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Complexity issues

e Ranking-by-Rubis-choosing consists in recursively extracting
the most outranking (best) or most outranked (worst)
independent choices —outranking and outranked kernels— from
the remaining outranking digraph;

e Now, enumerating all kernels in a digraph becomes a
computationally hard problem with large and/or sparse
digraphs.

¢ A ranking-by-Rubis-choosing problem can, hence, only be

solved for tiny digraph orders; generally less than 50
alternatives.
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Compared to other ranking-by-
choosing rules like

e Kohler's rule,

® Arrow-Raynaud’s rule
(codual of Kohler's),

® Tideman's Ranked Pairs,

® Dias-Lamboray’s leximin
(codual of ranked pairs),

the  ranking-by-Rubis-choosing
rule delivers (partial) weak or-
derings that are most ordinally
correlated with the correspond-
ing pairwise strict outranking
relation.
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Complexity issues

® Similarly, Tideman's
Ranked Pairs rule, due to
its back-tracking strategy,
cannot handle outranking
digraphs showing a lot of
circuits.

e Only Kohler's rule rule,
being of O(n?) complexity
wrt to a digraph order n,
can handle larger ranking
problems.

® However, the quality of the
Kohler ranking is not
satisfactory in many cases.
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Outline

In this lecture we present a two-stages decomposition of large
outranking digraphs:

1. All alternatives are, first, sorted into a prefixed set of

g multiple criteria quantile classes.

2. Each resulting quantile equivalence class is then

locally ranked-by-choosing on the basis of
the restricted outranking digraph.

This strategy allows us to potentially solve such
ranking-by-choosing problems in parallel from outranking digraph
of up to several thousand of decision alternatives.
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Performance Quantiles

Let X be the set of n potential decision alternatives evaluated
on a single real performance criteria.

We denote x, y, ... the performances observed of the potential
decision actions in X.

We call quantile g(p) the performance such that p% of the
observed n performances in X are less or equal to g(p).

The quantile g(p) is estimated by linear interpolation from the
cumulative distribution of the performances in X.
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Performance Quantile Classes

We consider a series: px = k/q for k =0,...q of g+ 1 equally
spaced quantiles like

e quartiles: 0,.25,.5,.75,1,

e quintiles: 0,.2,.4,.6,.8,1,

e deciles: 0,.1,.2,...,.9,1, etc
The upper-closed g¥ class corresponds to the interval

la(pk—1); q(pk)], for k =2, ..., q, where g(pg) = maxx x) and
the first class gathers all data below p;: | — c0; g(p1)].

The lower-closed g, class corresponds to the interval
[a(pk—1): a(px)[.for k =1,...,qg — 1, where g(po) = minx x
and the last class gathers all data above g(pg—1):

[9(pg—1), +oc[.

We call g-tiles a complete series of k =1, ..., g upper-closed

g¥, resp. lower-closed g, quantile classes.

Conclusion
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Example

Let us consider the following 31 random performances:

1.10 6.93 8.59 | 20.97 | 22.16 | 24.18 | 25.39 | 27.13

32.10 | 32.23 | 33.53 | 3459 | 38.65 | 41.41 | 41.89 | 44.87

45.03 | 50.72 | 50.96 | 54.43 | 58.53 | 59.82 | 61.68 | 62.48

64.82 | 65.65 | 71.99 | 80.73 | 87.84 | 87.89 | 91.56 -

measured on a real scale from 0.0 to 100.0.

5-tiles class limits:

k

px | [a(px); - | 1 a(p«)]

G w N RO

0.0 1.10 —00
0.2 26.09 26.09
0.4 40.86 40.86
0.6 55.25 55.25
0.8 69.45 69.45
1.0 +o00 91.56

Taking into account imprecise evaluations

Example (5-tiles sorting ... )

1.1 6.9 8.6 | 21.0 | 22.2

321 | 32.2 | 335 | 346 | 38.6

45.0 | 50.7 | 51.0 | 54.4 | 58,5

64.8 | 65.7 | 72.0 | 80.7 | 87.8

Suppose now we acknowledge two
preference discrimination thresholds:

1. An indifference threshold ind

of 10.0 pts, modelling the
maximal numerical
performance difference which
is considered preferentially
insignificant;

A preference threshold pr of
20.0 pts (pr > ind), modelling
the smallest numerical
performance which is
considered preferentially
significant.

Re‘ﬂ‘ming with a local ranking-by-choosing Conclusion
5-tiles class contents:
qx class g~ class | #
[0.8; +o0[ | ]0.8;1.0] 5
[0.6;0.8] | ]0.6;0.8] | 6
[0.4;0.6] | ]0.4;0.6] | 7
[0.2;0.4] | ]0.2;0.4] | 6
[0.0;0.2] | ]—00;0.2] | 7
9/36
242 | 254 | 27.1
41.4 | 419 | 44.9
59.8 | 61.7 | 62.5
87.9 | 91.6 -
Resulting 5-tiles sorting:
g-tiles class  values
]0.0 — 0.2] {1.1,6.9,8.6}
]0.0 — 0.4] {21.0,22.2,24.2,25.4}
]0.2 — 0.4] {27.1}
]0.2 — 0.6] {32.1,32.2,33.5,34.6,38.6}
]0.4 — 0.6] {41.4,41.9,44.9,45.0}
]0.4 — 0.8] {50.7,51.0,54.4}
10.6 — 0.8] {58.5}
]0.6 — 1.0] {59.8,61.7,62.5,64.8,65.7}
]0.8 — 1.0] {72.0,80.7,87.8,87.9,91.6}

g-tiles sorting on a single criteria

If x is a measured performance, we may distinguish three sorting
situations:

L. x < q(pk-1) and x < q(px)
The performance x is lower
than the qk class;

2. x> q(px—1) and x < q(px)
The performance x belongs
to the qk class;

3. (x> q(pk-1) and)
x > q(px)
The performance x is higher
than the p* class.

If the relation < is the dual of >, it will be sufficient to check that
both, q(px_1) # x, as well as g(px) > x, are verified for x to be a
member of the k-th g-tiles class.
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Multiple criteria extension

A={x,y,z,...} is a finite set of n objects to be sorted.

F ={1,...,m} is a finite and coherent family of m
performance criteria.

e For each criterion j in F, the objects are evaluated on a real
performance scale [0; M;],

supporting an indifference threshold ind;
and a preference threshold pr; such that 0 < ind; < pr; < M;.
e The performance of object x on criterion j is denoted Xx;.

e Each criterion j in F carries a rational significance w; such
that 0 <w; < 1.0 and } ;. w; = 1.0.
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Performing marginally at least as good as

Each criterion j is characterizing a double threshold order >; on A in the
following way:

+1 if x—y
rix=jy)=49-1 if x—y
0 otherwise.

—prj (1)

+1 signifies x is performing
at least as good as y
on criterion J,

fx>=y)
—1 signifies that x is not
performing at least as
good as y on criterion -
j_ Zind, X;-y;
0 signifies that it is
unclear whether, on
criterion j, x is
performing at least as
good as y.

1

-1
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Performing marginally and globally /ess than

Each criterion j is characterizing a double threshold order <; (/ess
than) on A in the following way:

+1 if x;+pr <y
rix<jy) = -1 if xj+ind; > y; (3)
0 otherwise.

And, the global less than relation (<) is defined as follows:

r(x <y)=2>icr [wj - r(x <j y)] (4)

Proposition
The global “less than” relation < is the dual (#) of the global “at
least as good as” relation .

15 /36
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Performing globally at least as good as

Each criterion j contributes the significance w; of his “at least as
good as" characterization r(=;) to the global characterization
r(=) in the following way:

r(x>y) = ZJGF[Wj'f(XEJY)} (2)

r > 0 signifies x is globally performing at least as good as y,

r < 0 signifies that x is not globally performing at least as good as
Y

r = 0 signifies that it is unclear whether x is globally performing at
least as good as y.

14 /36
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First result

Let q(px—1) = (91(Pk—1); G2(Pk—1) -, Gm(Pk—1)) denote the lower

limits and q(px) = (q1(pk), g2(Pk); ---» gm(Pk)) the corresponding
upper limits of the g¥ class on the m criteria.

Proposition
That object x belongs to class q¥,i.e. the k-th upper-closed g-tiles

class |pk—1;pk] (k=1,...,q), resp. qx, may be characterized as
follows:

r(x € ) = min (r(a(pe_1) % %), r(a(pi) > X))

r(x € g) = min (r(x > q(pe-1)), r(x # a(p«)))
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Marginal considerably better or worse performing situations

On a criterion j, we characterize a considerably less performing situation,
called veto and denoted <<, as follows:

+1 if x+vi <y
rix<Ljy)=9-1 if xi—v;>y (5)

0 otherwise.

where v; represents a veto discrimination threshold. A corresponding dual
considerably better performing situation, called counter-veto and denoted
>>:, is similarly characterized as:

+1 if x—v
r(x>jy)=<-1
0 otherwise.

2y
Y

(6)

if X+

17 /36
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Characterizing veto and counter-veto situations

1. r(x << y) = 1 iff there exists a criterion j such that
r(x << y) = 1 and there does not exist otherwise any
criterion k such that r(x >>, y) = 1.

2. Conversely, r(x => y) = 1 iff there exists a criterion j such
that r(x >>; y) = 1 and there does not exist otherwise any
criterion k such that r(x <, y) = 1.

3. r(x>>y) = 0 if either we observe no very large performance
differences or we observe at the same time, both a very large
positive and a very large negative performance difference.

Lemma

r(& )1 is identical to r(>>).

19/36
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Global considerably better or worse performing situations

A global veto, or counter-veto situation is now defines as follows:

r(x K y)
r(x>>y) =

Qjerr(x K y) (7)
Qjerr(x >>; y) (8)

where @ represents the epistemic polarising (Bisdorff 1997) or
symmetric maximum (Grabisch et al. 2009) operator:

r'>0,
.

max(r,r’) if r>=0A
<0Ar <0, (9)

r@r’ =< min(r,r’) if r

0 otherwise.

18 /36
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The bipolar outranking relation -

From an epistemic point of view, we say that:
1. object x outranks object y, denoted (x = y), if
1.1 a significant majority of criteria validates a global outranking
situation between x and y, and
1.2 no veto is observed on a discordant criterion,
2. object x does not outrank object y, denoted (x Z y), if

2.1 a significant majority of criteria invalidates a global outranking
situation between x and y, and
2.2 no counter-veto is observed on a concordant criterion.

20 /36
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Polarising the global “at least as good as" characteristic

The bipolarly-valued outranking characteristic r(7) is defined as
follows:

if [3j € F:r(x << y)] A3k eF:r(x>>y)]

07
r(xZy)= {[r(x >y)Q—r(x K y)]

, otherwise.
And in particular,
e r(x Z y)=r(x > y) if no very large positive or negative
performance differences are observed,
e rixzy)=1lifr(x>y)>0and r(x > y) =1,
e rixzy)=—-1lifr(x>y)<0and r(x < y) =1,

21 /36
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The multicriteria (upper-closed) g-tiles sorting algorithm

1. Input: a set X of n objects with a performance table on a
family of m criteria and a set Q of k =1, .., g empty g-tiles
equivalence classes.

2. For each object x € X and each g-tiles class g € Q

21 r(x€q") +  min( —r(a(pk—1) Z x), r(a(px) Z x))
22 ifr(xegf) > 0:
add x to g-tiles class g*

3. Output: 9

Comment
1. The complexity of the g-tiles sorting algorithm is O(nmgq); linear in the
number of decision actions (n), criteria (m) and quantile classes (q).

2. As Q represents a partition of the criteria measurement scales, i.e. the
upper limits of the preceding category correspond to the lower limits of
the succeeding ones, there is a potential for run time optimization.
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g-tiles sorting with bipolar outrankings

Proposition

The bipolar characteristic of x belonging to upper-closed q-tiles
class q¥, resp. lower-closed class qy, may hence, in a multiple
criteria outranking approach, be assessed as follows:

((x € ) = min [ = r(a(pr) £ ¢): r(a(p) £x)]
r(x € g) = min [r(x Z a(pk-1) ), —r(x Z a(px)) ]

Proof.

The bipolar outranking relation -, being weakly complete, verifies the
coduality principle (Bisdorff 2013). The dual (7)) of 7 is, hence, identical
to the strict converse outranking = relation. O

Refining with a local ranking-by-choosing
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49-tiles sorting of THE University Rankings

e THE 2010 Ranking of 34 top European Universities;

e Five cardinal criteria (measured as z-scores) for evaluating the
performance of each university:

1. Teaching: the learning environment (wr = 3),

2. Citations: research influence (wc = 3),

3. Research: volume, income and reputation (wg = 1),
4. International outlook (w; = 1),

5. Industry income: innovation (wj,g = 1).

e Browsing the 49-tiles sorting result.

Conclusion

22 /36

Conclusion
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Properties of g-tiles sorting result

1. Coherence: Each object is always sorted into a non-empty
subset of adjacent g-tiles classes.

2. Uniqueness: If the g-tiles classes represent a discriminated
partition of the measurement scales on each criterion and
r # 0, then every object is sorted into exactly one g-tiles class.

3. Independence: The sorting result for object x, is independent
of the other object’s sorting results.

Comment

The independence property gives us access to efficient parallel
processing of class membership characteristics r(x € g*) for all

x € X and g¥ in Q.

The 17-tiles partition

25 /36

quantile class  content ‘ quantile class  content
10.82 - 0.88] ICL-UK 10.24 - 0.47] UCD-IR
10.76 - 0.82] UO-UK ]10.24 - 0.35] UB-UK
ETHZ-CH | ]0.24 - 0.29] UB-CH
10.71 - 0.82] UC-UK ]10.12 - 0.29] ENSL-FR
]10.65 - 0.76] ENSP-FR | ]0.18 - 0.24] KCL-UK
]0.53 - 0.76] UCL-UK RKU-DE
]10.41 - 0.76] KUL-BE UY-UK
]10.29 - 0.76] EUT-NL UH-FI
10.06 - 0.76] KI-S USth-UK
]10.41 - 0.59] UE-UK ]0.12 - 0.24] TUM-DE
10.47 - 0.53] EP-FR USTA-UK
LSE-UK ]0.06 - 0.24] UG-CH
]0.41 - 0.53] UG-DE DU-UK
]10.41 - 0.47] EPFL-CH | ]0.12 - 0.18] TCD-IR
Uz-CH ]0.06 - 0.12] US-UK
]10.35 - 0.47] UM-DE LU-S
UM-UK ]—o0 - 0.12] RHL-UK

The 17-tiles sorting of the THE University ranking data

10.94 - 1.00]:
10.88 - 0.94]:
]0.82 - 0.88]:
10.76 - 0.82]:
]0.71 - 0.76]:

10.65 - 0.71]:
10.59 - 0.65]:
]0.53 - 0.59]:
10.47 - 0.53]:
10.41 - 0.47):
10.35 - 0.41]:
10.29 - 0.35]:
10.24 - 0.29]:
10.18 - 0.24]:
]0.12 - 0.18]:

10.06 - 0.12]:

]< - 0.06]:

{}

{}

{ICL-UK"}

{'"ETHZ-CH’, 'UC-UK’, 'UO-UK'}

{’ENSP-FR’, 'EUT-NL’, 'KI-S’,

'KUL-BE’, 'UC-UK’, "UCL-UK'}

{’ENSP-FR’, 'EUT-NL’, 'KI-S’,

'KUL-BE’, 'UCL-UK'}

{'EUT-NL',’KI-S’, 'KUL-BE’, 'UCL-UK'}

{'"EUT-NL', 'KI-S’, "KUL-BE’, 'UCL-UK’, 'UE-UK'}
{’EP-FR’, 'EUT-NL’, 'KI-S’, 'KUL-BE’, 'LSE-UK’,
'UE-UK’, "UG-DE'}

{"EPFL-CH', 'EUT-NL', 'KI-S', 'KUL-BE’, 'LSE-UK’, 'UCD-IR’,
'UE-UK’, "UG-DE’, 'UM-DE’, 'UM-UK’, 'UZ-CH'}
{'EUT-NL’, 'KI-S’, "UCD-IR’, 'UM-DE’, 'UM-UK'}
{'"EUT-NL’", 'KI-S’, "UB-UK’, 'UCD-IR’}

{’ENSL-FR’, 'KI-S’, 'UB-CH’, 'UB-UK’, 'UCD-IR'}
{'DU-UK’, 'ENSL-FR’, 'KCL-UK', 'KI-S’, 'RKU-DE’, "TUM-DE’,
'UG-CH', 'UH-FI', "USTA-UK’, 'USth-UK’, 'UY-UK'}
{'DU-UK’, 'ENSL-FR’, 'KI-S’, 'TCD-IR’, 'TUM-DE’,
'UG-CH', 'USTA-UK'}

{'DU-UK’, 'KI-S’, 'LU-S’, 'RHL-UK', "UG-CH’, 'US-UK'}
{'"RHL-UK'}

Refining with a local ranking-by-choosing
feJele] }

Ordering the g-tiles sorting result

The g-tiles sorting result leaves us with a more or less refined partition of
the set X of n potential decision actions.

In the upper-closed 17-tiles sorting of the 2010 THE University ranking
data, we obtain 23 quantile classes, of which 8 contain more than 1
action (1 x 5 and 7 x 2 actions).

For linearly ranking from best to worst the resulting parts of the g-tiles
partition we may apply three strategies:

1. Optimistic: In decreasing lexicographic order of the upper and lower
quantile class limits;

2. Pessimistic: In decreasing lexicographic order of the lower and upper
quantile class limits;

3. Average: In decreasing numeric order of the average of the lower
and upper quantile limits.
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g-tiles ranking algorithm

1. Input: the outranking digraph G(X, 7), a partition P, of k
linearly ordered decreasing parts of X obtained by the
g-sorting algorithm, and an empty list R.

2. For each quantile class g € Pq:

if #(q%) > 1:
R, < rank-by-choosing ¢* in Gjg-
(if ties, render alphabetic order of action keys)
else: R, <+ 4~
append R, to R

3. Output: R

29 /36
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Profiling the g-tiles sorting & ranking procedure

1. Due to the potential complexity of the local
rank-by-Rubis-choosing procedure, the number g of sorting
quantiles must be chosen with care in order that the restricted
outranking digraphs G|« keep tiny or small orders (< 40
actions).

2. Monte Carlo experimentation with random outranking
digraphs of order n = 1000 have shown that it is opportune to
set ¢ = n/3 when n gets large.

31/36
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g-tiles ranking algorithm — Comments

In case of local ties (very similar evaluations for instance), the
rank-by-choosing procedure will render these actions in increasing
alphabetic ordering of the action keys.

. The complexity of the g-tiles ranking algorithm is linear in the

number of parts resulting from a g-tiles sorting which contain more
than one action.

However, the rank-by-Rubis-choosing procedure is NP-hard. No
solution in reasonable time can be guaranteed with more than 40
decision actions.

In case of a larger quantile class g% (many very similar evaluations,
or many indeterminate outrankings), we may replace the
rank-by-choosing procedure with a local polynomial ranking rule,
like Kohler's rule or the principal projection of the covariance of the
() credibilities.

30
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Profiling the g-tiles sorting & ranking procedure

1. Following from the independence property of the g-tiles

sorting of each action into each g-tiles class, the g-sorting
algorithm may be safely split into as much threads as are
multiple processing cores available in parallel.

Furthermore, the rank-by-choosing procedure being local,
this procedures may thus be safely processed in parallel
threads on each restricted outranking digraph G4«

33/36

Profiling the local ranking procedure

For very large orders it is opportune to use Kohler's rule for the
local ranking step.

Kohler versus 50-tiles sorting & Kohler

1.0

250 actions
21 Cost/Benefit criteria
1000 random instances

0.8

Extended Kendall Tau

0.2

o 50-tiles&Kohler
+ Kohler

0.40 0.45

Determination degree

Motivation

Multiple threading with 16 cores

n/3-tiles ranking
Run times in sec.

16 Xeon X5570 @ 2.93 GHz cores

600
|

——

sample size = 85

400
|

sample size = 15

200
|

|

n =1000 n=2000
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We implement a new ranking (actually: thinly weak-ordering)
algorithm based on quantiles sorting and local ranking
procedures;

Final ranking result generally fits well with the underlying
outranking relation;

Independent sorting and local ranking procedures allow
effective multiprocessing strategies;

Efficient scalability allows hence the ranking of very large sets
of potential decision actions (thousands of nodes) graded on
multiple incommensurable criteria;

Good perspectives for further optimization and ad-hoc
fine-tuning.

Conclusion
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