

Motivation

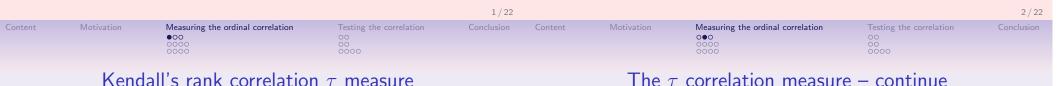
Measuring and testing the ordinal correlation between valued outranking relations

Raymond Bisdorff

Université du Luxembourg FSTC/ILAS

IYS'13 - Luxembourg, November 26-27, 2013

- Fitness measures for posteriors in inverse multiple criteria preference analysis,
- Fine-tuning meta-heuristics for multiple criteria based clustering,
- Comparing multiple criteria rankings with rules like Kemeny's, Kohler's, the **PROMETHEE** net flows rule, or, more recently, Dias-Lamboray's prudent leximin rule.



Kendall's rank correlation τ measure

Let R_1 and R_2 be two binary relations defined on the same finite set X of dimension n.

Let $C = \#\{(x, y) \in X^2 : x \neq y \text{ and } ((x R_1 y) \Leftrightarrow (x R_2 y))\}$ denote the number of concordant non reflexive relational situations we observe.

$$\tau(\mathsf{R}_1,\mathsf{R}_2) := 2 \times \frac{C}{n(n-1)} - 1$$

Comment

- Unanimously concordant relations (100% equivalent situations) are matched to a correlation index of value +1.0,
- 50% concordance between the relations (50% equivalent and 50% not equivalent situations) is matched to a zero-valued correlation index, and
- Unanimously discordant relations (100% non equivalent situations) are matched to a correlation index of value: -1.0.

Example r -valued relations of order n • R_1, R_2 defined on $X = \{a, b, c\}$ • $R_1 = \{(b, c), (c, a)\}$ • $R_1 = \{(b, c), (c, a)\}$ • $R_1 = \{(a, b), (a, c), (b, c)\}$ • $R_2 = \{(a, b), (a, c), (b, c)\}$ • $R_1 = \{(a, b), (a, c), (c, b)\}$ • Discordant pairs: $\{(a, b), (a, c), (c, a)\}$ • $R_1 = \{(a, b), (a, c), (c, a)\}$ $\tau(R_1, R_2) = 2 \times \frac{3}{6} - 1 = 0.0$ • $R_2 = \{(a, b), (a, c), (c, a)\}$	C	Content	Motivation	Measuring the ordinal correlation	Testing the correlation 00 00000	Conclusion	Content	Motivation	Measuring the ordinal correlation	Testing the correlation 00 00000	Conclusion
• R_1 , R_2 defined on $X = \{a, b, c\}$ • $R_1 = \{(b, c), (c, a)\}$ • $R_2 = \{(a, b), (a, c), (b, c)\}$ • Concordant pairs: $\{(b, a), (b, c), (c, b)\}$ • Discordant pairs: $\{(a, b), (a, c), (c, a)\}$ $\tau(R_1, R_2) = 2 \times \frac{3}{6} - 1 = 0.0$ R_2 R_1 • R_2 R_2 R_1 • R_2 • R_2 R_1 • R_2 • R_1 • R_2 •				Example				r	r-valued relations of		
			 <i>R</i>₁ = {(<i>b</i>, <i>c</i>) <i>R</i>₂ = {(<i>a</i>, <i>b</i>) Concordant p {(<i>b</i>, <i>a</i>), (<i>b</i>, <i>c</i>) Discordant p {(<i>a</i>, <i>b</i>), (<i>a</i>, <i>c</i>) 	(c, a) (a, c), (b, c) pairs: (c, b) airs: (c, a)				finite set X characterist [-1.0; 1.0]. We call such The r-value 1. $r(x R y)$ certainly 2. $r(x R y)$ more val 3. $r(x R y)$ more in 4. $r(x R y)$	of dimension <i>n</i> and chara ic function <i>r</i> taking value h relations, for short, <i>r</i> -va- tion supports the followir $= \pm 1.0$ signifies that the <i>r</i> - y valid (+1.0), resp. invalid > 0.0 signifies that the rel- hid than invalid; > 0.0 signifies that the rel- valid than valid; = 0.0 signifies that the rel-	acterized via a bipola s in the rational inte alued and of order n. og semantics: elational situation $x R$ (-1.0); ational situation $x R y$ ational situation $x R y$	ır rval y is is

				5 / 22					6 / 22
Content	Motivation	Measuring the ordinal correlation ○○○ ○●○○ ○○○○	Testing the correlation 00 000 0000	Conclusion	Content	Motivation	Measuring the ordinal correlation ○○● ○○●● ○○○○	Testing the correlation 00 000 0000	Conclusion

Logical *r*-valued operators

$$r(\neg(x \mathsf{R} y)) = -r(x \mathsf{R} y)$$

$$r((x \mathsf{R}_1 y) \land (x \mathsf{R}_2 y)) = \min(r(x \mathsf{R}_1 y), r(x \mathsf{R}_2 y)),$$

$$r((x \mathsf{R}_1 y) \lor (x \mathsf{R}_2 y)) = \max(r(x \mathsf{R}_1 y), r(x \mathsf{R}_2 y)).$$

$$r((x R_1 y) \Leftrightarrow (x R_2 y))$$

= $r[(\neg(x R_1 y) \lor (x R_2 y)) \land (\neg(x R_2 y) \lor (x R_1 y))]$
= min $[max (-r(x R_1 y), r(x R_2 y)),$
 $max (r(-x R_2 y), r(x R_1 y))]$

Determinateness of *r*-valued relations

The determinateness of an *r*-valued relation R of order *n*, denoted d(R), is defined as follows:

$$d(\mathsf{R}) := \frac{\sum_{(x,y)\in X^2}^{x\neq y} \operatorname{abs}(r(x \, \mathsf{R} \, y))}{n(n-1)}$$

Comment

- A crisp a completely ±1-valued relation shows a determinateness degree of 1, whereas
- an indeterminate a completely 0-valued relation shows a determinateness degree of 0.

Measuring the ordinal correlation

0000

Testing the correlation Conclu

A useful result

The equivalence of two *r*-valued relational situations verifies the following

Property

Let R_1 and R_2 be any two r-valued relations defined on the same set X. For all (x, y) in X^2 , we have:

$$r((x R_1 y) \Leftrightarrow (x R_2 y)) = \\ \pm \min(abs(r(x R_1 y)), abs(r(x R_2 y)))$$

Correlations between r-valued relations

The *r*-valued ordinal correlation τ between two *r*-valued relations R₁ and R₂, defined on a same set X, is formulated as follows:

$$\tau(\mathsf{R}_1,\mathsf{R}_2) := \frac{\sum_{x \neq y} r((x \mathsf{R}_1 y) \Leftrightarrow (x \mathsf{R}_2 y))}{\sum_{x \neq y} \min \left[\operatorname{abs} (r(x \mathsf{R}_1 y)), \operatorname{abs} (r(x \mathsf{R}_2 y)) \right]}$$

Comment

- In the crisp case, following Kendall, we divide the sum of pairwise equivalences by n(n-1).
- If we would proceed this way in the valued case, the resulting measure would integrate a mixture of both the ordinal correlation as well as the actual determinateness of the equivalence observed between the considered r-valued relations.
- To factor out both these effects we take, instead, as denominator the maximum possible sum of r-valued equivalences we could potentially observe when both r-valued relations would show completely concordant relational situations.

Motivation	Measuring the ordinal correlation	Testing the correlation	Conclusion
	000	00	
	0000	0000	

Example – continue

Table : *r*-valued equivalence between R_1 and R_2

$r(x R_1 y \Leftrightarrow x R_2 y)$	а	b	с
а	_	-0.32	+0.35
Ь	+0.14	_	+0.75
С	+1.00	+0.08	_

$$\begin{aligned} \tau(\mathsf{R}_1,\mathsf{R}_2) &= \frac{-0.32 + 0.35 + 0.14 + 0.75 + 1.00 + 0.08}{+0.32 + 0.35 + 0.14 + 0.75 + 1.00 + 0.08} \\ &= \frac{0.200}{0.264} = +0.7575 = \frac{0.200}{6} \div 0.44 \\ d(\mathsf{R}_1 \Leftrightarrow \mathsf{R}_2) &= \frac{0.264}{6} = 0.44 \end{aligned}$$

0000				
0000				
0000				
	0000	0000	0000	

Measuring the ordinal correlation

Example

Table :	Examples	of	randomly	valued	relations
---------	----------	----	----------	--------	-----------

$r(x R_1 y)$	а	b	С
а	_	+0.68	+0.35
Ь	-0.94	_	+0.80
С	-1.00	+0.36	_
$r(x \operatorname{R}_2 y)$	а	b	С
а	_	-0.32	+0.58
Ь	-0.14	_	+0.75
С	-1.00	+0.08	_

9/22

Content	Motivation	Measuring the ordinal correlation	Testing the correlation	Conclusion	Content	Motivation	Measuring the ordinal correlation	Testing the correlation	Conclusi
		000 0000 0000	00 00 0000				000 0000 0000	• o 00 00000	
		000	0000				0000	0000	

Properties of the ordinal correlation measure

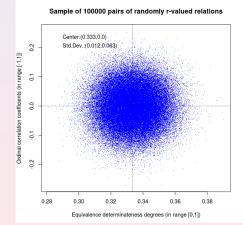
Let R_1 and R_2 be two *r*-valued binary relations defined on a same set X:

- 1. If R₁ and R₂ show a same, respectively an opposite, orientation, $\tau(R_1, R_2)$ equals +1.0, respectively -1.0, independently of their equivalence determinateness $d((R_1 \Leftrightarrow R_2))$.
- 2. If $\neg\,R$ and \varPi denote resp. the negation and the converse of relation R, we may notice that:

 $\begin{aligned} \tau(\mathsf{R}_{1},\mathsf{R}_{2}) &= \tau(\mathsf{R}_{2},\mathsf{R}_{1}) \\ \tau(\neg\,\mathsf{R}_{1},\mathsf{R}_{2}) &= -\tau(\mathsf{R}_{1},\mathsf{R}_{2}) \\ \tau(\mathfrak{R}_{1},\mathfrak{R}_{2}) &= \tau(\mathsf{R}_{1},\mathsf{R}_{2}) \\ \tau(\neg\,\mathfrak{R}_{1},\neg\,\mathfrak{R}_{2}) &= \tau(\mathsf{R}_{1},\mathsf{R}_{2}) \end{aligned}$

Correlation between r-valued relations of order n

- To each non reflexive pair (x, y) in X are associated two uniform random floats: r(x R₁ y) and r(x R₂ y).
- $r(x \operatorname{R}_1 y \Leftrightarrow x \operatorname{R}_2 y) \sim$ $\Delta(-1, 1, 0), \mu_e = 0,$ $\sigma_e = \sqrt{3/18}$
- $d(x \operatorname{R}_1 y \Leftrightarrow x \operatorname{R}_2 y) \sim \Delta(0, 1, 0): \mu_d = 1/3, \sigma_d = \sqrt{1/18}.$
- $\mathcal{T}_n(\mathsf{R}_1,\mathsf{R}_2) \rightsquigarrow$ $\mathcal{N}(\frac{\mu_e}{\mu_d},\frac{\sigma_e}{\mu_d}\frac{1}{\sqrt{n(n-1)}})$
- $\hat{\mu}_{ au_n}~pprox$ 0.0
- $\hat{\sigma}_{\tau_n} \approx \frac{3\sqrt{3/18}}{\sqrt{n(n-1)}}$



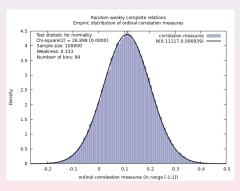
13 / 22					14 / 22
	Content	Motivation	Measuring the ordinal correlation 000 0000 0000	Testing the correlation ○○ ●○ ○○○○	Conclusion

Table : Summary Statistics, for 100000 pairs of randomly *r*-valued relations

$d(R_1,R_2)$	\overline{d}	$\hat{\sigma}_d$	$\hat{\sigma}_d \sqrt{n(n-1)}$	Conf. 90%	Conf. 99%
n = 5	0.3333	0.0527	0.23568	± 0.0866	± 0.1355
n = 10	0.3334	0.0249	0.23622	± 0.0406	± 0.0645
n = 15	0.3333	0.0162	0.23476	± 0.0266	± 0.0418
<i>n</i> = 20	0.3333	0.0121	0.23587	± 0.0202	± 0.0276
<i>n</i> = 30	0.3333	0.0080	0.23597	± 0.0132	± 0.0207
<i>n</i> = 50	0.3333	0.0048	0.23758	± 0.0078	± 0.0121
$\tau(R_1,R_2)$	$\overline{\tau}$	$\hat{\sigma}_{\tau}$	$\hat{\sigma}_{ au}\sqrt{n(n-1)}$	Conf. 90%	Conf. 99%
$\frac{\tau(R_1,R_2)}{n=5}$	<i>τ</i> 0.0003	$\hat{\sigma}_{ au}$ 0.2731	$\hat{\sigma}_{ au}\sqrt{n(n-1)}$ 1.22134	Conf. 90% ±0.4500	Conf. 99% ±0.6766
	, ·	•	• • • •		
$\frac{n=5}{n=5}$	0.0003	0.2731	1.22134	±0.4500	±0.6766
n = 5 $n = 10$	0.0003	0.2731 0.1289	1.22134 1.22285	±0.4500 ±0.2181	±0.6766 ±0.3291
n = 5 n = 10 n = 15	0.0003 0.0000 0.0000	0.2731 0.1289 0.0842	1.22134 1.22285 1.22017	$\pm 0.4500 \\ \pm 0.2181 \\ \pm 0.1386$	$\pm 0.6766 \\ \pm 0.3291 \\ \pm 0.2156$

Random weakly complete *r*-valued relations

- R is weakly complete if for all $(x, y) \in X$, r(x R y) < 0 implies $r(x R y) \ge 0$.
- Each link is, either a double, or a single forward or backward link, with equal probability 1/3.
- $\hat{\mu}_{\tau} = +0.111.$
- A weakness degree of 1.0 (resp. 0.0) gives a constant correlation measure of 1.0 (resp. 0.0).



$d(R_1,R_2)$	$\hat{\mu}_d$	$\hat{\sigma}_d$	$\hat{\sigma}_d \sqrt{n(n-1)}$	Conf.	90%	Conf.	99%
n = 5	0.33344	0.05268	0.23568	0.24920	0.42208	0.20493	0.47489
n = 10	0.33316	0.02490	0.23622	0.29262	0.37433	0.27069	0.39861
n = 15	0.33316	0.01634	0.23476	0.30646	0.36025	0.29164	0.37578
n = 20	0.33320	0.01209	0.23587	0.31342	0.35315	0.30262	0.36486
n = 30	0.33316	0.00799	0.23597	0.32006	0.34630	0.31269	0.35406
<i>n</i> = 50	0.33318	0.00477	0.23758	0.32537	0.34102	0.32099	0.34558
$\tau(R_1, R_2)$	$\hat{\mu}_{\tau}$	$\hat{\sigma}_{\tau}$	$\hat{\sigma}_{\tau} \sqrt{n(n-1)}$	Conf.	90%	Conf.	99%
	•		• • •				
n = 5	0.1112	0.3032	1.3560	-0.3981	+0.6039	-0.6559	+0.8229
n = 5 $n = 10$	0.1112 0.1113	0.3032 0.1592	1.3560 1.5103	-0.3981 -0.1537	$^{+0.6039}_{+0.3713}$	$-0.6559 \\ -0.3019$	+0.8229 +0.5082
n = 10	0.1113	0.1592	1.5103	-0.1537	+0.3713	-0.3019	+0.5082
n = 10 n = 15	0.1113 0.1112	0.1592 0.1138	1.5103 1.6491	-0.1537 -0.0767	+0.3713 +0.2978	-0.3019 -0.1810	+0.5082 +0.3978

Table : Summary Statistics, for 100000 pairs of random weakly (1/3) complete relations

$$\sigma_d = \sqrt{1/18} = 0.23570, \ \frac{\sigma_e}{\mu_d} = 3\sqrt{3/18} = 1.22474$$

A model of random outranking relations

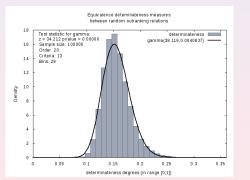
Testing the correlation

0000

- Three types of decision actions: *cheap*, *neutral* and *expensive* ones with an equal proportion of 1/3.
- Two types of weighted criteria: *cost* criteria to be *minimized*, and *benefit* criteria to be *maximized*; in the proportions 1/3 respectively 2/3.
- Random performances on each type of criteria , either from an ordinal scale [0; 10], or from a cardinal scale [0.0; 100.0], following a parametric triangular law of mode: 30% performance for cheap, 50% for neutral, and 70% performance for expensive decision actions, with constant probability repartition 0.5 on each side of the respective mode.
- Cost criteria use mostly cardinal scales (3/4), whereas benefit criteria use mostly ordinal scales (2/3).
- The sum of weights of the cost criteria always equals the sum of weights of the benefit criteria.
- On cardinal criteria, both of cost or of benefit type, we observe following constant preference discrimination quantiles: 5% indifferent situations, 90% strict preference situations 90%, and 5% veto situation.
- We call this random model of *r*-valued relations for short random *CB*-outranking relations.

				18 / 22
Content	Motivation	Measuring the ordinal correlation 000 0000 0000	Testing the correlation ○○ ○○ ○○●○	Conclusion

Correlation between pairs of random CB-outrankings



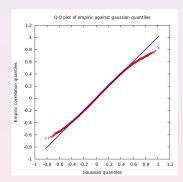
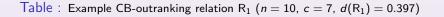


Table :	Summary	Statistics,	for	100000	pairs	of random	CB-outranking
relations	5						

$d(R_1, R_2)$	(R_1,R_2) $\hat{\mu}_d$		$\hat{\sigma}_d$	Conf.	Conf. 90%		Conf. 99%	
n = 5, c = 3	0.3259	0.3250	0.1131	0.1500	0.5255	0.0750	0.6333	
n = 10, c = 7	0.2207	0.2165	0.0482	0.1494	0.3072	0.1204	0.3681	
n = 15, c = 9	0.1910	0.1867	0.0362	0.1399	0.2577	0.1196	0.3102	
n = 20, c = 13	0.1557	0.1527	0.0252	0.1203	0.2013	0.1053	0.2435	
n = 30, c = 21	0.1372	0.1357	0.0174	0.1120	0.1674	0.1002	0.1989	
$\tau(R_1, R_2)$	$\hat{\mu}_{ au}$	$\hat{\tau}_{50\%}$	$\hat{\sigma}_{\tau}$	Conf.	90%	Conf.	Conf. 99%	
n = 5, c = 3	0.0378	0.0345	0.5145	-0.7929	+0.8610	-1.0000	+1.0000	
n = 10, c = 7	0.0629	0.0644	0.3037	-0.4420	+0.5560	-0.6483	+0.7467	
n = 15, c = 9	0.0727	0.0761	0.2417	-0.3323	+0.4667	-0.5206	+0.6354	
n = 20, c = 13	0.0984	0.1017	0.2085	-0.2492	+0.4383	-0.4224	+0.5904	
n = 30, c = 21	0.1239	0.1272	0.1712	-0.1639	+0.4007	-0.3162	+0.5339	

Application



R_1	1	2	3	4	5	6	7	8	9	10
1	_	+0.14	+0.43	-0.14	+0.29	+0.14	+0.43	-0.14	± 0.00	+0.43
2	+0.43	_	+0.43	-0.43	+0.43	+0.14	+0.14	+0.43	+0.14	+0.14
3	-0.43	-0.43	_	-0.71	+0.43	+0.00	-0.43	-1.00	-1.00	-0.14
4	+0.14	+0.71	+1.00	_	+ 0.71	+0.43	+0.71	+0.43	+0.14	+0.57
5	+0.14	-0.43	-0.43	-0.71	_	-0.71	-1.00	+0.14	-1.00	-0.43
6	-0.14	-0.14	+1.00	-0.43	+0.71	_	-0.14	-0.14	+0.14	-0.43
7	+0.14	+0.14	+0.43	-0.43	+1.00	+0.14	_	+0.14	+0.43	+0.29
8	+0.43	-0.14	+1.00	-0.43	+0.43	+0.14	-0.14	_	+0.43	-0.14
9	+1.00	-0.14	+1.00	-0.14	+1.00	+0.43	+0.14	-0.14	_	+0.14
10	-0.43	-0.14	+0.43	+0.14	+0.43	+0.43	+0.29	+0.14	-0.14	-

Assessing different ranking rules:

- 1. Kemeny ranking: $Ke = [4, 2, 7, 8, 9, 1, 10, 6, 3, 5], \tau(R_1, Ke) = +0.888,$
- 2. Net flow scores: $Nf = [4, 9, 2, 7, 8, 10, 1, 6, 3, 5], \tau(R_1, Nf) = +0.776$,
- 3. Kohler ranking: $Ko = [4, 2, 8, 10, 9, 6, 1, 7, 3, 5], \tau(R_1, Ko) = +0.776,$
- 4. Ranked pairs (leximin): $Rp = [4, 2, 8, 9, 1, 7, 10, 6, 3, 5], \tau(R_1, Rp) = +0.872.$

- We have consistently generalized Kendall's rank correlation measure τ to r-valued binary relations via a corresponding r-valued logical equivalence measure.
- The so extended ordinal correlation measure, besides remaining identical to Kendall's measure in the case of completely determined linear orders, shows interesting properties like its independence with the actual determinateness degree of the *r*-valued equivalence.
- Empirical confidence intervals for different models of random *r*-valued relations, like weakly complete and, more particularly, *r*-valued outranking relations are elaborated.

Conclusion

Conclusion