

				1 / 27					2 / 27
Content	Illustration •O ···· ··	The setting 0000 000 00	Ranking-by-choosing 0 000 000000	Conclusion	Content	Illustration O O O O	The setting 0000 000 00	Ranking-by-choosing 0 000 000000	Conclusion

Sample performance tableau

Let $X = \{a_1, ..., a_7\}$ be seven potential decision actions evaluated on three cost criteria (g_1, g_4, g_5) of equi-significance 1/6 and two benefit criteria (g_2, g_3) of equi-signifiance 1/4. The given performance tableau is shown below.

Objectives		Costs	Benefits		
Criteria	$g_1(\downarrow)$	$g_4(\downarrow)$	$g_5(\downarrow)$	$g_2(\uparrow)$	$g_3(\uparrow)$
weights $ imes 12$	2.0	2.0	2.0	3.0	3.0
indifference	3.41	4.91	-	-	2.32
preference	6.31	8.31	-	-	5.06
veto	60.17	67.75	-	-	48.24
a_1	22.49	36.84	7	8	43.44
a 2	16.18	19.21	2	8	19.35
a 3	29.41	54.43	3	4	33.37
a ₄	82.66	86.96	8	6	48.50
a 5	47.77	82.27	7	7	81.61
a 6	32.50	16.56	6	8	34.06
a ₇	35.91	27.52	2	1	50.82

Sample outranking relation

The resulting bipolar outranking relation S is shown below.

Table: r-valued bipolar outranking relation

$r(S) \times 12$	a ₁	a 2	a 3	a 4	a 5	a 6	a 7
a_1	_	0	+8	+12	+6	+4	-2
a 2	+ 6	_	+ 6	+ 12	0	+ 6	+6
a 3	-8	-6	_	0	-12	+2	-2
a 4	- 12	-12	0	_	- 8	- 12	0
a 5	-2	0	+12	+12	_	-6	0
a 6	+ 2	+ 4	+ 8	+ 12	+ 6	_	+ 2
a ₇	+2	-2	+2	+6	0	+2	_

1. a_6 is a Condorcet winner,

2. a_2 is a weak Condorcet winner,

3. a_4 is a weak Condorcet looser.

Ranking by RuBIS best and worst choosing

- Let X₁ be the set X of potential decision actions we wish to rank.
- While the remaining set X_i (i = 1, 2, ...) of decision actions to be ranked is not empty, we extract from X_i the best (B_i), respectively worst (W_i) RUBIS choice recommendations and set X_{i+1} = X_i B_i, respectively X_{i+1} = X_i W_i.
- Both iterations determine, hence, two usually slightly different opposite weak orderings on X:

Notice the contrasted ranks of action a_5 (first best as well as second

above and illustrated in the corresponding Hasse diagram.

last), indicating a lack of comparability, which becomes apparent in the conjunctive epistemic fusion R of both weak orderings shown in the Table

- 1. a ranking-y-best-choosing order and,
- 2. a ranking-by-worst-rejecting order.

Illustration

ŏŏ

- 5th Best Choice ['a03','a04']
- 'a04'] 5th Last Choice ['a02']

We may fuse both rankings, the first and the converse of the second, with the help of the epistemic conjunction operator (\bigcirc) to make apparent a valued relation *R* which represents a weakly complete and transitive closure of the given bipolar valued outranking. Let ϕ and ψ be two logical formulas:

 $\phi \oslash \psi = \begin{cases} (\phi \land \psi) & \text{if } (\phi \land \psi) \text{ is true;} \\ (\phi \lor \psi) & \text{if } (\neg \phi \land \neg \psi) \text{ is true;} \\ \text{Indeterminate } \text{ otherwise.} \end{cases}$

5/27 6/27 Illustration The setting •000 Bipolar characteristic function ra02 Table: Weakly complete transitive closure of S• $X = \{x, y, z, ...\}$ is a finite set of *m* decision alternatives; • We define a binary relation R on X with the help of a bipolar r(R) a_2 **a**5 a06 a_6 a_1 a_7 **a**3 **a**4 characteristic function r taking values in the rational interval 0 +6 a_2 +6+6+6+120 0 0 +12+12[-1.0; 1.0].0 **a**5 +2+2a07 a01 0 +8+12 a_6 -4 _ • **Bipolar semantics**: For any pair $(x, y) \in X^2$, 0 -4 _ 0 +8+12 a_1 1. r(x R y) = +1.0 means x R y valid for sure, $^{-2}$ a₇ -20 +2+6-2-8 -6 -12-20 a₃ 2. r(x R y) > 0.0 means x R y more or less valid. -12-120 0 -8-12_ a_4 3. r(x R y) = 0.0 means both x R y and x R y indeterminate, weakOrders module (graphviz) 4. r(x R y) < 0.0 means x R y more or less valid, R. Bisdorff, 2011

5. r(x R y) = -1.0 means x R y valid for sure.

• Boolean operations: Let ϕ and ψ be two relational propositions.

1.
$$r(\neg \phi) = -r(\phi)$$
.
2. $r(\phi \lor \psi) = \max(r(\phi), r(\psi))$,
3. $r(\phi \land \psi) = \min(r(\phi), r(\psi))$.

Weakly complete binary relations

Let R be an r-valued binary relation defined on X.

Definition

We say that R is weakly complete on X if, for all $(x, y) \in X^2$, either $r(x R y) \ge 0.0$ or $r(y R x) \ge 0.0$.

Examples

- $1. \ \mbox{Marginal semi-orders observed on each criterion,}$
- 2. Weighted condordance relations,
- 3. Polarised outranking relations,
- 4. Ranking-by-choosing results,
- 5. Weak and linear orderings.

Universal properties

Let \mathcal{R} denote the set of all possible weakly complete relations definable on X.

Property (\mathcal{R} -internal operations)

- 1. The convex combination of any finite set of such weakly complete relations remains a weakly complete relation.
- 2. The disjunctive combination of any finite set of such weakly complete relations remains a weakly complete relation.
- 3. The epistemic-conjunctive (resp. -disjunctive) combination of any finite set of such weakly complete relations remains a weakly complete relation.

Examples: Concordance of linear-, weak- or semi-orders, bipolar outranking (concordance-discordance) relations.

The setting

000

Useful properties

We say that a binary relation $R \in \mathcal{R}$ verifies the *coduality principle* $(> \equiv \measuredangle)$, if the converse of its negation equals its asymetric part : $\min(r(x R y), -r(y R x)) = -r(y R x)$. Let \mathcal{R}^{cd} denote the set of all possible relations $R \in \mathcal{R}$ that verify the coduality principle.

Property (Coduality principle)

The convex and epistemic-disjunctive (resp. -conjunctive) combinations of a finite set of relations in \mathcal{R}^{cd} verify again the coduality principle.

Examples: Marginal linear-, weak- and semi-orders; concordance and bipolar outranking relations; all, verify the coduality principle.

Pragmatic principles of the RuBIS choice

\mathcal{P}_1 : Elimination for well motivated reasons:

Each eliminated alternative has to be outranked by (resp. is outranking) at least one alternative in the $\rm RuBIS$ choice (RC).

 \mathcal{P}_2 : Minimal size:

The RC must be as limited in cardinality as possible.

 \mathcal{P}_3 : Stable and efficient:

The RC must not contain a self-contained sub-RC.

 \mathcal{P}_4 : Effectively better (resp. worse):

The RC must not be ambiguous in the sense that it is not both a best choice as well as a worst choice recommendation.

\mathcal{P}_5 : Maximally significant:

The RC is, of all potential best (resp. worst) choices, the one that is most significantly supported by the marginal "*at least as good as*" relations.

10/27

Qualifications of a choice in X

Let S be an r-valued outranking relation defined on X and let Y be a non empty subset of X, called a choice in X.

- Y is called outranking (resp. outranked) iff for all non retained alternative x there exists an alternative y retained such that r(y S x) > 0.0 (resp. r(x S y) > 0.0).
- Y is called independent iff for all $x \neq y$ in Y, we observe $r(x S y) \leq 0.0$.
- Y is an outranking kernel (resp. outranked kernel) iff Y is an outranking (resp. outranked) and independent choice.
- Y is an outranking (resp. outranked) hyper-kernel iff Y is an outranking (resp. outranked) choice containing chordless circuits of odd order p ≥ 1.

Translating the pragmatic RuBIS principles in terms of choice qualifications

- \mathcal{P}_1 : Elimination for well motivated reasons. The RC is an outranking choice (resp. outranked choice).
- \mathcal{P}_{2+3} : Minimal and stable choice. The RC is a hyper-kernel.
 - P4: Effectivity. The RC is a choice which is strictly more outranking than outranked (resp. strictly more outranked than outranking).

\mathcal{P}_5 : Maximal significance.

The RC is the most determined one in the set of potential outranking (resp. outranked) hyper-kernels observed in a given *r*-valued outranking relation.

Properties of the RuBIS choice

Property (decisiveness)

Every r-valued (strict) outranking relation admits at least one outranking and one outranked hyper-kernel.

Definition

- Let S and S' be two r-valued outranking relations defined on X.
- 1. We say that S' upgrades action $x \in X$, denoted $S^{x\uparrow}$, if $r(xS'y) \ge r(xSy)$, and $r(yS'x) \le r(ySx)$, and r(yS'z) = r(ySz) for all $y, z \in X \{x\}$.
- 2. We say that S' downgrades action $x \in X$, denoted $S^{x\downarrow}$, if $r(y S'x) \ge r(y Sx)$, and $r(x S'y) \le r(x Sy)$, and r(y S'z) = r(y Sz) for all $y, z \in X \{x\}$.

Properties of the RuBIS choice

Let A be a subset of X. Let $RBC(S_{|A})$ (resp. $RBC(S'_{|A})$) be the RUBIS best choice wrt to S (resp. S') restricted to A and let $RWC(S_{|A})$ (resp. $RWC(S'_{|A})$) be the RUBIS worst choice wrt to S (resp. S') restricted to A.

Property

- 1. $S_{|A} = S'_{|A} \Rightarrow RBC(S_{|A}) = RBC(S'_{|A})$ (RBC local),
- 2. $S_{|A} = S'_{|A} \Rightarrow RWC(S_{|A}) = RWC(S'_{|A})$ (RWC local),
- 3. $x \in RBC(S_{|A}) \Rightarrow x \in RBC(S_{|A}^{x\uparrow})$ (RBC weakly monotonic),
- 4. $x \in RWC(S_{|A}) \Rightarrow x \in RWC(S_{|A}^{x\downarrow})$ (RWC weakly monotonic).
- 5. The RUBIS choice does not satisfy the Super Set Property (SSP)!

Ranking-by-choosing

- 1. Let X_1 be the set X of potential decision actions we wish to rank on the basis of a given outranking relation S.
- While the remaining set X_i (i = 1, 2, ...) of decision actions to be ranked is not empty, we extract from X_i the best (B_i), respectively worst (W_i), RUBIS choice recommendation and set X_{i+1} = X_i B_i, respectively X_{i+1} = X_i W_i.
- Both independent iterations determine, hence, two usually slightly different – opposite weak orderings on X: a ranking-y-best-choosing – and a ranking-by-worst-choosing order.
- 4. We fuse both rankings, the first and the converse of the second, with the help of the epistemic conjunction operator (<a>(∞)) to make apparent a weakly complete ranking relation ≿s on X. We denote ≻s the codual of ≿s.

Content	Illustration	
	00	
	0	

Weak monotinicity

Definition

We call a ranking procedure weakly monotonic if for all $x, y \in X$: $(x \succ_S y) \Rightarrow (x \succ_{S^{x\uparrow}} y)$ and $(y \succ_S x) \Rightarrow (y \succ_{S^{x\downarrow}} x)$,

Property

The ranking by RUBIS best choice and the ranking by RUBIS worst choice are, both, weakly monotonic ranking procedures.

Corollary

The ranking-by-choosing, resulting from the fusion of the ranking by RUBIS best choice and the converse of the ranking by RUBIS worst choice, is hence a weakly monotonic procedure.

Transitive *S*-closure

Ranking-by-choosing

000

Definition

We call a ranking procedure transitive if the ranking procedure renders a (partial) strict ordering \succ_S on X with a given r-valued outranking relation S such that for all $x, y, z \in X$: $r(x \succ_S y) > 0$ and $r(y \succ_S z) > 0$ imply $r(x \succ_S z) > 0$.

Property

Both the RUBIS ranking-by-best-choosing, as well as the RUBIS ranking-by-worst-choosing procedures, are transitive ranking procedures.

Corollary

i) The fusion of the ranking by RUBIS best choice and the converse of the ranking by RUBIS worst choice of a given r-valued outranking relation S is a transitive ranking procedure.

ii) The RUBIS ranking-by-choosing represents a transitive closure of the codual of S.

Condorcet consistency

Definition

We call a ranking procedure Condorcet-consistent if the ranking procedure renders the same linear (resp. weak) order \succ_S on X which is, the case given, modelled by the strict majority cut of the codual of a given *r*-valued relation.

Property

Both the RUBIS ranking-by-best-choosing, as well as the RUBIS ranking-by-worst-choosing procedures, are Condorcet consistent.

Corollary

The fusion of the ranking by RUBIS best choice and the converse of the ranking by RUBIS worst choice of a given r-valued outranking relation S is, hence, also Condorcet consistent.

Introductory example

Quality of ranking result

Comparing rankings of a sample of 1000 random *r*-valued outranking relations defined on 20 actions and evaluated on 13 criteria obtained with RUBIS **ranking-by-choosing**, **Kohler's**, and **Tideman's** (ranked pairs) procedure.

Mean extended Kendall τ correlations with *r*-valued outranking relation:

Ranking-by-choosing: + .906

Tideman's ranking: +.875

Kohler's ranking: + .835

Rankings of 1000 random outranking relations 20x13 1.0 0.8 0.6 0.4 0.2 Correlation with given outranking +: Kohler's ranking Tideman's rankin 0.0 0.1 0.2 0.3 0.4 0.5 0.6 determination degree

Sample performance tableau

Ranking-by-choosing

00000

Let $X = \{a_1, ..., a_7\}$ be seven potential decision actions evaluated on three cost criteria (g_1, g_4, g_5) of equi-significance 1/6 and two benefit criteria (g_2, g_3) of equi-signifiance 1/4. The given performance tableau is shown below.

Criteria	(_)				
	51(↓)	$g_4(\downarrow)$	$g_5(\downarrow)$	$g_2(\uparrow)$	g ₃ (↑)
weights $ imes 12$	2.0	2.0	2.0	3.0	3.0
indifference	3.41	4.91	-	-	2.32
preference	6.31	8.31	-	-	5.06
veto	60.17	67.75	-	-	48.24
a_1	22.49	36.84	7	8	43.44
a 2	16.18	19.21	2	8	19.35
a 3	29.41	54.43	3	4	33.37
a 4	82.66	86.96	8	6	48.50
a 5	47.77	82.27	7	7	81.61
a 6	32.50	16.56	6	8	34.06
a ₇	35.91	27.52	2	1	50.82

 Instruction
 The setting
 Ranking-by-choosing

 0000
 0000
 000

 0000
 000
 000

 0000
 000
 000

 000
 000
 000

 000
 000
 000

sing

Quality of ranking-by-choosing result

r-valued determination of ranking result:

- Mean outranking significance: 0.351 (67.5% of total criteria support),
- Mean Ranking-by-choosing significance: 0.268 (63.4% of total criteria support),
- Mean covered part of significance: 0.268/0.351 = 76%.

22 / 27

• Kohler's procedure on the right y-axis (less than 1/100 sec.),

outrankings:

- **Tideman**'s procedure on the left y-axis (less than 1/3 sec.),
- the RUBIS ranking-by-choosing procedure on the x-axis (mostly less than 2 sec.). But, heavy right tail (up to 11 sec. !).

- Spiegel (DE) On-line Students' Survey (2004) about the quality of 41 German universities in 15 academic disciplines;
- XMCDA 2.0 encoding of performace tableau;
- Ranking-by-choosing result.

25 / 27

Bibliography

- D. Bouyssou, Monotonicity of 'ranking by choosing'; A progress report. Social Choice Welfare (2004) 23: 249-273.
- R. Bisdorff, M. Pirlot and M. Roubens, *Choices and kernels from bipolar valued digraphs*. European Journal of Operational Research, 175 (2006) 155-170.
- R. Bisdorff, P. Meyer and M. Roubens, RUBIS : a bipolar-valued outranking method for the choice problem. 4OR, A Quarterly Journal of Operations Research, Springer-Verlag, Volume 6 Number 2 (2008) 143-165.
- [4] R. Bisdorff, On measuring and testing the ordinal correlation between bipolar outranking relations. In Proceedings of DA2PL'2012 - From Multiple Criteria Decision Aid to Preference Learning, University of Mons (2012) 91-100.
- [5] R. Bisdorff, On polarizing outranking relations with large performance differences. Journal of Multi-Criteria Decision Analysis, Wiley, Number 20 (2013) DOI: 10.1002/mcda.1472 3-12.

26 / 27