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Abstract

This paper emphasizes the role of human factors in Decision Support Systems and related assisting tools that can be
used in the Operational Research field. It links both historical information and real life realizations concerning the
human centered processes. The historical points mentioned in the paper give only partial emphasis, according to the
feeling of the authors. The aim, here, is essentially to review some tools (e.g., utility theory, cognitive modeling, etc.)
that are or might be used to tackle new problems in the context of anthropocentered systems, especially when con-
sidering the recent evolution of Information Systems towards distributed ones. Several real-life problems (mostly in an
industrial setting) are reviewed. They all concern applications on which the authors have worked (or are working)
together. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction based system etc.) in a complex industrial set-
ting, in order to put human beings not only in-
The aim of this paper is two fold: side, but also at the center of the loop of
1. To emphasize that Operational Research, as a decision making.
science and a panel of techniques to aid deci- The first point is supported by the — less and
sion makers, is highly concerned with human less recent — movement of so-called Cognitive
factors. Science. The attempt at a unified approach to
2. To discuss alternatives to a strict computer sci- study natural and artificial information processes,
ence approach (expert systems, knowledge even if sounding like an utopia nowadays, has led

to some happy marriages (‘““d’amour ou de rai-

son”), for instance between psychology or lin-

— . guistics and computer science. The offspring of
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A classical approach in Operational Research
for tackling decision problems is based on a
rationality principle (cf. Section 2.1.1). In terms of
parameters, data and possible decision outcomes
the problems are assumed to be exhaustively de-
scribed, objective functions are assumed to link
data and parameters to measurements of decision
outcomes. Finally, optimal solutions of these
functions are assumed to correspond to the “bet-
ter”” decision (for those who trust in it). For over
thirty years, the quest, for the Holy Grail of opti-
mality has been criticized and deserted by Bernard
Roy and many others (Roy, 1985; Roy and
Bouyssou, 1993; Vincke, 1989) in the framework
of a multicriteria decision aid. They have proposed
alternative approaches in which
e Decision outcomes are viewed as a compromise

between a (generally small) number of possible

ones.

e The human decision maker is fully solicited in
the description of the problem (possible actions,
criteria; evaluations of criteria,. . .).

o Interactions during the decision aid process be-
tween the decision maker, the operational re-
searcher and the software tool make it possible
to guarantee both an objective description of
the problem and the respect of the expectation
of the decision maker.

In that respect, Cognitive Science proposed al-
ternative new paradigms to rationality (Section
2.1.1), like Simon’s bounded rationality. Our
feeling is that Operational Research, as a science
to support decisions, is concerned by these new
paradigms as well as by the old ones. As a con-
sequence (which will appear through the various
industrial applications presented in this paper) an
alternative approach to ‘“normative” decision
making is a “descriptive”, but efficient and oper-
ational one.

The second point is supported by the fact
that these last ten (or may be more) years have
seen a more and more pronounced fading away
of expectation toward automatic systems in or-
der to tackle real and often complex decision
problems. We will not further develop this ar-
gument, since, as far as we know, it no longer
appears as polemical. Just some remarks to
support this:

o In the case where a restrictive computer science
approach leads to unreliable systems, one can
observe that men and women, faced with the
same problems, can solve them in a stable and
secure manner.

e Companies are more and more concerned with
knowledge extraction from documents and ex-
pert interviews. Adapted human centered tech-
nologies will help to prepare future expert
systems.

o If experts have expertise in their domains, it is
risky to imagine that they are also the expert
of their expertise.

That is to say that a study of experts’ know-how

in a professional setting can help to model and

then to insert them into an automatic device.

Thus a main framing aspect for our discussion

comes from the fact that we consider real-sized

expert decision problems as encountered in in-
dustry, defense, finance or business administra-
tion. One of the major criticisms, generally leveled
at expert systems or decision support systems
proposed in these professional contexts, concerns
the underestimation of specifically human exper-
tise for solving such complex and critical prob-
lems that might exist. Our main focus is mainly
on classic production control problems where the
complexity of the task outweighs by far any easy
automation approach, and where human opera-
tors have instead developed their own “wild”, i.e.,
intuitive practical solving strategies. It is clear
that we mainly address these decision problems
where a satisfactory decision practice historically
preexists. Putting the human expert operator ef-
fectively in the loop of such a decision support
system represents the major guarantee of mas-
tering efficiently the inherent complexity of the

problems (Bisdorff, 1999).

There is a second reason to support point two:
decision making is more and more embodied in a
human machine cooperation framework.

We have to distinguish between:

e One decision maker (that can be viewed as the
representative of a group (i.e., as an epistemic
subject) in a singular decision situation: the deci-
sion maker is not familiar with the decision task.

e An expert decision maker, who is familiar with
the decision problems he/she has to face and al-
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ready has strategies compiled in his/her long-

term memory.

In the first case, the decision maker needs
external help and multicriteria decision aid
techniques apply. In the second, software tools
can be used to learn the expert decision
maker strategies in order to assist him/her (pos-
sibly continuously), help him/her to improve his/
her performance and to capitalize his/her know-
how.

Finally a third reason to support point 2 is the
new emerging concept of distributed decision.
Decision making is no longer the task of one
person, or one group (like decisions in organiza-
tions), but is shared by several agents (human
agents and software agents) distributed (and
sometimes mobile) along networks and being able
to communicate only partially between each other
and with their environment. In such hybrid,
complex systems the more reasonable approach is
surely to treat software as software and humans as
humans.

This paper links both historical information
and real life realizations concerning human cen-
tered processes. It is not the purpose of the au-
thors to write a history of the human centered
processes. The historical points mentioned in the
paper just give partial emphasis, according to the
feeling of the authors. The aim, here, is essentially
to review some tools (e.g. utility theory, cognitive
modeling, ...) that might be used to tackle new
problems in the context of anthropocentered sys-
tems. Several real-life problems (mostly in an in-
dustrial setting) are reviewed. Three of them are
more developed (Sections 2.2.1, 2.2.2 and 4.4.2).
They all concern applications on which the au-
thors have worked (or are working) together (two
of them for Sections 2.2.1 and 4.4.2, three of them
for Section 2.2.2).

The paper is organized along a gradient from
simplicity to complexity in the description of the
decision situations (to have a “simple” description
of a situation does not mean that the induced
problems are easy to solve, etc.). Section 2 dis-
cusses individual decision making, Section 3 group
decision making and Section 4 distributed deci-
sion.

In Section 2 the notion of human centered
process is introduced and discussed, first from a
historical perspective (some tools inherited from
behaviorism and cognitivism are reviewed), sec-
ond from the — more or less recent — emergence of
new industrial needs and finally from the view-
point of practical solutions to these problems.
Some practical applications using a particular
cognitive modeling of the decision maker are re-
viewed in Section 2.2 and two of them are dis-
cussed in greater details. Section 3 is essentially
intended to go ‘“‘continuously” from individual
decision to distributed decision. It does not by
any means intend to be a comprehensive ap-
proach to group decision making. Three roots to
group decision making are introduced, namely:
social choice (and more generally consensus the-
ories) game theory and social networks. Then
(Section 3.2) to enlighten what could be the re-
quirement from cognitive science, we focus on
questions related to communications. Finally we
briefly present some practical approaches. In
Section 4.1, the notion of distributed decision is
presented as well as its new requirements. In
Section 4.2 we investigate the possibility of using
tools and concepts inherited from both individual
and group decision making. In view of the rela-
tively negative answers we introduce in Section
4.3 a software-oriented approach as a practical
solution (distributed agents). We discuss some
realizations and one of them is developed further
(Section 4.4.2).

A brief general discussion concludes the paper.

2. Processes involving one decision maker

The case of a unique decision maker covers:

e a single human being,

e a homogeneous group of several decision mak-
ers considered as an epistemic subject (such a
context is not dedicated to group decision mak-
ing, the multiplicity of the subject being neces-
sary to smooth individual variations in the
study of real decision processes).

As a consequence, we will be mainly concerned in

this part with the psychology of decisions.
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2.1. Human centred processes: Who? Why? How?
2.1.1. Who?

From general psychology and behavioral sci-
ences ...

We shall assume throughout this section that
the decision maker involved in the process is an
expert. One characteristic of expertise is the use of
a fairly small quantity of information to achieve a
decision (Shanteau, 1992).

From general psychology, we can follow the
historical evolution of ideas and concepts that may
guide our research. Starting with Hume’s inquiry
concerning human understanding (Hume, 1739),
we see that “there appears to be only three prin-
ciples of connection among ideas, namely, Re-
semblance, Contiguity in time and place, and
Cause Effects”. This associationism, continued by
Hartley (Hartley, 1749), first points to the neces-
sarily procedural constitution of human expertise.
Indeed, Hartley distinguished two forms of asso-
ciation between ideas: successive and simulta-
neous. The first are built up when trains of ideas
regularly follow one another and get bound to-
gether, whereas the second are built up between
ideas that regularly come together at the same
time. What remains to be considered is the effective
observation of any decision expertise.

Here Watson’s behaviorism comes to our res-
cue (Watson, 1913), in the sense that he integrates
Occam’s razor principle (“‘do not multiply entities
without necessity’’) with Hume’s associationism,
but instead of considering expertise as mental ca-
pacities, he focuses on effectively observable be-
havior. Decision expertise is not primarily a
mental capacity but rather an expert behavior.

Such an expert behavior is only conceivable in
the context of a pragmatic approach towards de-
cision problems. Here James with his attempt to
construct a psychological science that will teach a
person how to act is emerging (James, 1892). The
meaning of ideas is only found in terms of their
possible consequences and in our case here, in
terms of observable satisfactory decision behavior.

But it is not a new kind of operant conditioning
in the sense of Skinner (Skinner, 1938) that we are

interested in: instead we rely on modern cognitive
psychology where cognition is mainly studied from
the information handling standpoint. Where clas-
sical behaviorism completely ignores the mind, we
consider states of consciousness as one essential
component of human centered processes that we
are going to present later on. Indeed, the behav-
iorist concept of direct simple linkage between
environment and behavior appears unsatisfactory.

Human operators are active and intervening par-

ticipants in their behavior and human memory is

not a simple store of past situations, but is orga-
nized so as to efficiently assist complex adaptive
behavior in real life.

Another root of behaviorism may be found
among the utilitarian theorists (Bentham, Mill, ...
but also J. Bernouilli (Bernouilli, 1738)"). Utili-
tarianism is based upon the requirement that a
human decision maker tends to choose his/her
most ‘‘attractive” alternative. This approach in-
volves the so-called ‘“rationality principle” that
can be stated in four points:

o the Decision Maker is able to exhaustively gen-
erate all the scenarii relative to decision situa-
tions,

e he/she is able to evaluate the attractiveness of
each of them,

e he/she is able to aggregate these local evalua-
tions into a global one,

o finally, he/she chooses alternatives with the most
favorable global evaluation.

These four points are assumed, for instance, to

support the classical utility theory, as axiomatised

by Von Neumann & Morgenstern (Von Neumann
and Morgenstern, 1944). Point 1 accounts not only
for the exhaustive description of possible actions
but also of the probability of occurrence of issues
relative to actions. Point 2 involves the notion of
utility functions attached to issues. Point 3 mixes

L« . le savoir conjecturer ou stochastique se définit pour

nous comme savoir mesurer, le plus exactement possible, les
degrés de probabilité, afin que, dans nos décisions et nos
actions, nous puissions toujours choisir ou accepter ce qui nous
aura paru le meilleur, plus satisfaisant, plus str, plus prudent:
seul objet a quoi s’applique toute la sagesse du philosophe,
toute la prévoyance du politique” (Bernouilli, 1738, French
translation by G.Th. Guilbaud, 1952).
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probabilities and utilities to compute the expected
utility attached to each action. According to point
4, the decision maker will choose the action(s)
maximizing the expected utility(ies).

These practices lead to various mathematical
models within the behavioral sciences like utility
theory, prospect theory (Tversky and Kahneman,
1981, 1992), stochastic choice and random utility
models (Luce, 1969; Fishburn, 1992), and more
recently media theory (Falmagne, 1996) among
many others.

... to cognitive psychology

The rationality principle has been strongly at-
tacked by Simon (Simon, 1955; Simon, 1983). > The
principle of bounded rationality assumes that the
decision maker is able to optimize but only within
the limits of his/her representation of the decision
problem. Such a requirement is fully compatible
with many results in the psychology of memory: an
expert uses strategies compiled in the long-term
memory and solves a decision problem with the
help of his/her short-term working memory.

Inheritances of bounded rationality may be
listed as follows:

o decision making involves heuristics like the sat-
isfaction principle (Simon, 1969), representative-
ness and availability (see the book edited by
Kahneman et al. (Kahneman et al., 1982)). It
also involves framing effects (Tversky and
Kahneman, 1981),

o decision making appears to be close to problem
solving (this point has been emphasized by Hu-
ber (1982, 1986), who has analyzed decision pro-
cesses in terms of elementary operators and has
studied their complexity),

e decision making involves global evaluations of
alternatives that could be supported by the

2 “Rationality does not determine behavior. Within the area
of rationality, behavior is perfectly flexible and adaptable to
abilities, goals, and knowledge. Instead, behavior is determined
by the irrational and non rational elements that bound the area
of rationality [...]. Administrative theory must be concerned
with the limits of rationality, and the manner in which
organizations affects these limits for the person making a
decision” (Simon, 1983, p. 23).

short-term working memory and that should
be compatible with various kinds of attractive-
ness scales (Svenson, 1979, 1983),

e mainly, decision making can be viewed as the
achievement of a more or less complex informa-
tion process and anchored in the search for a
dominance structure (Montgomery, 1983): the
Decision Maker updates his/her representation
of the problem with the goal of finding a
case where one alternative dominates all the
others (see Barthélemy and Saunier (1996) for
a mathematical approach based on dynamical
systems).

The Moving Basis Heuristics (Barthélemy and

Mullet, 1986, 1992) instantiates these aspects un-

der three principles:

1. Parsimony: the decision maker uses a small
amount of information.

2. Reliability: the processed information is rele-
vant enough to justify — personally or socially
— decision outcomes.

3. Decidability: the processed information may
change from one decision to another.

2.1.2. Why?

From expert systems to expertise managing
systems

Beyond the historical features mentioned here
above, practical motivations underlie the authors
approach. The reasons for this is to be found in the
fact that, in industrial production, human opera-
tors are faced with complex highly repetitive de-
cision problems.

Industrial needs

Many successful and useful industrial expert
systems have been realized (cf. Pomerol (1990) for
instance). However a feeling of doubt about their
successfulness has emerged these last 15 years.
This is due to the fact that:

e The approaches are essentially local (problems
with genericity and transportability).

o The user’s ability is not taken positively into ac-
count.
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Moreover, the behavior of an expert system is very
far removed from a human expert’s. This is not a
problem a priori: of course a “plane does not mimic
a bird” but if we have in mind to aid the expert
decision maker to understand and capitalize his/her
strategies, we need to understand the way he/she
processes information to achieve a decision (for a
discussion of the European view of this approach
applied to industrial field see Wobbe (1991)).

Thus, despite their impressive performance,
computerized systems often poorly adapt to
changes in the environment and many computer-
oriented operational models strongly compel a
human expert to work like a computer. Very often,
for instance, communication is implemented
through dialects close to programming languages
(rule-based design) compelling a human operator
to simplify and abusively generalize his/her solving
strategies.

Often also, expert systems do not take into
account evident semantic aspects of information.
As a consequence, computerized systems show a
lack of reliability and adaptability and induce high
costs, skills and time, for maintaining them. Such
difficulties for practical use may show flexibility,
hence adaptability and capacities to generalize. As
an example one may consider the human processes
of categorization. They do not correspond to some
taxonomic knowledge; they are flexible, adaptable
by local processes and use strategies involving
scales of typicality, prototypes and analogy pro-
cesses (Rosch, 1973, 1978). They are able to rec-
ognize atypicality and to specialize heuristics.
Indeed, we observe that human categorization
processes involve dynamics whose states are more
topological (Gestalt oriented) than logical (lan-
guage oriented).

In this sense we observe that tackling real-size
planning and decision problems coming from in-
dustry and administration is a relevant field for
applications of human centered process designs.
The human operator may be seen as a user and a
model, where the user accounts for ergonomic
constraints and the model implies the user’s cog-
nitive abilities. Such an approach is driven by the
search for stability in the sense of producing sys-
tems that show reliability, adaptability to envi-
ronmental changes as well as transportability.

2.1.3. How?

Current cognitive science provides us with the
insight that a cognitive system, in general, is an as-
sociation of a physical working device, that is en-
vironment sensitive through perception and action,
with a mind generating mental activities designed as
operations, representations, categorizations and/or
programs leading to efficient problem solving
strategies.

Mental activities act on the environment, which
itself acts again on the system by way of percep-
tions produced by representations. This synergy
with an environment leads a cognitive system to
develop autonomous abilities to auto-organization
(structuring of representations, categorizing
through factorization of the environment).

Designing and implementing human centered
systems for planning, control, decision and rea-
soning therefore require studying the operational
domains of a cognitive system in three
dimensions:

e An environmental dimension, where first, ac-
tions performed by a cognitive system may be
observed by way of changes in the environment
and secondly, communication is an observable
mode of exchange between different cognitive
systems.

e An internal dimension where mental activities
i.e., memorization and information processing
generate changes in the internal states of the sys-
tem. These activities are however influenced by
partial factorizations through the environment
(planning, deciding and reasoning change the
course of the world) that appear essentially as
stable cognitive constructs.

e An autonomous dimension where learning and
knowledge acquisition enhance mental activities
by leading to the notions of self- reflexivity and
consciousness.

2.2. Practical applications

A cognitive approach in decision making within
an industrial context has been developed in some
depth (see for instance Laurent et al., 1994; Lenca
et al., 1999), and the present special issue of
EJOR). Moving Basis Heuristics and related pro-



J.P. Barthélemy et al. | European Journal of Operational Research 136 (2002) 233-252 239

cesses have been applied in various contexts. They
can be listed as follows:

Financial setting

e Banking (Lenca, 1994, 1995,b, 1996; Kant,
1996b): the goal of the study was to design sav-
ing products dedicated to a customer according
to his/her own preferences relative to product
characteristics.

Industrial setting

e Quality Control (Guillet, 1995; Barthélemy
et al., 1995): the goal of the study was the updat-
ing of experimental designs according to the op-
erators knowledge and strategies.

e Planning and scheduling (Laurent et al., 1994;
Pichon et al., 1995; Pichon, 1996): this point will
be developed below (see Section 2.2.1).

e Process Control (Le Saux et al., 1998; Le Saux
et al., 1999; Lenca et al., 1999): this point
will be also developed hereafter (see Section
2.2.2).

Agricultural setting
e The goal of the study was to compare various

kinds of cows according to their ability to pro-
duce milk (Hubert, 1996).

Computed

L~

A

Educational setting

e Counseling for educational and professional
guidance (Barthélemy and Mullet, 1987, 1989;
Mullet et al., 1996).

These studies are supported by several computer
implementations of Moving Basis Heuristics. For
instance, Asclepius (Guillet, 1995), and Apache
(Lenca, 1997) are based upon optimization in po-
sets and CategArt (Kant, 1995, 1996) uses con-
nectionist principles derived from the Art network
(Carpenter and Grossberg, 1988). Implementa-
tions of many other cognitive decision strategies
may be found in (Lapébie, 1995; Barthélemy and
Lapébie, 1995). They are based on rule learning
using meta-heuristics. Practices based on con-
straints programming will be developed further in
Section 2.2.1.

2.2.1. Solving by resolving: A production scheduling
problem

This application is concerned with the problem
of solving planning problems in industrial pro-
duction contexts with the help of constraint logic
programming tools like the finite domain solver
CHIP (Bisdorff and Gabriel, 1992; Bisdorff et al.,
1992; Bisdorff and Laurent, 1993; Dincbas et al.,
1988; Aggoun and Beldiceanu, 1991). The study of
real-size planning problems from industrial prac-

Formal agent "| extension [ ]

Inquiries

from Questions
Cognition
Specialist Ve

CHIP Declared
Code extension

A

Cognition
Specialist .

Industrial
Expert
Decision
Analyses maker
from |, Answers | ]
Cognition

Specialist .

Analyses
from | Expertise 4—‘

Fig. 1. Synthetic diagram of CLP cognitive-oriented decision support tool (Pichon, 1996).



240 J.P. Barthélemy et al. | European Journal of Operational Research 136 (2002) 233-252

tice shows that solving fairly tightly constrained
planning or scheduling problems requires consid-
erable particular industrial decision expertise in
order either to introduce simplifying hypotheses
limiting of pruning efficient the search space, or to
start the search with a “reasonably” satisfactory
initial solution.

The search for coherent sub-spaces of a deci-
sion space is inspired by moving Basis Heuristics,
and leads to iterative pairs of intensions/exten-
sions that are systematically submitted to the in-
dustrial expert decision maker and validated by
him/her.

Introducing such decision expertise gives rise to
a new concept of cognitive decision support system
where a cognitive link is installed between the
concrete application context and the formal de-
scription of the problem submitted to the solver.
Practical implementation of such a cognitive de-
cision aid laboratory is inspired by the work of
Barthélemy and Mullet on psychological aspects
of expert decision making (Barthélemy and Mullet,
1992, see Fig. 1).

The industrial experience concerns a monthly
scheduling problem for wire- drawing production
at the TrefilARBED Bettembourg plant part of
ARBED Luxembourg steel industry. This plant
produces steel-cord and horse-wire for the inter-
national tire company (Bisdorff et al., 1995).

2.2.2. Expertise acquisition

Process control methods are usually based
upon either statistical or causal analysis, both
tools being developed without taking into account
any human operator expertise. In addition such
methods prove to bed to the production process
life. The promoters of this implementation (cf.
Guillet and Coppin, 1994) expect human strategy
to fit the process and to have interesting properties
such as ‘“‘noise acceptance”, reliability, flexibility,
genericity and intentional explanation. Therefore
they propose mixing standard methods and cog-
nitive techniques to reinforce and also to extract
the strategies established by the expert operator.
This mixed approach is based upon expertise ac-
quisition methods (see Fig. 2).

Knowledge monitoring can be split up into
three phases: the learning, maintenance, and re-

operator

Fig. 2. Associating standard quality process control and expert
strategies extraction.

« Process quality »

Settings

« Knowledge

Learning Maintenance Revision Time

Fig. 3. Dynamics of expertise constitution and use.

considering phases. In each phase, conventional
process control techniques may be associated with
expert knowledge (see Fig. 3).

Knowledge acquisition is founded upon the
principles involved in the Moving Basis Heuristics
(Barthélemy and Mullet, 1992) discussed in Sec-
tion 2.1.1. This model has mathematical implica-
tions and induces a non-trivial acquisition
algorithm whose complexity is bounded (Pichon
et al.,, 1994). Given a set of objects supporting
expert knowledge, the extraction of expert clas-
sifying strategies is based on an interactive, in-
cremental and dynamically computed
questionnaire. Each question leads the expert to
take a decision on an object; moreover the se-
quence of questions is not random like but is
constructed in order to minimize the overall
length of the questionnaire.

The practical study underlying this work is
concerned with expert strategies acquisition on an
industrial process at Thomson-CSF Detexis (now
Thales Airborne Systems) in Brest. The purpose of
acquisition is to improve conventional expert skill
acquisition methods.
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Fig. 4. General principles of COMAPS decision support tool.

These principles were applied to the design of
an on-line non-intrusive expert decision maker
assistance tool, that was based upon the extrac-
tion and “continuous’” updating of system con-
trol strategies. The extraction and the updating
of strategies were supported by the collection of
the cases dealt with by the expert, and processed
according to cognitive principles indicated by the
Moving Basis Heuristics (limited and changing
subset of attributes as a latent dominance struc-
ture for decision explanation and support) (see
Fig. 4).

These works were handled in the frame of the
COMAPS project* supported by the European
Commission (for references see Section 2.2).

3. Processes involving a group of decision makers

Another main feature of human beings is their
habit — will — and instinct to live, work and
therefore decide together.

In fact, in many organizational or social set-
tings, a decision does not appear as an outcome

> The COMAPS project was funded by the European
Commission (Brite Euram III, BE96 3941) and involved 8
partners from Germany, Luxembourg, and France.

given by a ‘‘single” decision maker, but as a
compromise between various divergent interests
and points of views.

3.1. Group decision making theoretical settings

As associationism, utilitarianism and theories
inherited from the behavioral sciences were con-
sidered as possible foundations for individual
choice studies, we propose to anchor group deci-
sion making in a threefold theoretical setting: so-
cial choice, game theory and social networks.

Social choice

Social choice goes back — at least to — Con-
dorcet & Borda voting theories (Condorcet, 1785;
Borda, 1784). It was considerably renewed in the
fifties by the so-called Welfare Economics and led
to major results like Arrow’s impossibility theorem
(Arrow, 1951) and Gibbard and Satterhwhaite’s
manipulability theorems (Gibbard, 1973; Satt-
erthwhaite, 1975).

More recently, a field called consensus theory
has emerged. It proposes a synthetic view of social
choice, preference aggregation, classification ag-
gregation and the search for latent structures
(Barthélemy and Janowitz, 1991).
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Games theory

On the other hand, games theory accounts for
strategies of decision makers in concurrent mar-
kets. As is well known, it goes back to studies in
economics in the late 19th century (e.g., Pareto
and the Lausanne School (Pareto, 1909)). Popular
achievements of games theory are the so-called
equilibrium theorems (Pareto equilibrium, Nash
equilibrium, etc.).

Games theory also appears as strongly related
to utility theory (Von Neumann and Morgenstern,
1944), and social choice theory (Guilbaud, 1952).

Social networks

In the fifties, the influence of organizational
networks on tasks was studied in depth within
social network theory (Bavelas, 1951; Leavitt,
1951); for more recent references, see Degenne and
Forsé (1994).

According to these promoters of centrality in-
dices in graphs (see also Flament, 1963; Sabidussi,
1966), the organizational topology of the network
was reduced to communication channels impacts
on the tasks. Natural language processing and
modern communication theories however propose
an alternative approach, with the human being at
the center of the communication/decision process.

3.2. Requirements from communication theory

Beyond these mathematical foundations, group
decision making is greatly concerned with com-
municational exchanges between the various ac-
tors in the group. Studies in communication
suppose three levels of structuration (see Fig. 5):

Level 0 (Digital step) is known as Shannon
theory (Shannon, 1948). A source is linked to a
receiver by a channel that transmits messages co-
ded as binary sequences. The source has to code
and the receiver has to decode. The semantic as-
pects in the transmitted information is ignored by
the communication system. Its multiple modalities
(images, texts, sounds, . ..) are ignored as well. But
the transmitted information cannot be assumed to
be a non-structured one (not any 0/1 sequence is

0110010 0110010
Message
S S R Pt

an—— .
Emitter I — Emitter R
Receiver | Receiver Linguistic step
Emitter
Receiver

Cognitive step

Emitter
Receiver

Fig. 5. Levels in communication theory.

admissible as a message). The structuration of
messages is a consequence of the need to decode
without error and to guarantee inviolability during
the transmission (even when the channel is a public
one).

Level 1 (Linguistic step) of communication may
be referred to as a linguistic step (Chomsky, 1957).
The transmitted message is a sequence of sentences
from a natural language. Such a language-oriented
approach enforces a syntactic structure on mes-
sages and makes the linguistic step fairly close to
level 0. Semantics appears as being more or less
governed by syntax. Despite the great success in
designing, analyzing and classifying computer
languages, several failures made this approach
uncertain in domains like language understanding,
processing and translating.

Level 2 (Cognitive step) is properly the cogni-
tive step (see Shaumyan, 1987; Descles, 1990),
where the notion of utterance replaces the notion
of sentences. The cognitive step tries to account for
all dimensions:

e enunciative operations (linguistics),

e cognitive representations (psychology),

e goals of communication (intention & pragmat-
ics),

o effectiveness of understanding and production

(computer science and logic),

e adaptability to users,

e crgonomics of communication systems (human—
machine communication and cooperation).

As suggested in Fig. 1, several modalities (dotted

lines) may be involved in the communication

process at the same time: images, sounds, smell,

text ...
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3.3. Cooperative decision making

Beyond communication processes and/or pro-
tocols, the main features of group decision making
is cooperative decision making within an organi-
zation. Since March & Simon (March and Simon,
1974), this subject has been studied at length by
others like Sfez (1981), Dodier (1995) etc.

However, tools coming from CSCW (Com-
puter Supported Collaborative Work) like
groupware, electronic document processing
(GED), workflow and so on, have often led to
operational drawbacks. These are essentially due
to the fact that technical devices are far removed
from business and industrial practises. Tools can
be so far ill-adapted that they become rapidly
inefficient. Here a reflection on the “How” is
lacking. An understanding of the evolutions
brought about by the introduction of decision-
support tools within an organization is also lack-
ing (Bigaret, 1999).

So, before being distributed, a decision must be
cooperative. Three main non exclusive approaches
are conventionally followed for this central coop-
eration paradigm:

o Man-machine cooperation: this topic concerns
what is usually proposed in man—-machine inter-
faces design and in interactive decision aid sys-
tems. Here, each man-machine association is
considered as a whole and indivisible entity
within the cooperation network. There must be
at least one communication protocol between
the two components of the cooperative entity
(even if limited to information input and dis-
play), as well as a model of the assistance ex-
pected. For instance, the Personal digital
assistant (PDA) model proposes automatic data
retrieval depending on the situation detected
and the context.

e Machine—machine cooperation: this means inter-
action between independent software ‘“‘agents”.
Amongst these may be found specialized agents
for storage, indexing, information retrieval,
problem decomposition through goals and
sub-goal definition, scheduling and solving re-
lated sub-problems. When independent software
agents work on solving a problem, a communi-
cation and synchronization protocol must be

set, and the solving process convergence must
be guaranteed.

e Man-man cooperation: this kind of cooperation
may be direct or indirect insofar it uses a ma-
chine as an intermediate communication me-
dium. In the indirect case, communication may
be completely formalized through a protocol
supported by the medium machine, and formal
data and information are directly available for
computing. Communication may also be “infor-
mal” (natural language exchanges, for instance).
In this case, some information extraction tech-
niques are necessary, but it must be kept in mind
that not all information can be digitized and
that there remains a ‘“‘non-translatable” part
(Lyotard, 1981).

4. Distributed decision

Decision aid and decision making have greatly
changed with the emergence of the ICT (Infor-
mation and Communication Technology). Deci-
sion makers are now far less statically located, but,
on the contrary, play their role in a distributed
way. This fundamental methodological change has
led to the setting of new requirements that are
proposed below.

For the sake of simplicity, we focus here on
symbolic systems only, and will not mention fur-
ther any ‘“‘action systems” that are intrinsically
concerned by Distributed Decision (Coppin,
1999).

4.1. New requirements for distributed decisions

4.1.1. A distributed decision is always handled from
incomplete data

Distributed decision means that several enti-
ties — human, machines — cooperate in order to
reach an acceptable decision, and that these en-
tities are distributed and possibly mobile along
networks. Moreover, these entities exchange
only partial information amongst each other and
with their environment, due to physical and/or
semantic limitations. Consequently, information
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to be processed by each entity proves to be
limited.

4.1.2. A distributed decision must be robust
According to the continuous changes provoked

and supported by the network, and to resulting
standard questions of emergency and security,
distributed decision makers must reach a robust
decision. Robustness may have two different
meanings here:

o the first one is related to the system’s ability to
support controlled changes in parameters that
characterize a decision situation,

o the second one is related to the system’s capacity
of self adaptation to changes occurring within
given limits.

In the first case, the decision remains “stable”. In

the second one, decision evolution rules are plan-

ned within a given domain of possible situations.

4.1.3. A distributed decision must be evolution
tolerant

A distributed decision must be tolerant of evo-
lutions and be reactive. This point may seem
similar to the previous one but goes further in the
sense that the evolutions are not assumed to be
deterministic and planned within the decision
process (even if some stochastic models could try
to integrate them ...).

4.1.4. A distributed decision must be secure

A distributed decision also applies to “decision
fields” that involve — possibly extreme — danger
and great necessity for security. These kinds of
applications are becoming more and more com-
mon, especially thanks to the non-localized and
shared cooperative modalities of decision allowed
by ICT.

4.1.5. A distributed decision must be multi-time-
scaled

Some fields of application need a decision to be
reached in an “any-time” mode: at any moment, it
may be necessary to stop the decision process and
to provide a viable decision. This constraint of
course reinforces reactivity and security features.
On the other hand, some decisions can be com-
puted almost without any time constraints.

The cooperation of several heterogeneous en-
tities in the network also brings variety to the
relevant time-scales: some of them may be at ma-
chine level, while others are at decision maker le-
vel.

These features may be considered as the new
requirements for a distributed decision. As they
may sometimes lead to contradictory interests in
the system, it is necessary to add to these re-
quirements a “‘good-will principle’: every decision
maker wishes to cooperate and to contribute to a
collective relevant decision. In this way, we glob-
ally follow the idea of cooperation as it is usually
described from an engineer’s point of view
(Schmidt, 1991):

e there is a common “plan” shared by all entities,

e cach entity can recognise other entities’ inten-
tions,

e cach entity wish to facilitate other entities’ goal
reaching,

e there may be a dynamic sharing of tasks and
problems to solve,

e entities try to avoid or to solve possible conflicts
in the system.

Ignoring the first one of these points, we prefer to

assert that the various decision makers do not

necessarily follow the same objective, but that

there exists in the system a meta-goal that would

try, for the sake of all decision makers, to keep the

system in a viable status.

One of the most important challenges maybe
the most important of a distributed decision is to
propose mathematical models that fulfill the re-
quirements and that could be used as scientific
foundations of the field. We will try to give some
pointers to such mathematical approaches in the
following paragraphs.

4.2. From distributed decision theoretical founda-
tions. ..

Some of the technical tools presented in Sec-
tions 2 and 3 may appear as “‘candidates” for
Distributed Decision scientific foundations,
namely: consensus theory, game theory and (ex-
tended) utility theory.
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Consensus theory: this theory appears to be re-
liable in the context of a Distributed Decision
because it attempts to obtain acceptable ‘“‘com-
promises” between conflicting and diverging
opinions of different participants, in order to
compute and propose collective decisions.

However, it is still assumed that the entities
have access to the complete information (so that
the first requirement of a Distributed Decision is
not fulfilled). Moreover, the entities are not as-
sumed to communicate, and no hypothesis is made
about the information that they could possibly
exchange (so the communication requirements are
completely ignored in the model). For these rea-
sons, Consensus theory may be considered irrele-
vant for our purpose.

Games theory: this theory has quite recently
proposed some models that take into account a
good number of Distributed Decision require-
ments: autonomy, power, cooperation and nego-
tiation (Fudenberg and Levine, 1998).

Recent studies (Kraus et al., 1995; Kraus, 1997;
Ephrati and Rosenschein, 1996) concern decision
makers who do not follow their preferences or who
do not want to make them public during vote
procedures. This approach is quite different from
conventional ones, and may be considered as a
renewal of Gibbard’s (Gibbard, 1973) or Satt-
erthwhaite’s (Satterthwhaite, 1975) proposals:
practically all vote procedures may be rigged.

This result must, however, be moderated, while
the “rigging” operations reveal to be NP-hard
problems (Bartholdi et al., 1988; Dempster, 1967).
Ephrati and Rosenschein (1996), for instance,
specialise Clark tax mechanisms so that:

e participants could reveal as little as possible of
their own strategies to achieve the consensus, or

e participants keep their strategies secret.

Kraus works on negotiation protocols that ex-

plicitly take time into account, and explicitly tries

to work on entities that exchange and access only

partial information. *

4 “in most cases, the agents do not have complete informa-
tion about each other. For example, an agent may hide its
actions from the other agents”.

So Game Theory takes into account incomplete
information, variability in entities strategies, as
well as consensus modalities through the notion of
coalition and evolution towards equilibrium states.
But on the other hand, up to now, it has not
provided any way to take care of the requirement
of dynamical evolutions within the system. >

Utility theory and related topics: more or less
recently, utility and other notions like belief
functions also called degree of belief (Schaefer,
1976; Dempster, 1976) have been used in a net-
working framework. They allow analyses corre-
sponding to various scales of granularity. In such
networks (Bayesian networks (Jensen, 1996; Pearl,
1988), belief networks (Pearl, 1986), cognitive
maps), nodes are generally attached to agents’
states or intentions, and vertices to information
exchanges between agents or with the environ-
ment. For instance in Bayesian networks, nodes
are structured along a directed acyclic graph and
represent variables (related to events or coming
from measures) whose truth value is computed
according to a global Bayesian probabilistic rule.

These approaches have well-known dynamic
capacities that allow to take into account both
robustness and evolution tolerance requirements.

But they also consist in applying a kind of
“hyper-behavioristic” model that focuses on in-
formation and that excludes all human factors
from the system. Even human entities in the net-
work are considered as functional elements of the
system and solely devoted to information flow
control. For Bayesian networks, there is no longer
account taken of the nature of variable evaluators
or message emitters (human and/or machine): all of
them are considered as “probabilistic automata”.

Beyond these three axes, mathematical tools
such as Viability Theory (Aubin, 1991) or dynamic
systems (Petitot and Rosenstiehl, 1974) (with their
non-linear properties and notion of attractors)
could constitute foundations for a Distributed
Decision theory. But practical situations do not

> New and recent challenging domains related to Game
Theory, such as e-business, could however make this theory
completely adequate for Distributed Decision in the coming
decade.
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necessarily fulfill the requirements expressed
above, and, more important, these approaches
have not taken into account, up to now, the cog-
nitive “white-box” modeling that we claim to be
necessary. These approaches seem quite interesting
to study further but do not currently provide re-
liable solutions to Distributed Decision theoretical
modeling.

4.3. ... to a practical solution: Distributed agents

When facing real situations close to the Dis-
tributed Decision requirements as previously ex-
pressed, one first needs practical solutions and
realistic software technologies. So, beside any
theoretical modeling, it may be useful and efficient
to rely on the concept of Distributed Agents
Cooperation.

This concept, coming from Artificial Intelli-
gence, leads to reasonable software solution inde-
pendently of any mathematical formalisation.
Amongst the flourishing number of definitions of
“agents”, we have chosen the following basic ones
coming from the Computer Science domain:

“An agent is a software entity which functions
continuously and autonomously in a particular
environment, often inhabited by other agents and
processes’ (Shoham, 1993).

“An agent is a computation system that in-
habits a complex, dynamic environment. The
agent can sense, and act on, its environment, and
has a set of goals and motivations that it tries to
achieve through actions’ (Maes, 1994).

“Agency is the degree of autonomy and au-
thority vested in the agents, and can be measured at
least qualitatively by the nature of the interaction
between the agent and other entities in the system.
At a minimum, an agent must run asynchronously.
The degree of agency is enhanced if an agent
represents a user in some way [etc.] A more ad-
vanced agent can interact with data applications,
services and other agents” (Gilbert and Conte,
1995).

With the recent intensive development of tele-
communications, computer science has enriched
the concept of agent with several specialized pro-
files (Nwana, 1996):

e network management agents: these agents con-
tinuously update communication protocols and
detect failures and malfunctioning within the
network (Schoonderwoerd et al., 1997; Bona-
beau et al., 1998).

o interface agents: these assist the operator in
managing large amounts of data that may for
instance overload his/her personal computer.
Thus, an interactive agent may filter incoming
e-mail, or help in scheduling meetings. It may
especially cooperate with other interface agents
in data retrieval or task handling (Maes, 1994).

e coordination agents: these help in ‘“‘connecting”
distant users. They are to become major actors
in the e-market, where agents may travel auton-
omously along the network, accessing remote
databases, negotiating prices or discussing with
other consumers of products and services. These
agents should rapidly become a key in collabo-
rative-design practices (Kraus, 1996, 1997;
Shehory and Kraus, 1995; Sandholm and Las-
ser, 1997; Tsvetovaty and Gini, 1994).

Another way of categorizing agents involves dis-

tinguishing whether they are reactive or cognitive

(Chaib-Draa, 1999). The simple table here below

shows the variability of applications that may be

covered by the distributed agent approach, jointly
with the level of implication of human operators

within the system (see Fig. 6).

To consider distributed cooperative systems as
alternatives to centralized static ones is not a new
idea. It was already proposed by cybernetics when
attempting to introduce new paradigms from bi-
ology into the engineering sciences. It was again
used when parallel machines were designed, and

reactive cognitive

software (re) routing
in telecommunications
networks

decision in
v organisation

human

Fig. 6. Few dimensions of agent based systems and applica-
tions.
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even more recently, with connectionism and neural
networks.

What seems to be more innovative is that a
Distributed Decision involves hybrid agents men
and/or machines and that these agents have new
characteristics:

e they cooperate to achieve decisions,

o they are distributed and mobile along a (physi-
cal or virtual) network,

e they communicate only partially between each
other, and with their environment.

4.4.1. Multi-agent systems for distributed decisions

Agents for Distributed Decisions have already
been applied in various contexts and according to
various approaches. We briefly present a few of
them, and another will be developed in the next
section.

e Agents for decision in planning: in RETSINA
multi-agents (Paolucci et al., 1999), each agent
is provided with an internal planning compo-
nent. Each agent, using its internal planner, for-
mulates detailed plans and executes them in
order to achieve local and global goals. Knowl-
edge of the domain is distributed among the
agents, therefore each agent has only partial
knowledge of the state of the world. Further-
more, the domain changes dynamically, and
part of the available knowledge may become ob-
solete. To deal with this issue, RETSINA agents
allow interleaved planning and execution of in-
formation gathering actions. Information neces-
sary for an agent’s local plan can be acquired
through cooperation with other agents.

e Agent-aided aircraft maintenance (Shehory
et al., 1999): aircraft maintenance is performed
by mechanics who are required to consult expert
engineers for repair instruction and approval.
These engineers happen to rely on external
sources of information, which are often ill in-
dexed and geographically scattered. This prob-
lem relies on distributed multi-modal
information that is processed by multiple users
with different preferences. A multi-agent system
makes it possible to perform documents pre-
analysis and to provide the users with an effi-
cient aid tool in dealing with the information
system.

e Agents for controlling a nuclear reactor (Aimar
et al., 1997): the proposed approach involves a
multi-agents architecture where each functional
entity is represented by a cognitive agent.
Agents are structured in levels in a vertically
structured architecture, while dealing with dif-
ferent abstraction levels for the control problem.
Agents of different levels cooperate to achieve
common goals.

e Agents for routing in telecommunications net-
works: Heusse et al. (1998) present a new fa-
mily of distributed algorithms for routing
and load balancing in dynamic communica-
tions networks. Estimates of the current net-
work load and link coasts are measured by
sending cooperative routing agents in the net-
work that travel with the regular packets and
keep track of the delays encountered during
their journey.

4.4.2. An example of an application: SMA2

As a concrete example of the proposed ap-
proach, we would like to briefly present a study in
progress, applied to the field of airborne surveil-
lance of maritime areas (SMA2 project: multi-
agent system for Maritime Surveillance ©).

The project is concerned with military missions
devoted to the airborne surveillance of strategic
areas on the sea, for which a multi-sensor airborne
system is used. This system involves several oper-
ators, each of them being a sensor specialist, and
each of them getting from his/her attached sensor a
“point of view” on the on-sea tactical situation.

The decision focuses here on the identification
that must be attached to a target within the global
tactical situation. Depending on the locally acces-
sible parameters, each operator is able to propose
an identification class (at the higher level, a simple
and common classification between “‘friend”,
“hostile”, ‘“neutral” or ‘“‘unknown” categories,
and at the lower level, the nature and level of
threat of the analyzed ship).

® This project is funded by DGA/STTC Complex systems
group, and involves three partners (THALES-Airborne Sys-
tems as project leader, ENST de Bretagne and CRIL Technol-
ogy).
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In this case, the Distributed Decision has of
course to focus strongly on security and reactivity
features, a bad or too delayed decision meaning
possible danger for the observing aircraft. On the
other hand, the system intrinsically introduces all
the Distributed Decision requirements:

e The information accessed by each entity is lim-
ited (limitations are due to the sensors capacities
as well as human operators cognitive con-
straints).

e The decision must be robust and secure,

¢ Different time-scales must be taken into account
(depending on the sensors as well as the mission
context critical, safe, ...).

e The situation is continuously evolving: so must
the related decision process.

The decision support system that is proposed in

SMAZ2 is built from a hybrid population of agents:

e organizational agents: these are devoted to the
guarantee of high level social constraints (hier-
archical filtering information exchanges, for in-
stance), as well as the taking into account of
the high level context (e.g. definition of the level
of criticality),

¢ information network agents: these are dedicated
to the retrieval and more generally to the man-
agement of distributed data within the system.
They are not limited to “distributed database
management” functions, while they integrate

A=

network

the management of strategic data and the com-

putation and proposal of a consensus for identi-

fication,

e local decision aid agents: these agents are not
mobile along the network, but assist the opera-
tor in focusing on the strategic items of informa-
tion for identification purposes. They may
involve learning processes in order to better de-
termine this strategic part.

The global structure of the system is displayed in

Fig. 7.

This structure should lead to an efficient any-
time decision aid function, while involving human
entities abilities and taking into account organi-
zational features.

5. General discussion

The gradient that goes from individual Deci-
sion Making to a Distributed Decision shows a
new landscape that is threefold:

Nature of the Decision Maker: Decision makers
are becoming hybrid (humans and software are
mixed) and do not share the same information

Nature of problems, solutions and models: in a
Distributed Decision systems practical needs run
ahead of software solutions and far ahead of

societal
and

organizational
\ agents

agents
for data

retrieval
and consensus

elaboration T T

T local
decision
- analysis,
modelling
and aiding

Fig. 7. SMA2 architecture synthetic diagram.
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mathematical and/or cognitive modeling. This is
not the case for individual decision making.

Nature of the algorithms: algorithms coming
from cognitive modeling are doubly time depen-
dent. From an internal point of view, they are
sequential. From an external point of view they
control the evolution in time of the Decision Ma-
ker/Process pair. Due to the flexible mobility of the
agents (I'espace, chasse par la porte du calcul, rentre
par la fenetre de la distribution), algorithms become
both time and space (again internally and exter-
nally) dependent and this situation appears as a
new one (parallel computing uses a prescribed ri-
gid architecture and full control of information
exchanges; neural networks also optimise on a ri-
gid topology with two possible exceptions: Ko-
honen maps (Kohonen, 1984) and ART networks
(Carpenter and Grossberg, 1988)).

As this paper was oriented towards practical
applications, we would like to conclude it with a
more ‘‘philosophical” single question: do these
new landscapes show real changes in paradigms
for Decision Making within Operational Re-
search?
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