') & \text{if } r \le 0 \land r' \le 0, \\ 0 & \text{otherwise.} \end{cases}$$
(7)

17/29	18 / 29	
Motivation Modelling an uncertain criterion significance Likelihood of "at least as good as" situations Confidence level of "outran. Motivation	Description Likelihood of "at least as good as" situations Confidence level of "outr. 000 000 0000 000 0000 0000 000 0000 0000	m

Characterizing veto and counter-veto situations

- 1. $r(x \ll y) = 1$ iff there exists a criterion j such that $r(x \ll_j y) = 1$ and there does not exist otherwise any criterion k such that $r(x \gg_k y) = 1$.
- 2. Conversely, $r(x \gg y) = 1$ iff there exists a criterion j such that $r(x \gg_j y) = 1$ and there does not exist otherwise any criterion k such that $r(x \ll_k y) = 1$.
- 3. $r(x \gg y) = 0$ if either we observe no very large performance differences or we observe at the same time, both a very large positive and a very large negative performance difference.

Comment

$$r(\not\ll)^{-1}$$
 is identical to $r(\gg)$.

Polarising the global "at least as good as " characteristic

The outranking characteristic $\tilde{r}(\succeq)$ is defined as follows:

$$\widetilde{r}(x \succeq y) = \left[\, \widetilde{r}(x \succcurlyeq y) \odot - r(x \lll y) \, \right]$$

And in particular,

- 1. $\tilde{r}(x \succeq y) = \tilde{r}(x \succcurlyeq y)$ if no very large positive or negative performance differences are observed,
- 2. $\tilde{r}(x \succeq y) = 1$ if $\tilde{r}(x \succcurlyeq y) \ge 0$ and $r(x \ggg y) = 1$,
- 3. $r(x \succeq y) = -1$ if $\tilde{r}(x \succcurlyeq y) \leq 0$ and $r(x \ll y) = 1$,
- 4. $\tilde{r}(x \succeq y) = 0$ in all other cases, and especially if conjointly $r(x \ggg y) = 1$ and $r(x \lll y) = 1$.

Confidence level α for outranking situations

By requiring now a certain level α of likelihood for confidently validating all pairwise outranking situations, we may thus enforce the actual confidence we may have in the valued outranking digraph.

For any outranking situation $(x \succeq y)$ we obtain:

$$\hat{r}_{\alpha}(x \succeq y) = \begin{cases} E[\tilde{r}(x \succeq y)] & \text{if } \operatorname{abs}(lh(x \succcurlyeq y)) \geqslant \alpha, \\ 0 & \text{otherwise.} \end{cases}$$
(8)

If $E(W_j) = w_j$, $E[\tilde{r}(x \succeq y)]$ equals the corresponding deterministic outranking characteristic $r(x \succeq y)$. We safely preserve, hence, in our stochastic modelling, all the nice structural properties of the deterministic outranking relation like

weak completeness and coduality.

Example 3: Confident outranking digraph

gi	Wi	a ₁	a ₂	a ₃	a4	<i>a</i> 5	a ₆	a ₇
g_1	7	14.1	64.0	73.4	36.4	30.6	85.9	97.8
g ₂	8	71.4	87.5	61.9	84.7	60.4	54.5	45.8
g ₃	3	87.9	67.0	25.2	34.2	87.3	43.1	30.4
g ₄	10	38.7	82.2	94.1	86.1	34.1	97.2	72.2
g_5	1	26.5	80.8	71.9	21.3	56.4	88.1	15.0
g_6	9	93.0	80.8	23.2	57.2	81.4	16.6	93.0
g7	7	37.2	10.6	64.8	98.9	69.9	24.7	13.6
Τł	hresho	olds: ind	$d_i = 10.$	0, $pr_i =$	20, and	d $v_i = 8$	80 for i	∈ <i>F</i> .

	21 / 29		22 / 29
Motivation Modelling an uncertain criterion significance Likelihood of " <i>at leas</i> 000 0 0000	t as good as" situations Confidence level of "outran. ○○○○○ ○●○○	Motivation Modelling an uncertain criterion significance Likelihood of " <i>at least as goo</i> 000 0 0000	<i>d as</i> " situations Confidence level of " <i>outran</i> 00000 0 00€0

Example 3: Confident outranking digraph

Example 3: Confident outranking digraph

Table : Deterministic credibility of $(x \succeq y)$

$r(\succeq) imes 45$	a ₁	a ₂	a ₃	a4	<i>a</i> 5	a ₆	a ₇
a ₁	-	+1	-5	-11	+22	+9	0
a ₂	+16	-	+21	0	+25	+14	+22
a ₃	+21	+5	-	-3	+21	+34	+13
a ₄	+21	+45	+29	-	+19	+19	+45
a_5	+28	-7	+10	-5	-	+9	+2
<i>a</i> ₆	+6	+5	+31	-3	+7	-	+20
a ₇	+45	+11	+1	0	+15	+13	-

Table : CLT likelihood of the $(x \geq y)$ situations

lh	a ₁	a ₂	a ₃	a ₄	<i>a</i> 5	<i>a</i> ₆	a ₇
a ₁	-	+.11	49	89	+1.0	+.76	+.85
<i>a</i> ₂	+.98	-	+1.0	+1.0	+1.0	+.98	+1.0
a ₃	+.99	+.49	-	30	+.99	+1.0	+.91
a_4	+.99	+. 49	+1.0	-	+.99	+1.0	+.91
a_5	+1.0	64	+.81	49	-	+.76	+.23
a_6	+.66	+.49	+1.0	30	+.64	-	+1.0
a ₇	+.70	+.91	+.11	+.56	+.97	+.94	-

Motivation Modelling an uncertain criterion significance	Likelihood of " <i>at least as good as</i> " situations ooo oooo	Confidence level of "outran 00000 0000	Motivation Modelling an uncertain criterion significance	Likelihood of " <i>at least as good as</i> " situations ooo oooo	Confidence level of "ou 00000 0 0000
Example 3: Confi	dent outranking digra	aph	(Content	
			1. Modelling an uncertain cri	terion significance	
Table : 90% confi	ident outranking situations		2. Likelihood of " <i>at least as</i> Characterizing " <i>at leas</i>	good as" situations t as good as" situations	

$\hat{r}_{90\%}(x \succeq y)$	a_1	a ₂	a 3	a 4	a 5	a 6	a 7
a_1	-	0 (+1)	0 (-5)	-11	+22	0 (+9)	0
a_2	+16	-	+21	0	+25	+14	+22
a 3	+21	0 (+5)	-	0 (-3)	+21	+34	+13
a_4	+21	0 (+45)	+29	-	+19	+19	+45
a_5	+28	0 (-7)	+10	0 (-5)	-	0 (+9)	0 (+2)
a_6	0 (-7)	0 (+5)	+31	0 (-3)	0 (+7)	-	+20
a ₇	0 (+45)	+11	0 (+1)	0	+15	+13	-

- Likelihood of "at least as good as" situations Characterizing "at least as good as" situations Assessing the bipolar likelihood Examples
- Confidence level of "outranking" situations Outranking situations Confidence level Example

4. Exploiting the confident outranking digraph

25 / 29

26 / 29 Evivation Modelling an uncertain criterion significance Likelihood of "at least as good as" situations Confidence level of "outrant 000 000 0000 0000 0000

Exploiting the confident outranking digraph

Table : Pairwise comparison of alternatives a_4 and a_2

gj	g ₁	<i>g</i> 2	<i>g</i> 3	<i>g</i> 4	<i>g</i> 5	<i>g</i> 6	g ₇
Wj	7	8	3	10	1	9	7
а _{4j}	36.5	84.7	34.2	86.1	21.3	57.2	<mark>98.9</mark>
а _{2j}	60.0	87.5	67.0	82.2	<mark>80.8</mark>	<mark>80.8</mark>	10.6
$egin{aligned} &(a_{4j}-a_{2j})\ &r(a_4 \succcurlyeq_j a_2)\ &r(a_4 \ll _j a_2)\ &r(a_4 \gg _j a_2)\ &r(a_4 \gg _j a_2) \end{aligned}$	-27.5 -1 0 0	-2.8 +1 0 0	-32.8 -1 0 0	+3.8 +1 0 0 0	-59.2 -1 0 0	-23.6 -1 0 0	+88.8 +1 0 +1

Thresholds: $ind_j = 10.0$, $pr_j = 20$, and $v_j = 80$ for $j \in F$.

$$\tilde{r}(a_4 \succcurlyeq a_2) = +5 \text{ and } \tilde{r}(a_4 \succsim a_2) = +45.$$

Yet, $lh(a_4 \succcurlyeq a_2) = 0.49 < 0.80$, hence
 $\hat{r}_{.80}(a_4 \succsim a_2) = 0.$

The confident outranking digraph

The deterministic digraph:

The 90% confident digraph:

Rubis Python Server (graphyiz), R. Bisdorff, 200

- We illustrate some simple models for tackling uncertain significance weights: uniform, triangular and beta laws.
- Applying the Central Limit Theorem, we are able to compute the actual likelihood of any pairwise *at least as good as* and *not at least as good as* situations.
- This operational result allows to enforce a given confidence level on the corresponding outranking situations.
- On a small illustrative best choice problem, we eventually show the pragmatic decision aid benefit one may expect from exploiting a confident versus a classic deterministic outranking digraph.

29 / 29