

Multicriteria K-Sorting

K-sorting with bipolar outrankings

K-sorting with multiple ordinal criteria

Raymond Bisdorff

Université du Luxembourg FSTC/ILAS

ORBEL 25, Ghent, February 2011

K-Sorting on a single criteria

Category K is an interval $[m^k; M^k]$ on an ordinal measurement scale; \mathbf{x} is a measured performance.

We may distinguish three sorting situations:

m^k

1. $x < m^k$ (and $x < M^k$) The performance x is lower than category K;

2. $x \ge m^k$ and $x < M^k$ The performance x belongs to category K;

3. $(x \ge m^k \text{ and}) x \ge M^k$ The performance x is higher than category K.

If the relation < is the dual of \geq , it will be sufficient to check that $x \ge m_k$ as well as $x \ge M_k$ are true for x to be a member of K.

		1 / 26				
sorting with bipolar outrankings	THE 2010 University Rankings	Conclusion	Content	Multicriteria K-Sorting •000 000	K-sorting with bipolar outrankings 000 00000	THE 2010 University Ran

Notations

- $A = \{x, y, z, ...\}$ is a finite set of objects to be sorted.
- $F = \{1, ..., n\}$ is a finite and coherent family of performance criteria.
- For each criterion *i* in *F*, the objects are evaluated on a real performance scale $[0; M_i]$,

supporting an indifference threshold q_i

and a preference threshold p_i such that $0 \leq q_i < p_i \leq M_i$.

- The performance of object x on criterion *i* is denoted x_i .
- Each criterion *i* in *F* carries a rational significance *w_i* such that $0 < w_i < 1.0$ and $\sum_{i \in F} w_i = 1.0$.

Performing marginally at least as good as

Each criterion *i* is characterising a double threshold order \geq_i on A in the following way:

$$r(\mathbf{x} \ge_i \mathbf{y}) = \begin{cases} +1 & \text{if } x_i + q_i \ge y_i \\ -1 & \text{if } x_i + p_i \le y_i \\ 0 & \text{otherwise.} \end{cases}$$
(1)

- +1 signifies x is performing at least as good as y on criterion i,
- -1 signifies that x is not performing at least as good as y on criterion *i*.
- **0** signifies that it is *unclear* whether, on criterion i, x is performing at least as good as y.

3 / 26

in the following way:

least as good as y.

K-sorting with bipolar outrankings

Performing globally at least as good as

Each criterion *i* contributes the significance w_i of his "*at least as good as*" characterisation $r(\ge_i)$ to the global characterisation $r(\ge)$

 $r(x \ge y) = \sum_{i \in F} [w_i \cdot r(x \ge_i y)]$

r > 0 signifies x is globally performing at least as good as y,

r < 0 signifies that x is not globally performing at least as good as

r = 0 signifies that it is *unclear* whether x is globally performing at

Jniversity Rankings Cor

(2)

Performing marginally and globally less than

Each criterion *i* is characterising a double threshold order $<_i$ (*less than*) on *A* in the following way:

$$r(\mathbf{x} <_{i} \mathbf{y}) = \begin{cases} +1 & \text{if } x_{i} + p_{i} \leq y_{i} \\ -1 & \text{if } x_{i} + q_{i} \geq y_{i} \\ 0 & \text{otherwise.} \end{cases}$$
(3)

And, the global less than relation (<) is defined as follows:

$$r(\mathbf{x} < \mathbf{y}) = \sum_{i \in F} \left[w_i \cdot r(\mathbf{x} <_i \mathbf{y}) \right]$$
(4)

Proposition

The global "less than" relation < is the dual (\geq) of the global "at least as good as" relation \geq .

			5 / 26					6 / 26
Multicriteria K-Sorting 000● 000	K-sorting with bipolar outrankings 000 00000	THE 2010 University Rankings	Conclusion	Content	Multicriteria K-Sorting ○○○○ ●○○	K-sorting with bipolar outrankings 000 00000	THE 2010 University Rankings	Conclusion

First result

Let $m^k = (m_1^k, m_2^k, ..., m_p^k)$ denote the lower limits and $M^k = (M_1^k, M_2^k, ..., M_p^k)$ the corresponding upper limits of category K on the criteria.

Proposition

у,

That object \times belongs to category K may be characterised as follows:

 $r(x \in K) = \min(r(x \ge m^k), r(x \ge M^k))$

Difference with Electre Tri

Roy introduced the concept of veto threshold v_i ($p_i < v_i \leq M_i + \epsilon$) to characterise the observation of *seriously less performing* situations on the family of criteria. This leads to a single threshold order, denoted \ll_i which characterises seriously less performing situations as follows:

$$r(\mathbf{x} \ll_i \mathbf{y}) = \begin{cases} +1 & \text{if } x_i + v_i \leq y_i \\ -1 & \text{otherwise} \end{cases}$$
(5)

And a global veto situation $x \ll y$ is characterised as:

$$r(\mathbf{x} \ll \mathbf{y}) = r\left(\bigvee_{i \in F} (x \ll_i y)\right) = \max_{i \in F} \left[r(x \ll_i y)\right]$$
(6)

K-sorting with bipolar outrankings

Multicriteria K-Sorting 000

The classic outranking relation

An object x *outranks* an object y , denoted $x \succeq y$, when:

- 1. a *significant majority* of criteria validates the fact that x is performing at least as good as s, i.e. $(x \ge y)$.
- 2. And, there is *no veto* raised against this claim, i.e. $(x \not\ll y)$.

The corresponding charactistic gives:

$$r(\mathbf{x} \succeq \mathbf{y}) = r[(x \ge y) \land (x \ll y)]$$

= min [r(x \ge y), -r(x \ll y)]

Difference with Electre Tri - continue

Proposition (Pirlot & Bouyssou 2009)

Let \succ be the classic outranking relation.

- The asymmetric part \succeq of the \succeq , i.e. $(x \succeq y)$ and $(y \nvDash x)$, is in general **not** identical to its codual relation \measuredangle .
- The absence of any veto situation is sufficient and necessary for making $\succeq = \measuredangle$.

Corollary

Aulticriteria K-Sorting

In case no vetoes are observed, our approach gives similar results when compared with the Electre Tri method.

				9 / 26		
ontent	Multicriteria K-Sorting	K-sorting with bipolar outrankings	THE 2010 University Rankings	Conclusion	Content	N
	0000	00				0

Marginal seriously better or worse performing situations

We redefine a single threshold order, denoted \ll_i which represents seriously less performing situations as follows:

$$r(\mathbf{x} \lll_{i} \mathbf{y}) = \begin{cases} +1 & \text{if } x_{i} + v_{i} \leq y_{i} \\ -1 & \text{if } x_{i} - v_{i} \geq y_{i} \\ 0 & \text{otherwise.} \end{cases}$$
(7)

And a corresponding dual *seriously better performing* situation \gg_i characterised as:

$$r(\mathbf{x} \gg_{i} \mathbf{y}) = \begin{cases} +1 & \text{if } x_{i} - v_{i} \ge y_{i} \\ -1 & \text{if } x_{i} + v_{i} \le y_{i} \\ 0 & \text{otherwise.} \end{cases}$$
(8)

Global seriously better or worse performing situations

K-sorting with bipolar outrankings

000

A global veto, or counter-veto situation is now defines as follows:

$$r(\mathbf{x} \ll \mathbf{y}) = \bigotimes_{i \in F} r(\mathbf{x} \ll_i \mathbf{y})$$
(9)

$$r(\mathbf{x} \gg \mathbf{y}) = \bigotimes_{i \in F} r(\mathbf{x} \gg_i \mathbf{y})$$
(10)

where \bigcirc represents the epistemic polarising (Bisdorff 1997) or symmetric maximum (Grabisch et al. 2009) operator:

$$r \oslash r' = \begin{cases} \max(r, r') & \text{if } r \ge 0 \land r' \ge 0, \\ \min(r, r') & \text{if } r \le 0 \land r' \le 0, \\ 0 & \text{otherwise.} \end{cases}$$
(11)

10/26

j such that $r(x \gg_i y) = 1$.

criteria j such that $r(x \ll_i y) = 1$.

K-sorting with bipolar outrankings

Characterising veto and counter-veto situations

2. Conversely, $r(x \gg y) = 1$ iff there exists a criterion *i* such

that $r(x \gg_i y) = 1$ and there does not exist otherwise any

3. $r(x \gg y) = 0$ if either we observe no very large performance

positive and a very large negative performance difference.

differences or we observe at the same time, both a very large

 $r(x \ll_i y) = 1$ and there does not exist otherwise any criteria

1. $r(x \ll y) = 1$ iff there exists a criterion i such that

Jniversity Rankings C

ontent Multicrite

The bipolar outranking relation \succsim

From an epistemic point of view, we say that:

- 1. object x outranks object y, denoted $(x \succeq y)$, if
 - 1.1 a significant majority of criteria validates a global outranking situation between x and y, and
 - 1.2 no serious counter-performance is observed on a discordant criterion,
- 2. object x does not outrank object y, denoted $(x \not\gtrsim y)$, if
 - 2.1 a significant majority of criteria invalidates a global outranking situation between x and y, and
 - 2.2 no seriously better performing situation is observed on a concordant criterion.

Lemma

$$r(\not\ll)^{-1}$$
 is identical to $r(\gg)$.

				13 / 26
Content	Multicriteria K-Sorting 0000 000	K-sorting with bipolar outrankings 000 0000	THE 2010 University Rankings	Conclusion

Polarising the global "at least as good as" characteristic

The bipolar-valued characteristic $r(\succeq)$ is defined as follows:

$$r(\mathbf{x} \succeq \mathbf{y}) = \begin{cases} 0, & \text{if } \left[\exists i \in F : r(\mathbf{x} \ll i y) \right] \land \left[\exists j \in F : r(\mathbf{x} \gg j y) \right] \\ \left[r(\mathbf{x} \ge y) \oslash -r(\mathbf{x} \ll y) \right] & \text{, otherwise.} \end{cases}$$

And in particular,

- r(x ≿ y) = r(x ≥ y) if no very large positive or negative performance differences are observed,
- $r(x \succeq y) = 1$ if $r(x \ge y) \ge 0$ and $r(x \ggg y) = 1$,
- $r(x \succeq y) = -1$ if $r(x \ge y) \le 0$ and $r(x \ll y) = 1$,

K-sorting with bipolar outrankings

Proposition

The dual $(\not\gtrsim)$ of the bipolar outranking relation \succeq is identical to the strict converse outranking \preccurlyeq relation. Proof:

$$\begin{aligned} r(x \not\gtrsim y) &= -r(x \not\gtrsim y) = -[r(x \ge y) \odot - r(x \lll y)] \\ &= [-r(x \ge y) \odot r(x \lll y)] \\ &= [r(x \ge y) \odot - r(x \ggg y)] \\ &= [r(x < y) \odot - r(x \ggg y)] \\ &= [r(x < y) \odot r(x \not\gg y)] = r(x \not\preceq y). \end{aligned}$$

Corollary

The bipolar characteristic of y belonging to category K may be assessed as follows:

$$r(x \in K) = \min(r(x \succeq m^k), r(x \not\succeq M^k))$$

14/26

The multicriteria K-Sorting algorithm

- 1. **Input**: a set X of n objects with a performance table on a family of p criteria and a set C of k empty categories K with lower and upper limits.
- 2. For each object $x \in X$ and each category $K \in C$ 2.1 $r(x \in K) \leftarrow \min(r(x \succeq m^k), r(x \nsucceq M^k))$ 2.2 if $r(x \in K) \ge 0$: add x to category K
- 3. Output: C

Comment

- 1. The complexity of the K-Sorting algorithm is linear: $\mathcal{O}(nkp)$.
- 2. In case, *C* represents *p* partitions of the criteria measurment scales, i.e. the upper limits of the preceding categroy correspond to the lower limits of the succeding ones, there is a potential for reducing the complexity even more.

17 / 26

TOP EUROPEAN UNIVERSITIES 2010

REGION RANK T	INSTITUTION	COUNTRY / REGION	OVERALL SCORE change
1	University of Cambridge	United Kingdom	91.2
1	University of Oxford	United Kingdom	91.2
3	Imperial College London	United Kingdom	90.6
4	Swiss Federal Institute of Technology Zurich	Switzerland	83.4

Properties of K-Sorting result

- 1. *Coherence*: Each object is always sorted into a possibly empty subset of adjacent categories.
- 2. Weak Unicity: In case of non overlapping categories and the absence of indeterminate bipolar outrankings, i.e. $r \neq 0$, every object is sorted into at most one category;
- 3. Unicity: If the categories represent a discriminated partition of the measurement scales on each criterion and $r \neq 0$, then every object is sorted into exactly one category;
- 4. *Independance*: The sorting result for object *x*, is independent of the other object's sorting results.
- 5. *Monotonicity*: If $r(x \succeq y) = 1$, then x is sorted into a category which is at least as high ranked as the category into which is sorted object y.
- 6. Stability: If a category is dropped from C, the content of the remaining categories will not change thereafter.

Some European universities

Edi	t the objects to	sort		
٢	🗎 🗙 😒 I	AboutO	bject	
	active	id	or	name
1	\checkmark	UM-UK		University of Manchester
2	\checkmark	RHL		Royal Holloway, University of London
3	\checkmark	LU-S		Lund University Sweden
4	\checkmark	UZ-CH		University of Zurich Switzerland
5	\checkmark	USth		University of Southampton
6	V	UCD-IR		University College Dublin
7	V	UB-CH		University of Basel
8	V	ENS		Ecole Normale Superieure de Lyon
9	V	TUM		Technical University of Munich
10	\checkmark	UH-FI		University of Helsinki, Finland
11	\checkmark	UST		University of St. Andrews
12		EUT-NL		Eindhoven University of Technology
13	\checkmark	UG-CH		University of Geneva
14	V	KUL-BE		Catholic University of Leuven, Belgium

THE evaluation criteria

										-			
intr	oduction	1. prob	olem configuration	2. edit performan	ces	3. crite	ria tur	ning	4. categori	es tuning	5. view	sorting resul	ts
Z							H	Z					
	id	-	name		descr	ription		id		criterion		performan	ce
4	UZ-CH		University of Zuric	h Switzerland		-	1	ev_c-T_	KUL-BE	c-T		57.7	

1	c-Ind	Industry income	0	100		max	nnovation		
	criterion	name	minimum	maximu	m	direction	description		
B									
M	Page 2 of 2	2 🕨 🕅 🧶 👘	Displaying 21 -	34 of 34	M	A Page 1	of 1 🕨 🕅 💦		
•					•		Ш		
14	KUL-BE	Catholic University of Leuver	n, Belgium						
13	UG-CH	University of Geneva							
12	EUT-NL	Eindhoven University of Tech	nnology						
11	USTA-UK	University of St. Andrews							
10	UH-FI	University of Helsinki, Finland	d	=					
9	TUM-DE	Technical University of Munic	ch						
8	ENSL-FR	Ecole Normale Superieure de	e Lyon		5	ev_c_C_KUL-B	E c_C	45.2	2
7	UB-CH	University of Basel			4	ev_c_R_KUL-B	E c_R	62.9)
6	UCD-IR	University College Dublin			3	ev_c-Ind_KUL-	3E c-Ind	97.7	7
5	USth-UK	University of Southampton			2	ev_c_I_KUL-BE	: c_l	29.6	j

Six sorting categories: A (best) - F (worst)

in	troduction	- 1. p	problem configuration	2. edit pe	rforma	inces	3. criteria	tunir	g 4. categorie	s tuning	5. view	sorting results	
Se	Select a sorting criteria								erion category lin	nits			
e,	create	Catego	oryLimits					B	3				
	id	ac	name	dir	ect	mini	maxi		id	category	/	[lower limit -	- upperlimit [
1	c-T	V	Teaching	ma	ах	0	100	1	lim_c_R_F	very wea	k	0	30
2	c_l	V	International Mix	ma	ax	0	100	2	lim_c_R_E	weak		30	50
3	c-Ind	V	Industry income	ma	ах	0	100	3	lim_c_R_D	fair		50	65
4	c_R	V	Research	ma	ах	0	100	4	lim_c_R_C	good		65	80
5	c_C	1	Citations	ma	ах	0	100	5	lim_c_R_B	very goo	d	80	90
								6	lim_c_R_A	excellen	t	90	120

intro	oduction	1. problem configuration 2. edit performances 3. criteria tuning 4. categories tuning	5. view sorting results						
per	Category	perObject allSortingSituations							
View	v category c	ontents							
Z	computes	SortingResults showOutrankings							
	Category co	ontents							
1	Sorting res	ults in descending order							
	Categor	ries Assorting							
]> - A]	['ICL-UK', 'UC-UK', 'UO-UK']							
]A - B]	['EP-FR', 'ETHZ-CH', 'UCD-IR', 'UCL-UK']							
]B - C]	['ENSP-FR', 'EP-FR', 'KI-S', 'TUM-DE', 'UCD-IR', 'UE-UK']							
JC - DJ ['ENSL-FR', 'EP-FR', 'EPFL-CH', 'EUT-NL', 'KCL-UK', 'KUL-BE', 'LSE-UK', 'LU-S', 'RKU-DE', 'TCD-IR', 'TUM-DE', 'UB-CH', 'UB-UK', 'UCD-IR', 'UG- CH', 'UG-DE', 'UH-FI', 'UM-DE', 'UM-UK', 'USTA-UK', 'USth-UK', 'UY-UK', 'UZ-CH']									
]D - E]	['DU-UK', 'RHL-UK', 'UB-CH', 'US-UK', 'USTA-UK']							
]E - F]								
	•								

A Page 1 of 1 > > 2

B

Sel	ect the ca	tegory		Objects in the selected category								
C)				Ż								
	rank	id	name		object	credibility (%)	>= low limit (%)	< high limit (%)	¢			
1	1	А	excellent	1	ICL-UK: Imperial College London	100	100.00	100.00				
2	2	в	very good	2	UO-UK: University of Oxford	55.55559921264	55.56	100.00				
3	3	С	good	3	UC-UK: University of Cambridge	55.55559921264	55.56	100.00				
4	4	D	fair									
5	5	Е	weak									
6	6	F	very weak									

The performances per university

perCategory perObject allSortingSituations

Sel	Select an object								
3									
	id	name							
1	UM-UK	University of Manchester							
2	RHL-UK	Royal Holloway, University of London							
3	LU-S	Lund University Sweden							
4	UZ-CH	University of Zurich Switzerland							
5	USth-UK	University of Southampton							
6	UCD-IR	University College Dublin							
7	UB-CH	University of Basel							
8	ENSL-FR	Ecole Normale Superieure de Lyon							
9	TUM-DE	Technical University of Munich							
10	UH-FI	University of Helsinki, Finland							
11	USTA-UK	University of St. Andrews							
12	EUT-NL	Eindhoven University of Technology							
13	UG-CH	University of Geneva							
14	KUL-BE	Catholic University of Leuven, Belgium							

showPairw	iseComparison			
id	category	credibility	>= low limit	< upper limit
sit_KUL-BE_A	A: excellent	-100	-100.00	100.00
sit_KUL-BE_E	B: very good	-100	-100.00	100.00
sit_KUL-BE_C	C: good	-55.5555992126	-55.56	100.00
sit_KUL-BE_0	D: fair	11.11110019683	11.11	55.56
sit_KUL-BE_E	E: weak	-11.1111001968	100.00	-11.11
sit_KUL-BE_F	F: very weak	-100	100.00	-100.00
Page 1	of 1 chart with category line mancesBarchart	nits		
Page 1	of 1	nits		
formances bar showPerfor google chart	of 1 P P 22	nits	E with the lin	nits
Page 1 formances bar showPerfor google chart	of 1 P P 2	nits alternative KUL-E 0 (in % of the crit	BE with the lineria scales)	nits
Page 1 formances bar showPerfor google chart 100	of 1 P R 2 chart with category IIr mancesBarchart Performances of a of category I	nits alternative KUL-E 0 (in % of the crite	BE with the lin eria scales)	nits
Formances bar showPerfor google chart	or 1 P P 2 2 chart with category IIr mancesBarchart Performances of a of category [nits alternative KUL-E 0 (in % of the crite	BE with the lin eria scales)	nits
formances bar showPerfor google chart	or 1 P P 2 2 chart with category IIr mancesBarchart Performances of a of category [nits alternative KUL-E 0 (in % of the crite	E with the lineria scales)	nits
Page 1 formances bar showPerfor google chart 100 90 80 70 - 00	or 1 P P 2 2 chart with category lir mancesBarchart Performances of a of category D	nits alternative KUL-E D (in % of the crite	3E with the lin eria scales)	nits
Page 1 formances bar formances bar showPerfor google chart 100 90 80 70 60 50	of 1 P P 2 2 chart with category lir mancesBarchart Performances of a of category D	nits alternative KUL-E D (in % of the crite	BE with the lin eria scales)	nits
Page 1 formances bar showPerfor google chart 100 90 80 70 60 50 40	of 1 P P 2 2 chart with category lin mancesBarchart Performances of a of category [nits alternative KUL-E) (in % of the crite	BE with the lin eria scales)	nits

c_l

c-Ind

•

Multicriteria K-Sorting

K-sorting with bipolar outrankings THE 2010 University Rankings Conclusion

Concluding ...

- A new efficient K-sorting algorithm
- Bipolar extension of the classic outranking
- New Decision Deck software tool available