Motivation

On ranking-by-choosing with bipolar outranking digraphs of large orders

Raymond Bisdorff

Université du Luxembourg FSTC/ILAS

Graphs&Decisions Luxembourg, October 2014

Compared to other ranking-by-choosing rules like

- Kohler's rule,
- Arrow-Raynaud's rule (codual of Kohler's),
- Tideman's Ranked Pairs,
- Dias-Lamboray's leximin (codual of ranked pairs),

the ranking-by-Rubis-choosing rule delivers (partial) weak orderings that are most ordinally correlated with the corresponding pairwise strict outranking relation.

1/36

Motivation

Multicriteria Quantiles-Sorting
00000
00000000
00000

Refining with a local ranking-by-choosing

Conclusion

Motivation

lticriteria Quantiles-Sorting 200 200000 Refining with a local ranking-by-choosing 0000 00 Conclusio

Complexity issues

- Ranking-by-Rubis-choosing consists in recursively extracting the most outranking (best) or most outranked (worst) independent choices –outranking and outranked kernels– from the remaining outranking digraph;
- Now, enumerating all kernels in a digraph becomes a computationally hard problem with large and/or sparse digraphs.
- A ranking-by-Rubis-choosing problem can, hence, only be solved for tiny digraph orders; generally less than 50 alternatives.

Complexity issues

- Similarly, Tideman's
 Ranked Pairs rule, due to
 its back-tracking strategy,
 cannot handle outranking
 digraphs showing a lot of
 circuits.
- Only Kohler's rule rule, being of $\mathcal{O}(n^2)$ complexity wrt to a digraph order n, can handle larger ranking problems.
- However, the quality of the Kohler ranking is not satisfactory in many cases.

3/36 4/36

Outline

Content

In this lecture we present a two-stages decomposition of large outranking digraphs:

- 1. All alternatives are, first, sorted into a prefixed set of q multiple criteria quantile classes.
- 2. Each resulting quantile equivalence class is then locally ranked-by-choosing on the basis of the restricted outranking digraph.

This strategy allows us to potentially solve such ranking-by-choosing problems in parallel from outranking digraph of up to several thousand of decision alternatives.

1. Multicriteria Quantiles-Sorting

Single criteria q-tiles sorting Multiple criteria outranking Multiple criteria q-tiles sorting

2. Refining with a local ranking-by-choosing

Properties of the *q*-tiles sorting q-tiles ranking algorithm Profiling the complete ranking procedure

5/36

Multicriteria Quantiles-Sorting •0000 00000000

Refining with a local ranking-by-choosing

7/36

Multicriteria Quantiles-Sorting 00000 0000000

Performance Quantiles

- Let X be the set of n potential decision alternatives evaluated on a single real performance criteria.
- We denote x, y, \dots the performances observed of the potential decision actions in X.
- We call quantile q(p) the performance such that p% of the observed n performances in X are less or equal to q(p).
- The quantile q(p) is estimated by linear interpolation from the cumulative distribution of the performances in X.

Performance Quantile Classes

- We consider a series: $p_k = k/q$ for k = 0, ...q of q + 1 equally spaced quantiles like
 - quartiles: 0, .25, .5, .75, 1,
 - quintiles: 0, .2, .4, .6, .8, 1,
 - deciles: 0, .1, .2, ..., .9, 1, etc
- The upper-closed q^k class corresponds to the interval $[q(p_{k-1}); q(p_k)]$, for k=2,...,q, where $q(p_q)=\max_X x$ and the first class gathers all data below $p_1:]-\infty; q(p_1)]$.
- The lower-closed q_k class corresponds to the interval $[q(p_{k-1}); q(p_k)]$, for k = 1, ..., q - 1, where $q(p_0) = \min_X x$ and the last class gathers all data above $q(p_{q-1})$: $[q(p_{q-1}), +\infty[$.
- We call q-tiles a complete series of k = 1, ..., q upper-closed q^k , resp. lower-closed q_k , quantile classes.

Example

Let us consider the following 31 random performances:

1.10	6.93	8.59	20.97	22.16	24.18	25.39	27.13
32.10	32.23	33.53	34.59	38.65	41.41	41.89	44.87
45.03	50.72	50.96	54.43	58.53	59.82	61.68	62.48
64.82	65.65	71.99	80.73	87.84	87.89	91.56	-
1 1 6 00 1000							

measured on a real scale from 0.0 to 100.0.

5-tiles class limits:

k	p_k	$[q(p_k), [$	$]_{-},q(p_k)]$
0	0.0	1.10	$-\infty$
1	0.2	26.09	26.09
2	0.4	40.86	40.86
3	0.6	55.25	55.25
4	0.8	69.45	69.45
5	1.0	$+\infty$	91.56

5-tiles class contents:

J-tiles Class (
q_k class	q ^k class	#
$[0.8; +\infty[$]0.8; 1.0]	5
[0.6; 0.8[]0.6; 0.8]	6
[0.4; 0.6[]0.4; 0.6]	7
[0.2; 0.4[]0.2; 0.4]	6
[0.0; 0.2[$]-\infty;0.2]$	7

9/36

Taking into account imprecise evaluations

Example (5-tiles sorting ...)

	· (, ,			
1.1	6.9	8.6	21.0	22.2	24.2	25.4	27.1
32.1	32.2	33.5	34.6	38.6	41.4	41.9	44.9
45.0	50.7	51.0	54.4	58.5	59.8	61.7	62.5
64.8	65.7	72.0	80.7	87.8	87.9	91.6	-

Suppose now we acknowledge two preference discrimination thresholds:

- 1. An indifference threshold ind of 10.0 pts, modelling the maximal numerical performance difference which is considered preferentially insignificant;
- 2. A preference threshold pr of 20.0 pts (pr > ind), modelling the smallest numerical performance which is considered preferentially significant.

Resulting 5-tiles sorting:

resulting 5 the	5 501 till 6.
<i>q</i> -tiles class	values
[0.0 - 0.2]	{1.1, 6.9, 8.6}
]0.0 - 0.4]	{21.0, 22.2, 24.2, 25.4}
]0.2 - 0.4]	{27.1}
]0.2 - 0.6]	{32.1, 32.2, 33.5, 34.6, 38.6}
]0.4 - 0.6]	{41.4, 41.9, 44.9, 45.0}
]0.4 - 0.8]	{50.7, 51.0, 54.4}
[0.6 - 0.8]	{58.5}
[0.6 - 1.0]	{59.8, 61.7, 62.5, 64.8, 65.7}
[0.8 - 1.0]	{72.0, 80.7, 87.8, 87.9, 91.6}

If x is a measured performance, we may distinguish three sorting situations:

q-tiles sorting on a single criteria

Multicriteria Quantiles-Sorting

•0000000

- 1. $x \leq q(p_{k-1})$ and $x < q(p_k)$ The performance x is lower than the q^k class;
- 2. $x > q(p_{k-1})$ and $x \leq q(p_k)$ The performance x belongs to the q^k class;
- 3. $(x > q(p_{k-1}))$ and $x > q(p_k)$ The performance x is higher than the p^k class.

If the relation < is the dual of ≥, it will be sufficient to check that both, $q(p_{k-1}) \not\ge x$, as well as $q(p_k) \geqslant x$, are verified for x to be a member of the k-th q-tiles class.

Multiple criteria extension

- $A = \{x, y, z, ...\}$ is a finite set of n objects to be sorted.
- $F = \{1, ..., m\}$ is a finite and coherent family of mperformance criteria.
- For each criterion j in F, the objects are evaluated on a real performance scale $[0; M_i]$, supporting an indifference threshold indi and a preference threshold pr_i such that $0 \leq ind_i < pr_i \leq M_i$.
- The performance of object x on criterion j is denoted x_i .
- Each criterion j in F carries a rational significance w; such that $0 < w_j < 1.0$ and $\sum_{i \in F} w_i = 1.0$.

Performing marginally at least as good as

Each criterion j is characterizing a double threshold order \geq_i on A in the following way:

$$r(\mathbf{x} \geqslant_{j} \mathbf{y}) = \begin{cases} +1 & \text{if } x_{j} - y_{j} \geqslant -ind_{j} \\ -1 & \text{if } x_{j} - y_{j} \leqslant -pr_{j} \\ 0 & \text{otherwise.} \end{cases}$$
 (1)

- +1 signifies x is performing at least as good as y on criterion j,
- -1 signifies that x is not performing at least as good as y on criterion
- 0 signifies that it is unclear whether, on criterion i, x is performing at least as good as v.

Performing globally at least as good as

Each criterion j contributes the significance w_i of his "at least as good as" characterization $r(\geqslant_i)$ to the global characterization $r(\geqslant)$ in the following way:

$$r(x \geqslant y) = \sum_{j \in F} [w_j \cdot r(x \geqslant_j y)]$$
 (2)

r > 0 signifies x is globally performing at least as good as y,

r < 0 signifies that x is not globally performing at least as good as у,

r=0 signifies that it is unclear whether x is globally performing at least as good as y.

Multicriteria Quantiles-Sorting 00000000

Refining with a local ranking-by-choosing

Multicriteria Quantiles-Sorting 00000000

Multicriteria Quantiles-Sorting

Performing marginally and globally less than

Each criterion j is characterizing a double threshold order $\langle j \rangle$ (less than) on A in the following way:

$$r(\mathbf{x} <_{j} \mathbf{y}) = \begin{cases} +1 & \text{if } x_{j} + pr_{j} \leq y_{j} \\ -1 & \text{if } x_{j} + ind_{j} \geqslant y_{j} \\ 0 & \text{otherwise.} \end{cases}$$
 (3)

And, the *global less than* relation (<) is defined as follows:

$$| r(\mathbf{x} < \mathbf{y}) = \sum_{j \in F} [w_j \cdot r(\mathbf{x} <_j \mathbf{y})] |$$
 (4)

Proposition

The global "less than" relation < is the dual (≱) of the global "at least as good as" relation ≥.

First result

Let $\mathbf{q}(p_{k-1}) = (q_1(p_{k-1}), q_2(p_{k-1}), ..., q_m(p_{k-1}))$ denote the lower limits and $\mathbf{q}(p_k) = (q_1(p_k), q_2(p_k), ..., q_m(p_k))$ the corresponding upper limits of the q^k class on the m criteria.

Proposition

That object x belongs to class q^k , i.e. the k-th upper-closed q-tiles class $[p_{k-1}; p_k]$ (k = 1, ..., q), resp. q_k , may be characterized as follows:

$$r(x \in q^k) = \min(r(\mathbf{q}(p_{k-1}) \not\geqslant x), r(\mathbf{q}(p_k) \geqslant x))$$

$$r(x \in q_k) = \min(r(x \geqslant \mathbf{q}(p_{k-1})), r(x \not\geqslant \mathbf{q}(p_k)))$$

15 / 36 16/36

Marginal considerably better or worse performing situations

On a criterion j, we characterize a *considerably less performing* situation, called veto and denoted \ll_j , as follows:

$$r(\mathbf{x} \bowtie_{j} \mathbf{y}) = \begin{cases} +1 & \text{if } x_{j} + v_{j} \leqslant y_{j} \\ -1 & \text{if } x_{j} - v_{j} \geqslant y_{j} \end{cases}$$
 (5)

where v_j represents a veto discrimination threshold. A corresponding dual considerably better performing situation, called counter-veto and denoted \gg_j , is similarly characterized as:

$$r(\mathbf{x} \ggg_{j} \mathbf{y}) = \begin{cases} +1 & \text{if } x_{j} - v_{j} \geqslant y_{j} \\ -1 & \text{if } x_{j} + v_{j} \leqslant y_{j} \end{cases}$$

$$0 & \text{otherwise.}$$

$$(6)$$

Global considerably better or worse performing situations

A global veto, or counter-veto situation is now defines as follows:

$$r(x \ll y) = \emptyset_{j \in F} r(x \ll_j y)$$
 (7)

$$r(x \gg y) = \emptyset_{j \in F} r(x \gg_j y)$$
 (8)

where \bigcirc represents the epistemic polarising (Bisdorff 1997) or symmetric maximum (Grabisch et al. 2009) operator:

$$r \otimes r' = \begin{cases} \max(r, r') & \text{if} \quad r \geqslant 0 \land r' \geqslant 0, \\ \min(r, r') & \text{if} \quad r \leqslant 0 \land r' \leqslant 0, \\ 0 & \text{otherwise.} \end{cases}$$
 (9)

17/36

TOLIVALION

Multicriteria Quantiles-Sorting

○○○○

○○○○

○○○○

○○○○

Refining with a local ranking-by-choosing

Conclusion

19 / 36

Motivation

Multicriteria Quantiles-Sorting

Refining with a local ranking-by-choosing

Conclusion

Characterizing veto and counter-veto situations

- 1. $r(x \ll y) = 1$ iff there exists a criterion j such that $r(x \ll_j y) = 1$ and there does not exist otherwise any criterion k such that $r(x \gg_k y) = 1$.
- 2. Conversely, $r(x \gg y) = 1$ iff there exists a criterion j such that $r(x \gg_j y) = 1$ and there does not exist otherwise any criterion k such that $r(x \ll_k y) = 1$.
- 3. $r(x \gg y) = 0$ if either we observe no very large performance differences or we observe at the same time, both a very large positive and a very large negative performance difference.

Lemma

 $r(\not\ll)^{-1}$ is identical to $r(\gg)$.

The bipolar outranking relation \succsim

From an epistemic point of view, we say that:

- 1. object x outranks object y, denoted $(x \succeq y)$, if
 - 1.1 a significant majority of criteria validates a global outranking situation between x and y, and
 - 1.2 no veto is observed on a discordant criterion,
- 2. object x does not outrank object y, denoted $(x \not\gtrsim y)$, if
 - 2.1 a significant majority of criteria invalidates a global outranking situation between x and y, and
 - 2.2 no counter-veto is observed on a concordant criterion.

Polarising the global "at least as good as" characteristic

The bipolarly-valued outranking characteristic $r(\succeq)$ is defined as follows:

$$r(\mathbf{x} \succeq \mathbf{y}) = \begin{cases} 0, & \text{if } [\exists j \in F : r(\mathbf{x} \ll | \mathbf{y})] \land [\exists k \in F : r(\mathbf{x} \gg | \mathbf{k} \mathbf{y})] \\ [r(\mathbf{x} \geqslant \mathbf{y}) \otimes -r(\mathbf{x} \ll | \mathbf{y})] & , & \text{otherwise.} \end{cases}$$

And in particular,

- $r(x \geq y) = r(x \geqslant y)$ if no very large positive or negative performance differences are observed,
- $r(x \succeq y) = 1$ if $r(x \geqslant y) \geqslant 0$ and $r(x \gg y) = 1$,
- $r(x \succeq y) = -1$ if $r(x \geqslant y) \leqslant 0$ and $r(x \ll y) = 1$.

q-tiles sorting with bipolar outrankings

Proposition

The bipolar characteristic of x belonging to upper-closed q-tiles class q^k , resp. lower-closed class q_k , may hence, in a multiple criteria outranking approach, be assessed as follows:

$$r(\mathbf{x} \in \mathbf{q}^{k}) = \min \left[-r(\mathbf{q}(p_{k-1}) \succeq \mathbf{x}), \ r(\mathbf{q}(p_{k}) \succeq \mathbf{x}) \right]$$
$$r(\mathbf{x} \in \mathbf{q}_{k}) = \min \left[r(\mathbf{x} \succeq \mathbf{q}(p_{k-1})), -r(\mathbf{x} \succeq \mathbf{q}(p_{k})) \right]$$

Proof.

The bipolar outranking relation \succeq , being weakly complete, verifies the coduality principle (Bisdorff 2013). The dual (\nearrow) of \succsim is, hence, identical to the strict converse outranking \lesssim relation.

21/36

23 / 36

Multicriteria Quantiles-Sorting

Refining with a local ranking-by-choosing

Multicriteria Quantiles-Sorting 00000

Refining with a local ranking-by-choosing

00000

The multicriteria (upper-closed) q-tiles sorting algorithm

- 1. **Input**: a set X of n objects with a performance table on a family of m criteria and a set Q of k = 1, ..., q empty q-tiles equivalence classes.
- 2. For each object $x \in X$ and each q-tiles class $q^k \in Q$ $2.1 \ r(x \in q^k) \leftarrow \min(-r(\mathbf{q}(p_{k-1}) \succsim x), r(\mathbf{q}(p_k) \succsim x))$ 2.2 if $r(x \in q^k) \ge 0$: add x to q-tiles class q^k
- 3. Output: Q

Comment

- 1. The complexity of the q-tiles sorting algorithm is O(nmq); linear in the number of decision actions (n), criteria (m) and quantile classes (q).
- 2. As Q represents a partition of the criteria measurement scales, i.e. the upper limits of the preceding category correspond to the lower limits of the succeeding ones, there is a potential for run time optimization.

49-tiles sorting of THE University Rankings

- THE 2010 Ranking of 34 top European Universities;
- Five cardinal criteria (measured as z-scores) for evaluating the performance of each university:
 - 1. Teaching: the learning environment ($w_T = 3$),
 - 2. Citations: research influence ($w_C = 3$),
 - 3. Research: volume, income and reputation ($w_R = 1$),
 - 4. International outlook ($w_l = 1$),
 - 5. Industry income: innovation ($w_{Ind} = 1$).
- Browsing the 49-tiles sorting result.

25 / 36

- 1. *Coherence*: Each object is always sorted into a non-empty subset of adjacent *q*-tiles classes.
- 2. *Uniqueness*: If the q-tiles classes represent a discriminated partition of the measurement scales on each criterion and $r \neq 0$, then every object is sorted into exactly one q-tiles class.
- 3. *Independence*: The sorting result for object x, is independent of the other object's sorting results.

Comment

The independence property gives us access to efficient parallel processing of class membership characteristics $r(x \in q^k)$ for all $x \in X$ and q^k in Q.

The 17-tiles partition

quantile class	content	quantile class	content
]0.82 - 0.88]	ICL-UK]0.24 - 0.47]	UCD-IR
]0.76 - 0.82]	UO-UK]0.24 - 0.35]	UB-UK
	ETHZ-CH]0.24 - 0.29]	UB-CH
]0.71 - 0.82]	UC-UK]0.12 - 0.29]	ENSL-FR
]0.65 - 0.76]	ENSP-FR]0.18 - 0.24]	KCL-UK
]0.53 - 0.76]	UCL-UK		RKU-DE
]0.41 - 0.76]	KUL-BE		UY-UK
]0.29 - 0.76]	EUT-NL		UH-FI
]0.06 - 0.76]	KI-S		USth-UK
]0.41 - 0.59]	UE-UK]0.12 - 0.24]	TUM-DE
]0.47 - 0.53]	EP-FR		USTA-UK
	LSE-UK]0.06 - 0.24]	UG-CH
]0.41 - 0.53]	UG-DE		DU-UK
]0.41 - 0.47]	EPFL-CH]0.12 - 0.18]	TCD-IR
	UZ-CH]0.06 - 0.12]	US-UK
]0.35 - 0.47]	UM-DE		LU-S
	UM-UK]−∞ - 0.12]	RHL-UK

The 17-tiles sorting of the THE University ranking data

```
[0.94 - 1.00]:
[0.88 - 0.94]:
             {}
[0.82 - 0.88]:
              {'ICL-UK'}
[0.76 - 0.82]:
              `'ETHZ-CH', 'UC-UK', 'UO-UK'}
              [0.71 - 0.76]:
              [0.65 - 0.71]:
              {'ENSP-FR', 'EUT-NL', 'KI-S',
              {'EUT-NL', 'KI-S', 'KUL-BE', 'UCL-UK'}
[0.59 - 0.65]:
[0.53 - 0.59]:
              [0.47 - 0.53]:
              {'EP-FR', 'EUT-NL', 'KI-S', 'KUL-BE', 'LSE-UK',
              'UE-UK', 'UG-DE'}
             {'EPFL-CH', 'EUT-NL', 'KI-S', 'KUL-BE', 'LSE-UK', 'UCD-IR',
[0.41 - 0.47]:
              'UE-UK', 'UG-DE', 'UM-DE', 'UM-UK', 'UZ-CH'}
[0.35 - 0.41]:
              {'EUT-NL', 'KI-S', 'UCD-IR', 'UM-DE', 'UM-UK'}
10.29 - 0.351:
              {'EUT-NL', 'KI-S', 'UB-UK', 'UCD-IR'}
[0.24 - 0.29]:
              {'ENSL-FR', 'KI-S', 'UB-CH', 'UB-UK', 'UCD-IR'}
[0.18 - 0.24]:
              {'DU-UK', 'ENSL-FR', 'KCL-UK', 'KI-S', 'RKU-DE', 'TUM-DE',
              'UG-CH', 'UH-FI', 'USTA-UK', 'USth-UK', 'UY-UK'}
10.12 - 0.18]:
              {'DU-UK', 'ENSL-FR', 'KI-S', 'TCD-IR', 'TUM-DE',
              'UG-CH', 'USTA-UK'}
]0.06 - 0.12]:
              {'DU-UK', 'KI-S', 'LU-S', 'RHL-UK', 'UG-CH', 'US-UK'}
]< - 0.06]:
              {'RHL-UK'}
```

Motivation Multicriteria Quantiles-Sor

Refining with a local ranking-by-choosing ○○●
○○
○○ Conclusio

Ordering the *q*-tiles sorting result

The q-tiles sorting result leaves us with a more or less refined partition of the set X of n potential decision actions.

In the upper-closed 17-tiles sorting of the 2010 THE University ranking data, we obtain 23 quantile classes, of which 8 contain more than 1 action (1 \times 5 and 7 \times 2 actions).

For linearly ranking from best to worst the resulting parts of the q-tiles partition we may apply three strategies:

- 1. Optimistic: In decreasing lexicographic order of the upper and lower quantile class limits;
- 2. Pessimistic: In decreasing lexicographic order of the lower and upper quantile class limits;
- 3. Average: In decreasing numeric order of the average of the lower and upper quantile limits.

q-tiles ranking algorithm

- 1. **Input**: the outranking digraph $\mathcal{G}(X, \succeq)$, a partition P_q of k linearly ordered decreasing parts of X obtained by the q-sorting algorithm, and an empty list \mathcal{R} .
- 2. For each quantile class $q^k \in P_q$:

```
\begin{array}{ll} \textbf{if} \ \#(q^k) > 1: \\ R_k & \leftarrow \quad \textbf{rank-by-choosing} \ q^k \ \text{in} \ \mathcal{G}_{|q^k} \\ & \quad \text{(if ties, render alphabetic order of action keys)} \\ \textbf{else:} \quad R_k & \leftarrow \quad q^k \\ \textbf{append} \ R_k \ \text{to} \ \mathcal{R} \end{array}
```

3. Output: \mathcal{R}

29 / 36

Motivation

Multicriteria Quantiles-Sort

Refining with a local ranking-by-choosing

Conclusio

Profiling the q-tiles sorting & ranking procedure

- 1. Due to the potential complexity of the local rank-by-Rubis-choosing procedure, the number q of sorting quantiles must be chosen with care in order that the restricted outranking digraphs $\mathcal{G}_{|q^k}$ keep tiny or small orders (< 40 actions).
- 2. Monte Carlo experimentation with random outranking digraphs of order n = 1000 have shown that it is opportune to set q = n/3 when n gets large.

q-tiles ranking algorithm – Comments

- 1. In case of local ties (very similar evaluations for instance), the rank-by-choosing procedure will render these actions in increasing alphabetic ordering of the action keys.
- 2. The complexity of the *q*-tiles ranking algorithm is linear in the number of parts resulting from a *q*-tiles sorting which contain more than one action.
- 3. However, the **rank-by-Rubis-choosing** procedure is NP-hard. No solution in reasonable time can be guaranteed with more than 40 decision actions.
- 4. In case of a larger quantile class q^k (many very similar evaluations, or many indeterminate outrankings), we may replace the rank-by-choosing procedure with a local polynomial ranking rule, like Kohler's rule or the principal projection of the covariance of the $r(\succeq)$ credibilities.

- 1. Following from the independence property of the *q*-tiles sorting of each action into each *q*-tiles class, the *q*-sorting algorithm may be safely split into as much threads as are multiple processing cores available in parallel.
- 2. Furthermore, the **rank-by-choosing** procedure being local, this procedures may thus be safely processed in parallel threads on each restricted outranking digraph $\mathcal{G}_{|a|}$.

Profiling the local ranking procedure

For very large orders it is opportune to use Kohler's rule for the local ranking step.

Multiple threading with 16 cores

33 / 36

Multicriteria Qu

Refining with a local ranking-by-choosing

Conclusion

Concluding ...

- We implement a new ranking (actually: thinly weak-ordering) algorithm based on quantiles sorting and local ranking procedures;
- Final ranking result generally fits well with the underlying outranking relation;
- Independent sorting and local ranking procedures allow effective multiprocessing strategies;
- Efficient scalability allows hence the ranking of very large sets of potential decision actions (thousands of nodes) graded on multiple incommensurable criteria;
- Good perspectives for further optimization and ad-hoc fine-tuning.