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Abstract

In this paper we introduce split truth/falseness semantics for a multi-valued logical processing of fuzzy
preference modelling. Our approach takes as starting point the standard framework of fuzzy outranking
relations as proposed by the French multi-criteria decision aid community. Formal links between a given
relational credibility calculus and associated truth polarization techniques will be discussed. The main result
is the establishment of a multi-valued logical framework which allows us to naturally postpone any necessary
defuzzification step to the end of the decision problem.

Scope and purpose

In this paper we propose an innovative multi-valued logical framework for processing fuzzy preferential
information as is common in the context of multi-criteria preference modelling. Our results concern
a methodological and computational enhancement of the Electre decision aid methods as promoted by the
French school of decision aid around the work of B. Roy and D. Bouyssou (Roy. Méthodologie Multicritére
d’Aide a la Décision. Paris: Economica, 1985; Roy and Bouyssou. Aide Multicritére a la Décision: Methodes
et cas. Paris: Economica, 1993). The main achievement concerns the implementation of a logically coherent
defuzzification technique in order to make commute logical reasoning and defuzzification of preferential
information. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A close look at the logical construction of Bernard Roy’s approach to solve multi-criteria
decision problems in the context of his Electre methods (see Roy [1] and Roy and Bouyssou [2])
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has convinced us that the operational essence of his decision-aid methodology lies in the clear
logical distinction between the credibility calculus underlying the construction of relational indexes
such as his concordance, discordance and outranking indexes, and the relational preference
propositions we may induce from them. Indeed, the careful defuzzification step through A-cuts on
different levels (1€ [0, 1]), which projects multi-valued credibility values to their corresponding
logical counterpart, namely truthfulness of a given preferential situation, is of crucial importance in
his various approaches.

On the other hand, the fuzzy preference modelling community (see a.o. Fodor and Roubens
[3], De Baets et al. [4]) is trying to do without this operational distinction by immediately
formulating truth assumptions on multi-valued preference propositions, an eventual defuz-
zification step being seen as not really necessary in a multi-valued logical approach. But
negative formal results have shown that there is no easy isomorphism between such a multi-
valued logical denotation and adequate set theoretical characterizations of preference structures,
as is common with crisp relations (see for instance Fodor and Roubens [3, Chapter 3,
pp. 71-84]).

In this paper, we therefore propose a third approach in-between the two preceding ones; an
approach based on the natural multi-valued generalization of the traditional link between a multi-
valued credibility calculus and the induced multi-valued truth calculus.

2. From credibility to truthfulness of propositions

In our multi-valued logical considerations, we therefore make a clear semantic distinction
between some underlying credibility calculus qualifying the truthfulness of given atomic proposi-
tions, and the corresponding induced multi-valued truthfulness of logical expressions involving
these propositions.

2.1. Basic credibility calculus

Definition 1. Let 2 represent a set of atomic propositional formulas p to which we may associate
a finite rational degree of credibility r(p) € [0, 1] with respect to the potential truthfulness of the
proposition p. If r(p) = 1, proposition p is perceived as certainly true, and if r(p) = 0, proposition p is
perceived as certainly false. The complete ordered finite set of involved credibility values is denoted
V. The underlying order is denoted (V, <), where < denotes a complete, reflexive, antisymmetric
and transitive ordering.

In multi-criteria decision aid practice, degrees of credibility associated with a given basic
preferential proposition are generally expressed as 2-digit percentages in the following way:
“alternative a is perceived as at least as good as alternative b with a credibility of 75%”.

Definition 2. Let (2,r) be a set of atomic propositions p associated with corresponding degrees of
credibility »: 2 —» V. Let 71, v, A and — denote, respectively, negation, disjunction, conjunction
and implication. The set & of all well-formulated finite expressions will be generated inductively from
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the following grammar:
Vpe?: peé, (1)
Vx,yeé: 1x|(xX)|xVvy|xAy|lx—oy €é. (2)

The unary operator —1 has a higher precedence in the interpretation of a formula, but generally we
use bracketing parentheses to control the application range of a given operator and thus to make
all formulas have unambiguous semantics.

We extend the credibility calculus on such logical expressions in the following way:

Definition 3. Let & be a set of well formulated expressions based on 2. Vx,ye&:

rx) =1 —r(x), (3)
r(x v y) = max(r(x), n(y)), (4)
r(x A y) = min(r(x), r(y)), (5)
rx —y) =1erx) <ry). (6)

From the inductive definition of our well formulated expressions, we are thus able to compute the
credibility of any such formula in what we call a symmetric evaluation domain
¥ =(V,<,71,min,max, —,0,3 1). The negation operator ‘71’ implements a strict anti-tonic
bijection with credibility 3 acting as negational fix-point. Classic min and max operators capture
credibilities of conjunction respective disjunction of formulas. For the sake of simplicity in the
scope of this paper, we use a partial crisp implementation of .#-valued implication ‘ —’, which we
shall call for short ordinal implication.* Finally, we denote the couple (&,r) as &< and simply speak
of #-valued expressions in the rest of the paper.

Two such special #-domains are worth noticing here: — first, the three-valued domain
25 =({0,3,1}, <,71,min, max, —,0,3, 1) giving in fact a three-valued type of logic; and — sec-
ondly, the classical bi-valued (degenerated) domain 4 = ({0, 1}, <,—1, min, max, —,0, 1) isomor-
phic to classical Boolean logic.

Knowing the credibility of a given .#-valued expression, we are now able to induce its supposed
truthfulness.

2.2. Defining the truthfulness of an ¥-valued expression

In classical bi-valued logic, it is usual to work syntactically only on the #ruth point of view of the
logic, the falseness point of view being redundant through the coercion to the excluded middle. For
instance, writing “(a, b) € R” implicitly means assuming that this proposition is actually true and its
negation false, otherwise we would write “(a, b)¢ R”. We will also rely syntactically on such an
implicit truth point of view and always denote the truthfulness possibly induced from the

1 Other models such as the Goedel or the implication would also be applicable, but these implementations make
necessary to specify an algebraic refinement tukasiewicz of the underlying #-algebra. For instance, a tukasiewicz logic
would require additive properties on V. In fact, we do not need a more precise operational definition in what follows.
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underlying credibility calculus through a p operator? acting as domain restriction on the credibility
operator r.

Definition 4. Let xe & be an Z-valued expression associated with credibility r(x):
wWx) = r(x)<r(x) = r(Cx).

Truthfulness of a given expression x is only defined in case the expression’s credibility r(x)
exceeds the credibility r(—1x) of its contradiction —1x. From our definition, it follows immediately
that our induced #-valued truth calculus is complete on every set & of well formulated #-valued
expressions, that is Vx e &“: either u(x) or u(—x) is defined. We say for short that any expression
xe&? is L-true or L-false.

To illustrate our approach, let us now look at what happens with the truthfulness of certain
classical tautologies or antilogies in our .#-valued framework. For instance, truthfulness of the
tautology (p v —1p), given by u(p v—1p), is always defined, as max(r(p), 1 — r(p)) > % in any case.
Tautological #-valued propositions thus appear as being .#-true in any case. Therefore, we call
them #-tautologies. On the other hand, as truthfulness of the antilogy (p A —1p), we only obtain the
following undetermined truth value: u(p A—1p) = 2 < p = —1p = 1. Truthfulness of such a proposi-
tion is undefined otherwise. But its contradiction is #-true, i.e. u(—1(p A —1p)) is always defined.
Therefore, we call such propositions #-antilogies. As a main result of our construction, we recover
in this sense all classical tautologies and antilogies as particular limit case &” if we reduce our
P-valued credibility calculus to a bi-valued one.

Indeed, let us investigate an implicative .#-tautology such as modus ponens for instance.

If we take the classical negative (Kleene-Dienes) definition of the implication, i.e. falseness of the
conjunction of p and —1¢, we obtain

min(r(p), max(1 — r(p), r(q))) = 3 =1(q) >3,

i.e. the following #-tautology: p and p = ¢ being conjointly .#-true always implies g being .#-true.
If we stay with our ordinal implication,® we obtain:

min(r(p),1(p — ) = 3 =1(q) > 1(p) >3,

i.e. again an #-tautology.

At this point, one may wonder if our #-logic does not appear as a structure isomorphic to
classical bi-valued Boolean logic. But this is not the case, as the natural categorical limit #-algebra
is given by an %5 logic. But we can force our .#-valued truth calculus to take a bi-valued Boolean
logic # as limit, by explicitly excluding the contradictional fix-point from the set of possible

2 In fuzzy set theory, the u operator generally denotes a fuzzy membership function. We here choose the same  symbol
on purpose as our main .#-valued formulas mostly concern such #-valued characteristic functions.

31t may be interesting at this point to notice that both possible definitions of implication in our #-valued credibility
calculus, being equivalent in the Boolean case, are not at all semantically equivalent in our case. Indeed, the negative
definition is only applicable in a logic where a complementary negation is semantically equivalent with a contradiction.
Here this is not the case, and a specific definition of #-valued consequent calculus must be given under the form of this
ordinal implication.
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credibility values; thus making it impossible to stay logically neutral in the underlying credibilities
and hence also in our truthfulness assumptions.
Applying this system to fuzzy preference modelling now, we obtain the following basic semantics.

3. Basic semantics of #-valued preferential systems

As initially stated, we would like to apply our credibility and truth calculus to decision aid
problems in a fuzzy preference modelling context.

3.1. The basic ¥-reflexive outranking relation

The initial set 2 of atomic propositions is given by a fundamental .#-valued binary relation R,
defined on a finite set A of alternatives, with the following general semantics:

Definition 5.
Va,be A: (aR b) = “a more or less outranks b”.

This outranking relation may also be interpreted as “being at least as good as”.

In our case, we suppose that relation R is associated with given rational degrees of credibility
modelled as an outranking index 14 x A — V, i.e. an ¥-valued characteristic function on the
support A x A of relation R.

Normally, one is tempted to take this outranking index directly as the associated fuzzy truth
value of the proposition “a more or less outranks b”.* But, in accordance with our split
truth/falseness semantics, we restrict the induced truthfulness u(a, b) assignment as follows:

Definition 6.
Va,be A: w(aR b) =r(a,b)y<r(a,b) =1 — r(a,b).

The proposition “(aR b)” is more or less true if and only if the credibility r(a,b) associated
with (aRb) is greater or equal to the credibility 1 — r(a,b) associated with its contradiction
(a K/ b). Similarly, we consider the contradicted proposition to be more or less true in the following
sense:

Definition 7.
Va,be A: f(aRKb) =1 — r(a,b)<=1 — r(a,b) > r(a,b).

As a consequence, we obtain in our p”-semantics the following equivalent statements:

4 See for instance the definition of valued binary relations as proposed by Fodor and Roubens in [3, Section 2.2, p. 42].
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Proposition 8.
Va,be A: p(aK b) is defined < r(a,b) >3, (7)
Va,be A: u(aK b) is defined <1 — r(a,b) > 1. (8)

Proof. Indeed, the strong negational contradiction (1 — r) installs a functional link between both
truthfulness assumptions through the strict antitonic bijection which we have chosen as its alge-
braic implementation in the underlying credibility calculus. The unique contradictional fix-point,
i.e. the logically undetermined truth value 4, thus represents precisely the semantic bifurcation point
between more or less truthfulness or falsefulness® of the #-valued relational propositions. [

In short, for any #-valued relation R, we denote u(R¥) the subset of all pairs (a,b)e R* such
that r(a, b) > 3. In general, we denote as #-subset u(S), the subset of #-true characterized elements
in a set S.

Let us now define general #-valued preferential systems.

3.2. Y-preference, ¥ -indifference and L -incomparability
On the basis of our general outranking relation R, it is now possible to define adequate

preference, indifference and incomparability relations, denoted respectively as P, I and J. The
Semantics of each relation is given as follows: Va,b e A:

(aPb) = "“a is more or less preferred to b”, )
(alb) = “a is more or less indifferent to b”, (10)
(aJb) = “a is more or less incomparable to b”. (11)

We can now define, on the basis of the .#-valued outranking index r, convenient ¥-valued
preference, indifference and incomparability indexes denoted, respectively, p,i and j and capturing
the credibilities of these relational propositions.® Va,b e A:

pla,b) = min(r(a, b), 1 — r(b, a)), (12)

i(a, b) = min(r(a, b), r(b, a)), (13)

jla,b) = min(1 — r(a,b), 1 — r(b, a)). (14)
And again we can state that Va,be A4:

f(aPb) = pa,b)<>pla,b) >3, (15)

walb) = i(a,b)<=i(a,b) =3, (16)

walb) = ja,b)<>ja,b) = %, (17)

Let us now establish a first important result:

5To the classic opposition truth/falseness we add the fuzzy opposition truthfulness/falsefulness.
6 We keep with the formalism introduced by Fodor and Roubens in [3, p. 71]



R. Bisdorff | Computers & Operations Research 27 (2000) 673-687 679

Proposition 9. Let w(P), w(l) and u(J) be the ¥ -subsets, i.e. the relational membership propositions
being L -true on the basis of the underlying corresponding relational credibility indexes: p,i and j. Let
w(}) stand generically for the set of 3-valued propositions in &R. Then we have:

u(PUI) = u(R), 18

(18)
(19)
PNJ) < u@), (20)
(21)
(22)

uwPUIUP ™) = y(RUR™ ). 22
Proof. Indeed, for relation (18) we have u(PuUl) = {(a,b)e A x A|max((min(r(a,b), 1 — r(b, a)),
(min(r(a, b),r(b,a))) > 3}. This forces r(a,b) >3 And similarly, for relation (19) we have
w(PI) = {(a,b)e A x A| min((min(r(a, b), 1 — r(b,a)), (min(r(a,b), r(b,a))) > 3}. This again forces
r(b,a) =1 —r(b,a) = 1.

All other relations can be verified in the same straightforward way. [

It is interesting to compare our positive result with the negative result obtained by Alsina in
1985. The demonstration, as stated by Fodor and Roubens (see [ 3, p. 73]) clearly shows, that the set
theoretic conclusions in a strong symmetrical multi-valued logic must respect the underlying
bi-fold semantics of truthfulness versus falsefulness as distributed by the contradictional fix-point 1.

4. Logical fuzzification and polarization: an adjoint pair

The semantic difference between the logical fuzziness we introduce, and the standard fuzziness as
modelled in fuzzy or multi-valued logic and/or in fuzzy set theory, lies — first in the operational
distinction between the underlying propositional credibility calculus and the induced truthfulness
calculus, and — secondly in the strict splitting of the credibilities into truthfulness supporting ones
and falsefulness supporting ones, with a possible unique common intersection only in case of
logical undeterminedness.

In this section we investigate more categorically the previously introduced semantics through the
general techniques of fuzzification and defuzzification. First, we turn to logical fuzzification.

4.1. Introducing logical fuzzification

A common sense fuzzification of the classic bi-valued truth calculus consists in replacing the
underlying bi-valued characteristic function with a multi-valued bounded real-valued character-
istic function followed by the attempt to axiomatize such real-valued logical calculus in such a way
to recover all known (and so generally accepted as useful) logical properties of the bi-valued case. In
our opinion, this straightforward method suffers from two main drawbacks: — first, such simple
multi-valued generalization of the bi-valued characteristic function is in contradiction with the
necessarily split semantics of the implicitly modelled truth/falseness point of views and — secondly,
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Table 1
Example of fuzzy outranking relation

r a b ¢ d e f g h
a 1 0 0 0 0 0 0 0
b 0.75 1 0.57 0.57 0.57 0.63 0.57 0.57
¢ 0.70 0.46 1 0.64 0.64 0.46 0.46 0.64
d 0.62 0.22 0.22 1 0.60 0.22 0.22 0.60
e 0 0 0 0 1 0 0 0.57
f 0 0 0 0 0 1 0 0
g 0 0 0 0 0 0.63 1 0
h 0 0 0 0 0 0 0 1

some of the structural properties of a bi-valued logical framework appear as degenerated limit
properties, impossible to observe in the general case without precisely questioning this generaliz-
ation again. Our reason for thinking so is given, not so much by the axiomatic difficulties of the
standard attempt, but rathermore by the dubious operational properties of the corresponding
standard defuzzification technique, denoted in the fuzzy literature as A-cuts, where A€ V represents
the level of credibility at which a given proposition is taken to be true or not.

To illustrate the difficulty, we consider the definition of cut relations as discussed in Fodor and
Roubens (see [3, p. 45]). Let us take a fuzzy outranking index, as shown in Table 1. For a given
A€V, Fodor and Roubens propose to consider the relation R; as being defined as the set of pairs
(a,b)e A x A such that r(a,b) = 2. What has escaped the authors’ minds is the fact that a cut
technique is necessarily either truth or falseness oriented and that the resulting crisp or bi-valued
relation is, in their case, taken from the truth point of view. But this point of view cannot, in
a standard logical frame, where a contradiction principle must exist, be separated from the
complementary falseness point of view. Stating that for instance there exists a 0.20-cut relation on
the index r as shown in Table 1 implicitly implies, in case we envisage a credibility calculus with
a strong negation, an asymmetric treatment of truthfulness versus falsefulness. Indeed, we would
consider proposition “(d Rb)” to be true, as r(d,b) =0.22 > 0.20 and conjointly proposition
“(d K b)” to be also true as 1 — r(d, b) = 0.8 > 0.2, and thereby we would introduce logical nonsense.
But if we solely envisage A-cut relations with 4 > 3, we may obtain possibly correct split truthful-
ness versus falsefulness semantics. Indeed, consider again the same pair (d R b). This time, we
conclude that (dKb) as r(d,b) = 0.20 < 0.50, this result being coherent with the fact that
1 — r(d, b) = 0.80 > 0.50.

Two lessons are to be learned from this example. First, every logical truth calculus conjointly
addresses a mirrored falseness calculus through the necessary existence of a contradiction principle.
Secondly, fuzzification models are not to be separated from intended defuzzification or logical
polarization techniques, as defuzzification necessarily projects fuzziness into the split complement-
ary semantics of truthfulness versus falsefulness.

The above considerations give rise to the following question: why does Boolean calculus
nevertheless work, although it does not use such a split semantics?

In this specific case, the reason for this simplification lies in the operational restriction to two
extreme truth values {0,1}, with implied coercion to the excluded middle, which simplifies the
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Fig. 1. Split truth/falseness semantics.

r(=p) 1

underlying logical algebra to a point making the necessity to separate truthfulness values from
falsefulness values disappear. Indeed, both points of view are completely determined one by the
other, as no intermediate position is allowed. As soon as intermediate logical positioning is
allowed, the necessity also appears to algebraically separate the truthfulness point of view from the
falsefulness point of view and eventually to introduce a third term, the necessarily unique common
truth/falseness point of view: logical undeterminedness. It appears from the algebraic framework
that, in case we envisage a strong negational contradiction, this logical undeterminedness resides in
the necessarily unique negational fix-point, i.e. the truthfulness/falsefulness value 4+ marking the
common border line between appearing truthfulness versus appearing falsefulness (see Fig. 1).

To illustrate our approach, we consider a simple majority voting procedure generating atomic
propositions with respective credibilities reflecting the positive or negative results of the individual
voting. A proposition is true from the moment it gets more than half of the possible votes and it is
false elsewhere. The exact result models the greater or lesser truthfulness or falsefulness of the
result. But no proposition may be conjointly accepted and rejected unless it gets exactly half of the
votes. In practice, this blocking case is sometimes avoided either by considering only odd numbers
of possible voters or by a specific de-blocking procedure like for instance counting the chairman’s
vote for double in this situation.

One may question the simple majority rule. Why is it just half and not lesser of the votes that
distribute truthfulness and falsefulness? Mostly for practical reasons: if less than 4 of positive votes
would be sufficient to accept a proposition, a proposition could in practice be both accepted and
rejected, which would produce practical (logical) nonsense. On the contrary, higher qualified
majority rules are very often used in practice and especially for important decisions. How can we
cope with this issue in our logical framework?

4.2. On natural logical polarization

What we are looking for is a defuzzification or logical polarization operator denoted =, similar to
the A-cut but compatible with our split truth/falseness semantics.
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In Bisdorff and Roubens [ 5], we have for the first time introduced such a polarization operator
g, which we named the f-cut.”

Definition 10. Let &< be a set of logical expressions associated with credibility r: &% — V, where
¥ ={V,>, 1, min, max, —,0,3, 1} underlies algebraically the propositional credibility calculus.
Let m; represent a logical polarization operator 7z : &% — &% defined as follows: Vxe & and
Vpels11:
1 < r(x)>p,
mp(r(x)) =0 < r(x) <1 — B,
o1 -pB<rx)<p

That this polarization operator m; indeed satisfies our formal expectations may be summarized by
stating the following theorem:

Theorem 11. Let 67 be a set of ¥-valued expressions. Let | denote our truthfulness operator, ny the
B-cut polarization operator and m,, the median [-cut operator. The following categorical equations
are verified:

HeTCyp = Tyj2°U, (23)
,uonﬁ ] nﬂo'u. (24)

Proof. Considering Eq. (23), we must show that the m,, operation is a natural transformation of
Z-valued expressions with respect to our u operator. Let us first consider disjunction (respectively,
conjunction) of two #-valued expressions x, ye &7 Let m;,(x) and 7;,,(y) be the associated 3-cut
propositions. 7y, (u(x v / A y)) = max/min(r(x), 1(y) < (r(x) = 3) v/ A(y = 3) <= ny (X)) v 71y 5 (x) =
max,/min(r(x),#(y)). The same straightforward argument applies to the two other logical operators
in %, i.e. contradiction and ordinal implication. Considering now Eq. (24), it is precisely the ordinal
implication that appears as more restrictive than a negative #-valued Kleene-Dienes implication,
thus generally making the n; operator only semi-natural for the u transform (see Bisdorff and
Roubens [5]). O

Itis clear that the demonstration above is highly dependent on the choice of the #-algebra and it
would be interesting to furthermore characterize naturally defuzzifiable credibility calculi in the
sense above.

To illustrate now the use of our logical framework in the context of a given decision aid
methodology, we discuss in a last section, Electre choice recommendations that can be constructed
from a given outranking relation (see Roy and Bouyssou [2]).

7 The name we gave this logical polarization operator is derived from the fact that the standard A-cut is sometimes also
named o-cut.
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5. Application to the Electre choice recommendation method

In order to illustrate the methological enhancement that allows our #-logic framework, we
discuss in this section a didactical® choice problem proposed by Bernard Roy at the 41st meeting of
the EURO working group MCAD on “Multi-criteria Aid for Decisions” in Lausanne, March 1995
on the occasion of a lecture by Marc Roubens on Leonid Kitainik’s [6] work about fuzzy kernels.

We suppose that a decision-maker has to make a unique choice from a set of three R&D projects
represented as A = {a,b,c}. We furthermore assume that a given decision aid analysis has
eventually led to the following outranking index r on A4 x A:

(1) a outranks b with credibility = 0%;

(2) a outranks ¢ with credibility = 100%;

(3) b outranks a with credibility = 70%;

(4) b outranks ¢ with credibility = 100%;

(5) c outranks b and a with credibility = 70%.

The following outranking graph can be associated with the outranking index r:

S=@,rn a_ “Txb

N
N/

Assuming general semantics of the outranking relation given by “to be at least as good as”, what
R&D project could we advise the decision-maker to choose?

Following Roy and Bouyssou [2], solving this choice problem requires the construction of
a unique possibly univocal selection from set A. However, two possibilities of solving the decision
problem arise: — first, defuzzifying the credibilities and solving the resulting crisp relational
problem, a solution traditionally followed by Roy; — secondly, solving the fuzzy relational
problem and defuzzifying the result thus obtained, a solution proposed by Bisdorff and Roubens

[5,7].
5.1. Solving the defuzzified decision problem

In his family of ELECTRE I methods, Roy proposes to defuzzify the given outranking graph S,
by considering plausible (most robust) A-cuts. The idea is to replace the original fuzzy out-ranking
relation S by a crisp relation S;, which appears as most robust.

What possible defuzzification can we propose for the Lausanne example?

8 Some readers might be disappointed not to find here the application to a real-life decision aid problem. But we think
that the above chosen didactical example better fits in with our references to the corresponding work of Roy and
Bouyssou (see [2]). The interested reader may find a real-life application of our approach in [8].
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5.1.1. Ist solution
Consider all fuzzy out-ranking relations as sufﬁciently credible. This gives the following graph:

All credibilities values 0.70 are changed to 1 and we face a case explicitly cited by Roy and
Bouyssou [2, p. 336] where the authors propose to choose alternative b from among the subset of
optimal alternatives {b, ¢} on the basis of an argument that ¢ is perceived to be slightly lower than
b with respect to its comparison with a (“c se compare moins bien a a que b”).

5.1.2. 2nd solution
Consider the more or less credible out-rankings as not convincing the decision maker; the
credibility values 0.70 are changed to 0 by for instance using a corresponding 0.75-cut.

\/

This time, the subset of optimal solutions is given by {a,b}, without any possibility to prefer
either a or b. But we notice here the asymmetric defuzzification the A-cut approach introduces; thus
making the second solution appear as not as robust as the first one, a consequence not of the
problem as it is given, but an indirect consequence of the unnatural defuzzification technique
applied. Indeed, in the first case, we project 70% credibility to credibility 100%, and in the second
case, we project credibility 70% to credibility 0%.

The standard A-cut defuzzification technique is not coherently balanced and we propose to
change this technique by considering the above introduced ff-cut technique, relying on a symmetric
treatment of more or less truthfulness against more or less falsefulness.

If we consider, as in solution 1 above, a very low level of confirmness for the f-cut defuzzification
(B > 50%), we in fact recover the same solution as above associated with the same robustness.®

But when we consider f-cut defuzzification at level f > 75% for instance:

.'>07$ =

== 05=~
b

a"
A
i) 7
\\‘ ’ /
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1 Lo |
\ ’
\ /
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C

1t is worth noticing that indeed for an out-ranking relation not containing any logically undetermined truth value,
median A- and f-cut defuzzification give identical results (see Bisdorff and Roubens [5]).

S,’f>0‘75 =
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we notice the robustness of this defuzzification as being most convincing, in the sense that, in this
example, we only slightly fuzzify the originally given outranking index by changing 70% credibili-
ties to 50% ones.

But we apparently loose an intuitive selection procedure from such a three-valued polarized
relation, as the selection of a given alternative x may become certainly true, certainly false or
perhaps logically undetermined.

However, careful observation shows that two equivalent #-subsets for recommendation are
possible: {a(1),b(0.5),c(0)} and {a(0.5),b(1), ¢(0)}, either certainly select alternative a, certainly reject
alternative ¢ and leave the choice of alternative b undetermined, or certainly choose alternative b,
certainly reject alternative ¢ again and leave the choice of alternative a undetermined this time.

Further empirical investigation should provide complementary arguments to eventually dis-
criminate between the actually equivalent alternatives.

As a conclusion, we can see that this first approach, independently of the applied defuzzification
technique, relies heavily on the outcome of the defuzzification step for the discussion of the actual
outcome of the solving step. Therefore, with Theorem 11 in mind we advocate a second approach:
— first, solving the fuzzy decision problem and then only — polarizing the potentially fuzzy result
obtained.

5.2. Solving the fuzzy decision problem and defuzzifying the result

In [5,7], we therefore propose to solve the given problem with the help of a corresponding
#-valued kernel construction. Let us briefly recall that a dominant kernel K® on an outranking
relation R is an interior and exterior stable subset of A with respect to R.

In the case of an #-valued relation, we can naturally (in a categorical sense) extend the crisp
dominant kernel concept to our #-valued semantics and speak of dominant #-kernels, that is
Z-true selected interior and exterior stable subsets of A (see Bisdorff and Roubens [5]).

In the case of the given outranking relation S above, we would get the following .#-valued kernel
solutions:

K3 = {a(30%),b(100%), ¢(0%)},
and
K5 = {a(30%),b(30%),¢(70%)}.
If we apply our truth operator p to this result we obtain:

(1) b certainly gives a unique choice candidate (credibility = 100%);
(2) ¢ more or less gives a unique choice candidate (credibility = 70%);

If we now apply our defuzzification operator n; to this result, we obtain alternative b, as well as
alternative c, as potential unique choice candidates in the first case, i.e. when all #-true credibilities
are considered:

K3ps0.5 = {a(0%),b(100%), ¢(0%)},
and

K3p>0.5 = {a(0%),b(0%),¢(100%)}.
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Following Theorem 11 again, we naturally recover here the same result as in the former approach.
Better, we now get a formal argument for the intuitive statement that alternative b appears to be
a more robust recommendation; the corresponding credibility of (100%) is certainly higher than
the credibility of (70%), concerning the recommendation of alternative c.

If we now consider only credibilities above 75% as to be accepted as representing ‘certainly true’,
we naturally stay with our unique best choice candidate, namely alternative b. And indeed, from the
former approach, we already know that alternative b remains a certainly credible choice recom-
mendation even under this more pessimistic view. Recalling Eq. (24) of Theorem 11 we notice that
we partly recover the set of f-cut solutions which we got previously.

Finally, compared to the former approach, where the problem is solved after multiple possible
initial defuzzifications, with the operational difficulty of judging which is the best one, we are now
confronted in our approach with a unique defuzzification, solely depending on the decision-
maker’s conviction to accept the underlying basic credibilities as sufficient for supporting truth of
the choice recommendations.

6. Conclusion

In this paper, we have discussed the close link between on the one hand, the treatment of logical
fuzziness through a corresponding credibility calculus, associated with relational propositions and,
on the other hand, the careful defuzzification that we must operate in order to conclude coherently
on the nature of truth or falseness which this underlying credibility calculus projects on the
relational propositions.

The Main result appears to be the coherent treatment of logical fuzziness with respect to classical
Boolean logic by restricting our truth constructions to split truth/falseness semantics. Finally,
a natural defuzzification technique (f-cuts) has been introduced, thus allowing us to make
defuzzification and solving of the decision problem commute. This operational result allows
us to keep necessary defuzzification solely under the control of the actual decision-maker himself,
which means eventually a better reception of the given decision recommendation, i.e. of the
decision aid.
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