Motivation: showing a performance tableau

Performance table auditor 21

HPC-Ranking big multicriteria performance tableaux

Raymond Bisdorff

Université du Luxembourg FSTC/ILAS

EURO 2016 Poznan, July 2016 Consider a performance table showing the service quality of 12 commercial cloud providers measured by an external auditor on 14 incommensurable performance criteria.

criterion	upT	dwT	ouT	LB	MTBF	Rcv	Lat	RspT	Thrpt	stoC	snpC	auT	enC	auD
Amz	2	2	2	4	3	3	NA	3	NA	4	NA	4	4	4
Cen	4	4	0	4	4	4	NA	2	NA	3	NA	4	4	4
Cit	2	4	2	4	3	4	NA	2	NA	3	4	4	4	4
Dig	2	1	4	4	3	3	NA	2	NA	3	NA	4	4	4
Ela	4	4	0	4	4	4	NA	4	NA	3	4	4	4	4
GMO	1	3	4	4	3	2	NA	4	NA	3	NA	4	4	4
Ggl	4	2	1	4	2	3	NA	2	NA	4	4	4	4	4
HP	3	3	2	4	4	3	NA	4	NA	3	4	4	4	4
Lux	2	2	2	4	3	3	NA	2	NA	2	NA	4	4	4
MS	4	4	0	4	4	4	NA	4	NA	4	NA	4	4	4
Rsp	NA	NA	NA	4	NA	3	NA	NA	NA	3	4	4	4	4
Sig	4	4	0	4	4	4	NA	3	NA	3	4	4	4	4

Legend: 0 = 'very weak', 1 = 'weak', 2 = 'fair', 3 = 'good', 4 = 'very good', 'NA' = missing data; 'green' and 'red' mark the **best**, respectively the **worst**, performances on each criterion.

1/31 2/31

Motivation

Qantiles sorting
0
000

O O OO HPC rankin 0000 000 Conclusion

Motivation

Qantiles sorting
0
000
000000000

Global ranking
O
O
O

HPC ranking

Conclusion

Motivation: showing an ordered heat map

The same performance tableau may be optimistically colored with the highest 7-tiles class of the marginal performances and presented like a heat map,

criteria	stoC	snpC	upT	dwT	ouT	LB	MTBF	Rcv	Lat	RspT	Thrpt	auT	enC	auD
weights	3.00	3.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	1.00	1.00	1.00
MS	4	NA	4	4	0	4	4	4	NA	4	NA	4	4	4
Ela	3	4	4	4	0	4	4	4	NA	4	NA	4	4	4
Sig	3	4	4	4	0	4	4	4	NA	3	NA	4	4	4
Cen	3	NA	4	4	0	4	4	4	NA	2	NA	4	4	4
HP	3	4	3	3	2	4	4	3	NA	4	NA	4	4	4
Cit	3	4	2	4	2	4	3	4	NA	2	NA	4	4	4
Ggl	4	4	4	2	1	4	2	3	NA	2	NA	4	4	4
GMO	3	NA	1	3	4	4	3	2	NA	4	NA	4	4	4
Rsp	3	4	NA	NA	NA	4	NA	3	NA	NA	NA	4	4	4
Amz	4	NA	2	2	2	4	3	3	NA	3	NA	4	4	4
Dig	3	NA	2	1	4	4	3	3	NA	2	NA	4	4	4
Lux	2	NA	2	2	2	4	3	3	NA	2	NA	4	4	4

eventually linearly ordered, following for instance the Copeland ranking rule, from the best to the worst performing alternatives (ties are lexicographically resolved).

Content

1. Sparse model of big outranking digraph

How to rank big performance tableaux ? Single criteria quantiles sorting Multiple criteria quantiles sorting

2. Ranking a q-tiled performance tableau

Properties of the *q*-tiles sorting Ordering the *q*-tiles sorting result *q*-tiles ranking algorithm

3. HPC-ranking a big performance tableau

Multithreading the sorting&ranking procedure Profiling the HPC sorting&ranking procedure

3/31

•00

How to rank big performance tableaux?

- The Copeland ranking rule is based on crisp net flows requiring the in- and out-degree of each node in the outranking digraph;
- When the order *n* of the outranking digraph becomes big (several thousand or millions of alternatives), this requires handling a huge set of n^2 pairwise outranking situations;
- We shall present hereafter a sparse model of the big outranking digraph, where we only keep a linearly ordered list of diagonal quantiles equivalence classes with local outranking content.

5/31

Qantiles sorting 000

HPC ranking

Performance quantile classes

- We consider a series: $p_k = k/q$ for k = 0, ...q of q + 1 equally spaced quantiles like
 - quartiles: 0, .25, .5, .75, 1,
 - quintiles: 0, .2, .4, .6, .8, 1,
 - deciles: 0, .1, .2, ..., .9, 1, etc
- The upper-closed q^k class corresponds to the interval $[q(p_{k-1}); q(p_k)]$, for k=2,...,q, where $q(p_q)=\max_X x$ and the first class gathers all data below p_1 : $]-\infty; q(p_1)]$.
- The lower-closed q_k class corresponds to the interval $[q(p_{k-1}); q(p_k)]$, for k = 1, ..., q - 1, where $q(p_0) = \min_X x$ and the last class gathers all data above $q(p_{q-1})$: $[q(p_{q-1}), +\infty[$
- We call q-tiles a complete series of k = 1, ..., q upper-closed q^k , resp. lower-closed q_k , quantile classes.

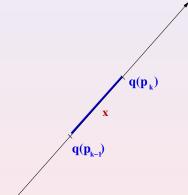
Performance quantiles

- Let X be the set of n potential decision alternatives evaluated on a single real performance criteria.
- We denote x, y, \dots the performances observed of the potential decision actions in X.
- We call quantile q(p) the performance such that p% of the observed n performances in X are less or equal to q(p).
- The quantile q(p) is estimated by linear interpolation from the cumulative distribution of the performances in X.

q-tiles sorting on a single criteria

If x is a measured performance, we may distinguish three sorting

situations:



- 1. $x \leq q(p_{k-1})$ and $x < q(p_k)$ The performance x is lower than the q^k class;
- 2. $x > q(p_{k-1})$ and $x \leq q(p_k)$ The performance *x* belongs to the q^k class;
- 3. $(x > q(p_{k-1}))$ and $x > q(p_k)$ The performance x is higher than the p^k class.

If the relation < is the dual of ≥, it will be sufficient to check that both, $q(p_{k-1}) \not\ge x$, as well as $q(p_k) \ge x$, are verified for x to be a member of the k-th q-tiles class.

Qantiles sorting •00000000

Multiple criteria extension

- $A = \{x, y, z, ...\}$ is a finite set of n objects to be sorted.
- $F = \{1, ..., m\}$ is a finite and coherent family of m performance criteria.
- For each criterion j in F, the objects are evaluated on a real performance scale $[0; M_i]$, supporting an indifference threshold indi and a preference threshold pr_i such that $0 \leq ind_i < pr_i \leq M_i$.
- The performance of object x on criterion j is denoted x_i .
- Each criterion j in F carries a rational significance w; such that $0 < w_j < 1.0$ and $\sum_{i \in F} w_i = 1.0$.

(1)

Performing marginally at least as good as

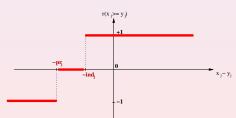
Each criterion j is characterizing a double threshold order \geq_i on A in the

$$r(\mathbf{x} \geqslant_j \mathbf{y}) = egin{cases} +1 & ext{if} & x_j - y_j \geqslant -ind_j \ -1 & ext{if} & x_j - y_j \leqslant -pr_j \ 0 & ext{otherwise}. \end{cases}$$
 (1

+1 signifies x is performing at least as good as y on criterion j,

following way:

- -1 signifies that x is not performing at least as good as y on criterion
- 0 signifies that it is unclear whether, on criterion i, x is performing at least as good as v.



9/31

Qantiles sorting 00000000

Qantiles sorting 000000000

Performing globally at least as good as

Each criterion j contributes the significance w_i of his "at least as good as" characterization $r(\geq_i)$ to the global characterization $r(\geqslant)$ in the following way:

$$r(x \geqslant y) = \sum_{j \in F} [w_j \cdot r(x \geqslant_j y)]$$
 (2)

- r > 0 signifies x is globally performing at least as good as y,
- r < 0 signifies that x is not globally performing at least as good as
- r=0 signifies that it is *unclear* whether x is globally performing at least as good as v.

The bipolar outranking relation \succeq

From an epistemic point of view, we say that:

- 1. object x outranks object y, denoted $(x \succeq y)$, if
 - 1.1 a significant majority of criteria validates a global outranking situation between x and y, i.e. $(x \ge y)$ and
 - 1.2 no veto $(x \ll y)$ is observed on a discordant criterion,
- 2. object x does not outrank object y, denoted $(x \not\gtrsim y)$, if
 - 2.1 a significant majority of criteria invalidates a global outranking situation between x and y, i.e. $(x \not\ge y)$ and
 - 2.2 no counter-veto $(x \gg y)$ observed on a concordant criterion.

11/31

12/31

Polarising the global "at least as good as" characteristic

The valued bipolar outranking characteristic $r(\gtrsim)$ is defined as follows:

$$r(\mathbf{x} \succsim \mathbf{y}) = \begin{cases} 0, & \text{if } [\exists j \in F : r(\mathbf{x} \ggg_j \mathbf{y})] \land [\exists k \in F : r(\mathbf{x} \ggg_k \mathbf{y})] \\ [r(\mathbf{x} \geqslant \mathbf{y}) \oslash -r(\mathbf{x} \ggg_k \mathbf{y})] & , \text{otherwise.} \end{cases}$$

And in particular,

- $r(x \gtrsim y) = r(x \geqslant y)$ if no very large positive or negative performance differences are observed,
- $r(x \geq y) = 1$ if $r(x \geqslant y) \geqslant 0$ and $r(x \gg y) = 1$,
- $r(x \succsim y) = -1$ if $r(x \geqslant y) \leqslant 0$ and $r(x \ll y) = 1$,

q-tiles sorting with bipolar outrankings

Proposition

The bipolar characteristic of x belonging to upper-closed q-tiles class q^k , resp. lower-closed class q_k , may hence, in a multiple criteria outranking approach, be assessed as follows:

$$r(\mathbf{x} \in \mathbf{q}^{k}) = \min \left[-r(\mathbf{q}(p_{k-1}) \succeq \mathbf{x}), \ r(\mathbf{q}(p_{k}) \succeq \mathbf{x}) \right]$$
$$r(\mathbf{x} \in \mathbf{q}_{k}) = \min \left[r(\mathbf{x} \succeq \mathbf{q}(p_{k-1})), -r(\mathbf{x} \succeq \mathbf{q}(p_{k})) \right]$$

Proof.

The bipolar outranking relation \succsim , being weakly complete, verifies actually the coduality principle. The dual $(\not\succsim)$ of \succsim is, hence, identical to the strict converse outranking \precsim relation.

R. Bisdorff (2013), On polarizing outranking relations with large performance differences. Journal of Multi-Criteria Decision Analysis **20**:3-12

13/31

15/31

/lotivation

0 000 000000 Global ranking
O
O
O

OOOO

Conclusion

otivation

Qantiles sorting

Global rankir

HPC ran 0000 000 Conclusion

16/31

The multicriteria (upper-closed) q-tiles sorting algorithm

- 1. **Input**: a set X of n objects with a performance table on a family of m criteria and a set \mathcal{Q} of k = 1, ..., q empty q-tiles equivalence classes.
- 2. For each object $x \in X$ and each q-tiles class $q^k \in Q$ 2.1 $r(x \in q^k) \leftarrow \min \left(-r(\mathbf{q}(p_{k-1}) \succsim x), r(\mathbf{q}(p_k) \succsim x) \right)$ 2.2 if $r(x \in q^k) \geqslant 0$: add x to q-tiles class q^k
- 3. Output: Q

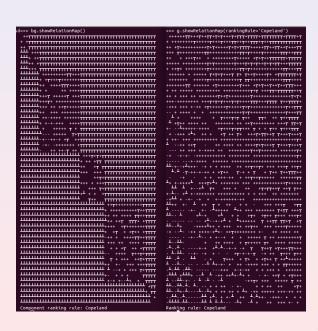
Comment

- 1. The complexity of the q-tiles sorting algorithm is $\mathcal{O}(nmq)$; linear in the number of decision actions (n), criteria (m) and quantile classes (q).
- 2. As Q represents a partition of the criteria measurement scales, i.e. the upper limits of the preceding category correspond to the lower limits of the succeeding ones, there is a potential for run time optimization.

Example of sparse outranking Digraph

```
>>> from bigOutrankingDigraphs import *
>>> t = RandomPerformanceTableau(numberOfActions=50,seed=5)
>>> bg = BigOutrankingDigraphMP(t,quantiles=5)
>>> bg.showDecomposition()
*--- quantiles decomposition in decreasing order---*
c1. [0.60-0.80[ : ['a22', 'a24', 'a32']
c2. [0.40-0.80[ : ['a16', 'a28', 'a31', 'a40']
c3. [0.40-0.60[ : ['a01','a02','a05','a06','a10',
                    'a13', 'a15', 'a25', 'a27', 'a35',
                   'a36','a37','a39','a41','a48']
c4. [0.20-0.60[ : ['a09', 'a14', 'a18', 'a20', 'a26',
                    'a38','a43','a45','a49']
c5. [0.20-0.40[ : ['a03', 'a04', 'a07', 'a08', 'a11',
                   'a12', 'a17', 'a21', 'a29', 'a30',
                    'a33', 'a34', 'a42', 'a44', 'a47']
c6. [0.00-0.40[ : ['a46','a50']
c7. [0.00-0.20[ : ['a19', 'a23']
```

Sparse versus standard outranking digraph of order 50



Symbol legend

- T outranking for certain
- + more or less outranking
- ' indeterminate
- more or less outranked
- _ outranked for certain

Sparse digraph bg:

Actions: 50 # Criteria: 7 Sorted by: 5-Tiling Ranking rule: Copeland

Components: 7 Minimal order: 1 Maximal order: 15 Average order: 7.1 fill rate: 20.980% correlation: +0.7563 0000000

Content

Global ranking

Sparse model of big outranking digraph
 How to rank big performance tableaux ?
 Single criteria quantiles sorting
 Multiple criteria quantiles sorting

2. Ranking a q-tiled performance tableau

Properties of the q-tiles sorting Ordering the q-tiles sorting result q-tiles ranking algorithm

3. HPC-ranking a big performance tableau

Multithreading the sorting&ranking procedure

Profiling the HPC sorting&ranking procedure

18 / 31

lotivation

Qantiles sorting
0
000
0000

Global ranking

O

0000 000 Conclus

Motivatio

Qantiles sorting
0
000
000000000

Global ranking

HPC rankir

Conclusi

Properties of *q*-tiles sorting result

- 1. *Coherence*: Each object is always sorted into a non-empty subset of adjacent *q*-tiles classes.
- 2. *Uniqueness*: If the q-tiles classes represent a discriminated partition of the measurement scales on each criterion and $r \neq 0$, then every object is sorted into exactly one q-tiles class.
- 3. *Independence*: The sorting result for object x, is independent of the other object's sorting results.

Comment

The independence property gives us access to efficient parallel processing of class membership characteristics $r(x \in q^k)$ for all $x \in X$ and q^k in Q.

Ordering the *q*-tiles sorting result

The q-tiles sorting result leaves us with a more or less refined partition of the set X of n potential decision actions. For linearly ranking from best to worst the resulting parts of the q-tiles partition we may apply three strategies:

- 1. Optimistic: In decreasing lexicographic order of the upper and lower quantile class limits;
- 2. Pessimistic: In decreasing lexicographic order of the lower and upper quantile class limits;
- 3. Average: In decreasing numeric order of the average of the lower and upper quantile limits.

19/31 20/31

q-tiles ranking algorithm

- 1. **Input**: the outranking digraph $\mathcal{G}(X, \succeq)$, a partition P_q of k linearly ordered decreasing parts of X obtained by the q-sorting algorithm, and an empty list \mathcal{R} .
- 2. For each quantile class $q^k \in P_q$:

 if $\#(q^k) > 1$: $R_k \leftarrow \text{locally rank } q^k \text{ in } \mathcal{G}_{|q^k}$ (if ties, render alphabetic order of action keys)

 else: $R_k \leftarrow q^k$ append R_k to \mathcal{R}
- 3. Output: \mathcal{R}

1. The complexity of the q-tiles ranking algorithm is linear in the number k of components resulting from a q-tiles sorting which contain more than one action.

q-tiles ranking algorithm – Comments

- 2. Three local ranking rules are available *Copeland's*, *Net-flows'* and *Kohler's* rule of complexity $\mathcal{O}(\#(q^k)^2)$ on each restricted outranking digraph $\mathcal{G}_{|q^k}$.
- 3. In case of local ties (very similar evaluations for instance), the **local** ranking procedure will render these actions in increasing alphabetic ordering of the action keys.

Content

- Sparse model of big outranking digraph
 How to rank big performance tableaux ?
 Single criteria quantiles sorting
 Multiple criteria quantiles sorting
- 2. Ranking a q-tiled performance tableau Properties of the q-tiles sorting Ordering the q-tiles sorting result q-tiles ranking algorithm
- 3. HPC-ranking a big performance tableau

 Multithreading the sorting&ranking procedure

 Profiling the HPC sorting&ranking procedure

Multithreading the *q*-tiles sorting & ranking procedure

- 1. Following from the independence property of the *q*-tiles sorting of each action into each *q*-tiles class, the *q*-sorting algorithm may be safely split into as much threads as are multiple processing cores available in parallel.
- 2. Furthermore, the **ranking** procedure being local to each diagonal component, these procedures may hence be safely processed in parallel threads on each restricted outranking digraph $\mathcal{G}_{|a|}$.

23 / 31 24 / 31

otivation Qantiles sorting Global ranking HPC ranking Conclusion Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Generic algorithm design for parallel processing

```
from multiprocessing import Process, active_children
    class myThread(Process):
        def __init__(self, threadID, ...)
                    Process.__init__(self)
                    self.threadID = threadID
        def run(self):
            ... task description
nbrOfJobs = ...
for job in range(nbr0fJobs):
    ... pre-threading tasks per job
    print('iteration = ',job+1,end=" ")
    splitThread = myThread(job, ...)
    splitThread.start()
while active_children() != []:
    pass
print('Exiting computing threads')
for job in range(nbr0fJobs):
    ... post-threading tasks per job
```

25 / 31

Motivation	Qantiles sorting	Global ranking	HPC ranking	Conclusion
	0 000 00000000	0 0 00	000	

HPC performance measurements

digraph		standard r	nodel	sparse model					
order	#c.	t_g sec.	$ au_{ extsf{g}}$	#c.	t_{bg}	$ au_{bg}$			
1 000	118	6"	+0.88	8	4"	+0.83			
2 000	118	15"	+0.88	8	9"	+0.83			
2 500	118	27"	+0.88	8	14"	+0.83			
10 000				118	13"				
15 000				118	22"				
25 000				118	39"				
50 000				118	2'				
100 000	(size	=	$10^{10})$	118	5'	(fill rate = 0.223%)			
1 000 000	(size	=	10^{12})	118	1h17'	(fill rate = 0.049%)			
1732051	(size	=	3×10^{12})	118	3h09'	(fill rate = 0.038%)			
2 236 068	(size	=	5×10^{12})	118	4h50'	(fill rate = 0.032%)			

Legend:

- #c. = number of cores;
- g: standard outranking digraph, bg: the sparse outranking digraph;
- t_g , resp. t_{bg} , are the corresponding constructor run times;
- τ_g , resp. τ_{bg} are the ordinal correlation of the Copeland ordering with the given outranking relation.

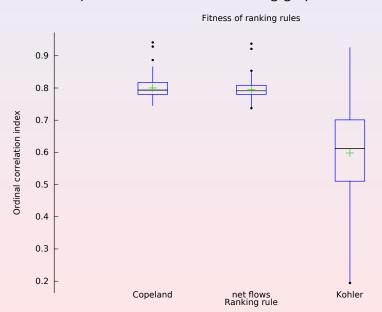
Choosing the right HPC granularity?

With *k* single threaded CPUs, is it more efficient:

- to run *k* simple jobs in parallel ?
- to run in parallel a smaller number of complex jobs ?
- to align the numbers of parallel jobs and tasks to k?
- to start more parallel threads than available cores ?
- to feed k parallel workers with a shared tasks queue ?
- to split the HPC program in several separate run executables ?

Choosing a ranking rule – fitness of ranking rule

Sample of 100 random outranking graphs of order 250

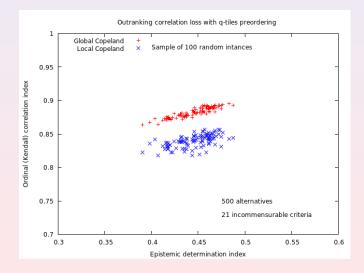


Motivation Qantiles sorting Global ranking HPC ranking Conclusion

O O OOO

O OOO

Standard versus 50-tiled sparse outranking digraphs



29 / 31

O OOO

00

Global ranking O O 0000 000 Conclusion

Concluding ...

- We implement a sparse outranking digraph model coupled with a linearly ordering algorithm based on quantiles-sorting & local-ranking procedures;
- Global ranking result fits apparently well with the given outranking relation;
- Independent sorting and local ranking procedures allow effective multiprocessing strategies;
- Efficient scalability allows hence the linear ranking of very large sets of potential decision actions (millions of nodes) graded on multiple incommensurable criteria;
- Good perspectives for further optimization with cPython and HPC ad hoc tuning.

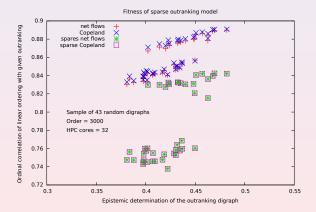
Python and cython HPC modules available under:

http://github.com/rbisdorff/Digraph3

Documentation: http://charles-sanders-peirce.uni.lu/docDigraph3/

Profiling the local ranking procedure

It is opportune to use Copeland's rule for ranking from the standard outranking digraph, whereas both, Net Flows and Copeland's ranking rule, are equally efficient on the sparse outranking digraph.



The quality of the sparse model based linear ordering is depending on the alignment of the given outranking digraph, but not on its actual order.