Motivation: showing a performance tableau

Performance table

On boosting KOHLER 's ranking-by-choosing rule with a quantiles preordering

Raymond Bisdorff

Université du Luxembourg FSTC/ILAS

ORBEL'29 Antwerp, January 2015 Consider a table showing the performances of ten decision actions graded on performance criteria:

criterion	•		•	-			•
a01	8.00	-17.15	74.87	-53.97	81.65	72.05	6.00
a02	2.00	-39.62	72.18	-70.42	77.47	55.88	5.00
a03				-58.04			
a04				-79.93			
a05				-20.73			
a06				-77.33			
a07				-59.97			
a08				-27.82			
a09				-64.09			
a10	8.00	-30.65	22.73	-33.09	54.63	68.28	7.00

Motivation: showing a heat map

The same performance tableau may be colored with the 7-tile the class of individual performances and presented like a heat-map:

criteria	g04	g02	g07	g06	g05	g03	g01
weights	5	5	2	2	2	2	2
a01	-53.97	-17.15	6.00	72.05	81.65	74.87	8.00
a02	-70.42	-39.62	5.00	55.88	77.47	72.18	2.00
a03	-58.04	-63.88	1.00	61.53	33.15	54.19	2.00
a04	-79.93	-65.86	2.00	49.44	51.31	82.00	7.00
a05	-20.73	-48.20	5.00	57.67	68.34	87.64	9.00
a06	-77.33	-72.62	4.00	7.11	50.63	29.91	8.00
a07	-59.97	-47.91	2.00	30.77	60.91	29.51	3.00
a08	-27.82	-6.45	5.00	73.83	17.76	17.57	3.00
a09	-64.09	-6.63	2.00	10.87	40.88	23.03	4.00
a10	-33.09	-30.65	7.00	68.28	54.63	22.73	8.00
Color legend:							
quantile	0.14%	6 0.29	% 0.4	43%).57%	0.71%	0.86

Motivation: showing an ordered heat-map

Eventually the heat-map may be linearly ordered from the best to the worst performing decision actions (ties are lexicographically resolved):

criteria	g04	g02	g07	g06	g05	g03	g01
weights	5	5	2	2	2	2	2
a01	-53.97	-17.15	6.00	72.05	81.65	74.87	8.00
a05	-20.73	-48.20	5.00	57.67	68.34	87.64	9.00
a08	-27.82	-6.45	5.00	73.83	17.76	17.57	3.00
a10	-33.09	-30.65	7.00	68.28	54.63	22.73	8.00
a02	-70.42	-39.62	5.00	55.88	77.47	72.18	2.00
a07	-59.97	-47.91	2.00	30.77	60.91	29.51	3.00
a09	-64.09	-6.63	2.00	10.87	40.88	23.03	4.00
a04	-79.93	-65.86	2.00	49.44	51.31	82.00	7.00
a03	-58.04	-63.88	1.00	61.53	33.15	54.19	2.00
a06	-77.33	-72.62	4.00	7.11	50.63	29.91	8.00
olor lege							
_[uantile	0.14%	6 0.29	% 0.4	43%	.57%	0.71%	0.86

3 / 41 4 / 41

Content

1. Ranking from a pairwise outranking

Ranking-by-choosing rules Efficiency of ranking-by-choosing rules Boosting Kohler's rule

2. Multicriteria Quantiles-Sorting

Single criteria q-tiles sorting Multiple criteria outranking Multiple criteria q-tiles sorting

3. Refining the q-tiles sorting with Kohler's rule

Properties of the *q*-tiles sorting *q*-tiles+Kohler ranking algorithm
Profiling the complete ranking procedure

5/41 6/41

Ranking-by-choosing q-tiles sorting Boosting Kohler's rule Conclusion Motivation Ranking-by-choosing q-tiles sorting Boosting Kohler's rule Conclusion

Ranking by outranking kernels

Definition (RUBIS rule)

Progressive outranking kernel extraction. At step r (where r goes from 1 to n):

- 1. Compute the outranking kernels of the remaining outranking digraph;
- 2. Select the most determined strict outranking kernel. If the kernel contains k > 1 actions, sort in lexicographic order;
- 3. Put the selected alternatives at ranks r, r + 1, ..., r + k 1 in the final ranking;
- 4. Delete the rows and the columns corresponding to the selected alternatives, set r = r + k and restart from (1).

Ranking from a pairwise outranking

Definition (Kohler's Rule)

Optimistic sequential maximin outranking rule. At step r (where r goes from 1 to n):

- 1. Select the alternative for which the minimum outranking characteristic is maximal. If there are ties select in lexicographic order;
- 2. Put the selected alternative at rank r in the final ranking;
- 3. Delete the row and the column corresponding to the selected alternative and restart from (1).

Comment

Arrow & Raynaud's pessimistic minimax outranking rule represents the dual of Kohler's rule, but operated on the strict codual outranking digraph.

Ranked Pairs' Rule

Definition (Tideman's rule)

- 1. Rank in decreasing order the ordered pairs (x, y) of alternatives according to their pairwise outranking characteristic value.
- 2. Resolve ties with a lexicographical rule.
- 3. Consider the pairs (x, y) in that order and do the following:
 - 3.1 If the considered pair creates a cycle with the already blocked pairs, skip this pair;
 - 3.2 If the considered pair does not create a cycle with the already blocked pairs, block this pair.

Comment

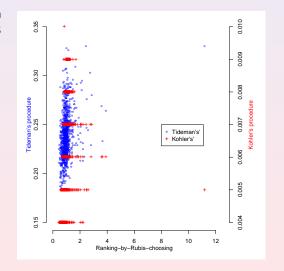
7 / 41

Dias & Lamboray's prudent leximin rule represents the dual of Tideman's rule, but operated on the strict codual outranking digraph.

Run-time efficiency of ranking-by-choosing rules

Ranking execution times (in sec.) for 1000 random 20×13 outrankings:

- Kohler's procedure on the right y-axis (less than 1/100 sec.),
- Tideman's procedure on the left y-axis (less than 1/3 sec.),
- the Rubis
 ranking-by-choosing
 procedure on the x-axis
 (mostly less than 2
 sec.). But, heavy right
 tail (up to 11 sec. !).



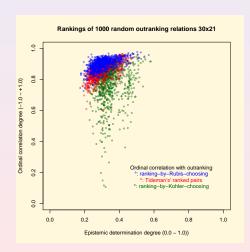
Scalability versus ranking quality

- Ranking-by-Rubis-choosing consists in recursively extracting the most outranking (best) or most outranked (worst) independent choices –outranking and outranked kernels– from the remaining outranking digraph;
- Now, enumerating all kernels in a digraph becomes a computationally hard problem with large and/or sparse digraphs.
- A ranking-by-Rubis-choosing problem can, hence, only be solved for tiny digraph orders; generally less than 30 alternatives.

| Motivation | Ranking-by-choosing | Q-tiles sorting | Boosting Kohler's rule | Conclusion | Motivation | Ranking-by-choosing | Q-tiles sorting | Boosting Kohler's rule | Conclusion | October | O

Complexity issues

- Similarly, Tideman's
 Ranked Pairs rule, due to
 its back-tracking strategy,
 cannot handle outranking
 digraphs showing a lot of
 circuits.
- Only Kohler's rule, being of $\mathcal{O}(n^2)$ complexity wrt to a digraph order n, can handle larger ranking problems.
- However, the quality of the Kohler ranking is not satisfactory in many cases.



Boosting Kohler's ranking-by-choosing rule

In this lecture we present a two-stages decomposition of large outranking digraphs:

- 1. All alternatives are, first, sorted into a prefixed set of *q* multiple criteria quantile classes.
- 2. Each resulting quantile equivalence class is then locally ranked-by-Kohler choosing on the basis of the restricted outranking digraph.

This strategy allows us to considerable boost Kohler's ranking-by-choosing rule in order to solve ranking problems of up to several thousand of decision alternatives with multiple incommensurable criteria.

Content

- 1. Ranking from a pairwise outranking
 Ranking-by-choosing rules
 Efficiency of ranking-by-choosing rules
 Boosting Kohler's rule
- 2. Multicriteria Quantiles-Sorting

Single criteria q-tiles sorting Multiple criteria outranking Multiple criteria q-tiles sorting

3. Refining the q-tiles sorting with Kohler's rule Properties of the q-tiles sorting q-tiles+Kohler ranking algorithm Profiling the complete ranking procedure

Performance Quantiles

- Let X be the set of n potential decision alternatives evaluated on a single real performance criteria.
- We denote *x*, *y*, ... the performances observed of the potential decision actions in *X*.
- We call quantile q(p) the performance such that p% of the observed n performances in X are less or equal to q(p).
- The quantile q(p) is estimated by linear interpolation from the cumulative distribution of the performances in X.

13 / 41 14 / 41

/lotivation

Ranking-by-choosing

q-tiles sorting

Boosting Kohler's rule

Conclusion

Motiv

Ranking-by-choos

q-tiles sorting

Boosting Kohler's rule

Conclusion

Performance Quantile Classes

- We consider a series: $p_k = k/q$ for k = 0, ...q of q + 1 equally spaced quantiles like
 - quartiles: 0, .25, .5, .75, 1,
 - quintiles: 0, .2, .4, .6, .8, 1,
 - deciles: 0, .1, .2, ..., .9, 1, etc
- The upper-closed q^k class corresponds to the interval $[q(p_{k-1}); q(p_k)]$, for k = 2, ..., q, where $q(p_q) = \max_X x$ and the first class gathers all data below p_1 : $] \infty; q(p_1)]$.
- The lower-closed q_k class corresponds to the interval $[q(p_{k-1}); q(p_k)]$, for k=1,...,q-1, where $q(p_0)=\min_X x$ and the last class gathers all data above $q(p_{q-1})$: $[q(p_{q-1}),+\infty[$.
- We call q-tiles a complete series of k = 1, ..., q upper-closed q^k , resp. lower-closed q_k , quantile classes.

Example

Let us consider the following 31 random performances:

			0	1 1		_	
1.10	6.93	8.59	20.97	22.16	24.18	25.39	27.13
32.10	32.23	33.53	34.59	38.65	41.41	41.89	44.87
45.03	50.72	50.96	54.43	58.53	59.82	61.68	62.48
64.82	65.65	71.99	80.73	87.84	87.89	91.56	-

measured on a real scale from 0.0 to 100.0.

5-tiles class limits:

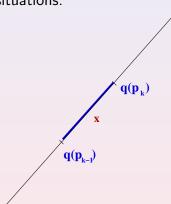
D-thes class illints.									
k	p_k	$[q(p_k), [$	$]_{-},q(p_k)]$						
0	0.0	1.10	$-\infty$						
1	0.2	26.09	26.09						
2	0.4	40.86	40.86						
3	0.6	55.25	55.25						
4	0.8	69.45	69.45						
5	1.0	$+\infty$	91.56						

5-tiles class contents:

,
•
֡

q-tiles sorting on a single criteria

If x is a measured performance, we may distinguish three sorting situations:



- 1. $x \leq q(p_{k-1})$ and $x < q(p_k)$ The performance x is lower than the q^k class;
- 2. $x > q(p_{k-1})$ and $x \le q(p_k)$ The performance x belongs to the q^k class;
- 3. $(x > q(p_{k-1}) \text{ and})$ $x > q(p_k)$ The performance x is higher than the p^k class.

If the relation < is the dual of \geqslant , it will be sufficient to check that both, $q(p_{k-1}) \not\geqslant x$, as well as $q(p_k) \geqslant x$, are verified for x to be a member of the k-th q-tiles class.

Motivation Ranking-by-cl

q-tiles sorting

Boosting Kohler's rule

Conclusion

Multiple criteria extension

- $A = \{x, y, z, ...\}$ is a finite set of n objects to be sorted.
- $F = \{1, ..., m\}$ is a finite and coherent family of m performance criteria.
- For each criterion j in F, the objects are evaluated on a real performance scale [0; M_j], supporting an indifference threshold ind_j and a preference threshold pr_j such that 0 ≤ ind_j < pr_j ≤ M_j.
- The performance of object x on criterion j is denoted x_j .
- Each criterion j in F carries a rational significance w_j such that $0 < w_j < 1.0$ and $\sum_{i \in F} w_i = 1.0$.

Taking into account imprecise evaluations

Example (5-tiles sorting ...)

			_	,			
1.1	6.9	8.6	21.0	22.2	24.2	25.4	27.1
32.1	32.2	33.5	34.6	38.6	41.4	41.9	44.9
45.0	50.7	51.0	54.4	58.5	59.8	61.7	62.5
64.8	65.7	72.0	80.7	87.8	87.9	91.6	-

Suppose now we acknowledge two preference discrimination thresholds:

- 1. An indifference threshold ind of 10.0 pts, modelling the maximal numerical performance difference which is considered preferentially insignificant;
- 2. A preference threshold *pr* of 20.0 pts (*pr* > *ind*), modelling the smallest numerical performance which is considered preferentially significant.

Resulting 5-tiles sorting:

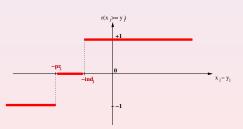
	<u> </u>
<i>q</i> -tiles class	values
]0.0 - 0.2]	{1.1, 6.9, 8.6}
]0.0 - 0.4]	{21.0, 22.2, 24.2, 25.4}
]0.2 - 0.4]	{27.1}
]0.2 - 0.6]	{32.1, 32.2, 33.5, 34.6, 38.6}
]0.4 - 0.6]	{41.4, 41.9, 44.9, 45.0}
[0.4 - 0.8]	{50.7, 51.0, 54.4}
]0.6 - 0.8]	{58.5}
[0.6 - 1.0]	{59.8, 61.7, 62.5, 64.8, 65.7}
]0.8 - 1.0]	{72.0, 80.7, 87.8, 87.9, 91.6}

Performing marginally at least as good as

Each criterion j is characterizing a double threshold order \geqslant_i on A in the following way:

$$r(\mathbf{x} \geqslant_{j} \mathbf{y}) = \begin{cases} +1 & \text{if } x_{j} - y_{j} \geqslant -ind_{j} \\ -1 & \text{if } x_{j} - y_{j} \leqslant -pr_{j} \\ 0 & \text{otherwise.} \end{cases}$$
 (1)

- +1 signifies x is performing at least as good as y on criterion j,
- -1 signifies that x is not performing at least as good as y on criterion j.
- 0 signifies that it is unclear whether, on criterion j, x is performing at least as good as y.



Performing globally at least as good as

Each criterion j contributes the significance w_i of his "at least as good as' characterization $r(\geq_i)$ to the global characterization $r(\geqslant)$ in the following way:

$$r(x \geqslant y) = \sum_{j \in F} [w_j \cdot r(x \geqslant_j y)]$$
 (2)

- r > 0 signifies x is globally performing at least as good as y,
- r < 0 signifies that x is not globally performing at least as good as у,
- r=0 signifies that it is *unclear* whether x is globally performing at least as good as v.

Performing marginally and globally *less than*

Each criterion j is characterizing a double threshold order $\langle i \rangle$ (less than) on A in the following way:

$$r(\mathbf{x} <_{j} \mathbf{y}) = \begin{cases} +1 & \text{if } x_{j} + pr_{j} \leq y_{j} \\ -1 & \text{if } x_{j} + ind_{j} \geq y_{j} \\ 0 & \text{otherwise.} \end{cases}$$
 (3)

And, the *global less than* relation (<) is defined as follows:

Proposition

The global "less than" relation < is the dual (\geqslant) of the global "at least as good as" relation ≥.

21 / 41

First result

Let $\mathbf{q}(p_{k-1}) = (q_1(p_{k-1}), q_2(p_{k-1}), ..., q_m(p_{k-1}))$ denote the lower limits and $\mathbf{q}(p_k) = (q_1(p_k), q_2(p_k), ..., q_m(p_k))$ the corresponding upper limits of the q^k class on the m criteria.

Proposition

That object x belongs to class q^k , i.e. the k-th upper-closed q-tiles class $[p_{k-1}; p_k]$ (k = 1, ..., q), resp. q_k , may be characterized as follows:

$$r(x \in q^k) = \min(r(\mathbf{q}(p_{k-1}) \not\geqslant x), r(\mathbf{q}(p_k) \geqslant x))$$

$$r(x \in q_k) = \min(r(x \geqslant \mathbf{q}(p_{k-1})), r(x \not\geqslant \mathbf{q}(p_k)))$$

Marginal considerably better or worse performing situations

On a criterion *i*, we characterize a *considerably less performing* situation, called veto and denoted \ll_i , as follows:

$$r(\mathbf{x} \leqslant \mathbf{y}) = \begin{cases} +1 & \text{if } x_j + v_j \leqslant y_j \\ -1 & \text{if } x_j - v_j \geqslant y_j \\ 0 & \text{otherwise.} \end{cases}$$
 (5)

where v_i represents a veto discrimination threshold. A corresponding dual considerably better performing situation, called counter-veto and denoted ≫_i, is similarly characterized as:

$$r(x \ggg_{j} y) = \begin{cases} +1 & \text{if } x_{j} - v_{j} \geqslant y_{j} \\ -1 & \text{if } x_{j} + v_{j} \leqslant y_{j} \end{cases}$$
 (6) otherwise.

23 / 41 24 / 41

Global considerably better or worse performing situations

A global *veto*, or *counter-veto* situation is now defines as follows:

$$r(x \ll y) = \emptyset_{j \in F} r(x \ll_j y)$$
 (7)

$$r(x \gg y) = \emptyset_{j \in F} r(x \gg_j y)$$
 (8)

where \bigcirc represents the epistemic polarising (Bisdorff 1997) or symmetric maximum (Grabisch et al. 2009) operator:

$$r \otimes r' = \begin{cases} \max(r, r') & \text{if} \quad r \geqslant 0 \land r' \geqslant 0, \\ \min(r, r') & \text{if} \quad r \leqslant 0 \land r' \leqslant 0, \\ 0 & \text{otherwise.} \end{cases}$$
 (9)

Characterizing veto and counter-veto situations

- 1. $r(x \ll y) = 1$ iff there exists a criterion j such that $r(x \ll_j y) = 1$ and there does not exist otherwise any criterion k such that $r(x \gg_k y) = 1$.
- 2. Conversely, $r(x \gg y) = 1$ iff there exists a criterion j such that $r(x \gg_j y) = 1$ and there does not exist otherwise any criterion k such that $r(x \ll_k y) = 1$.
- 3. $r(x \gg y) = 0$ if either we observe no very large performance differences or we observe at the same time, both a very large positive and a very large negative performance difference.

Lemma

$$r(\not\ll)^{-1}$$
 is identical to $r(\gg)$.

25 / 41

The bipolar outranking relation \succeq

From an epistemic point of view, we say that:

- 1. object x outranks object y, denoted $(x \geq y)$, if
 - 1.1 a significant majority of criteria validates a global outranking situation between x and y, and
 - 1.2 no veto is observed on a discordant criterion,
- 2. object x does not outrank object y, denoted $(x \ngeq y)$, if
 - 2.1 a significant majority of criteria invalidates a global outranking situation between x and y, and
 - 2.2 no counter-veto is observed on a concordant criterion.

Polarising the global "at least as good as" characteristic

The bipolarly-valued outranking characteristic $r(\succeq)$ is defined as follows:

$$r(\mathbf{x} \succeq \mathbf{y}) = \begin{cases} 0, & \text{if } [\exists j \in F : r(\mathbf{x} \ll | \mathbf{y})] \land [\exists k \in F : r(\mathbf{x} \gg | \mathbf{k})] \\ [r(\mathbf{x} \geqslant \mathbf{y}) \otimes -r(\mathbf{x} \ll | \mathbf{y})] & , & \text{otherwise.} \end{cases}$$

And in particular,

- $r(x \gtrsim y) = r(x \geqslant y)$ if no very large positive or negative performance differences are observed,
- $r(x \succsim y) = 1$ if $r(x \geqslant y) \geqslant 0$ and $r(x \ggg y) = 1$,
- $r(x \succeq y) = -1$ if $r(x \geqslant y) \leqslant 0$ and $r(x \ll y) = 1$,

q-tiles sorting with bipolar outrankings

Proposition

The bipolar characteristic of x belonging to upper-closed q-tiles class q^k , resp. lower-closed class q_k , may hence, in a multiple criteria outranking approach, be assessed as follows:

$$r(\mathbf{x} \in \mathbf{q}^{k}) = \min \left[-r(\mathbf{q}(p_{k-1}) \succeq \mathbf{x}), \ r(\mathbf{q}(p_{k}) \succeq \mathbf{x}) \right]$$
$$r(\mathbf{x} \in \mathbf{q}_{k}) = \min \left[r(\mathbf{x} \succeq \mathbf{q}(p_{k-1})), -r(\mathbf{x} \succeq \mathbf{q}(p_{k})) \right]$$

Proof.

The bipolar outranking relation \succsim , being weakly complete, verifies the coduality principle (Bisdorff 2013). The dual (\nearrow) of \succsim is, hence, identical to the strict converse outranking \lesssim relation.

The multicriteria (upper-closed) q-tiles sorting algorithm

- 1. **Input**: a set X of n objects with a performance table on a family of m criteria and a set Q of k = 1, ..., q empty q-tiles equivalence classes.
- 2. For each object $x \in X$ and each q-tiles class $q^k \in Q$ $2.1 \ r(x \in q^k) \leftarrow \min \left(-r(\mathbf{q}(p_{k-1}) \succeq x), r(\mathbf{q}(p_k) \succeq x)\right)$ 2.2 if $r(x \in q^k) \ge 0$: add x to q-tiles class q^k
- 3. Output: Q

Comment

- 1. The complexity of the q-tiles sorting algorithm is O(nmq); linear in the number of decision actions (n), criteria (m) and quantile classes (q).
- 2. As Q represents a partition of the criteria measurement scales, i.e. the upper limits of the preceding category correspond to the lower limits of the succeeding ones, there is a potential for run time optimization.

29 / 41 30 / 41 Boosting Kohler's rule

0000

•000

49-tiles sorting of THE University Rankings

- THE 2010 Ranking of 34 top European Universities;
- Five cardinal criteria (measured as z-scores) for evaluating the performance of each university:
 - 1. Teaching: the learning environment ($w_T = 3$),
 - 2. Citations: research influence ($w_C = 3$),
 - 3. Research: volume, income and reputation ($w_R = 1$),
 - 4. International outlook ($w_l = 1$),
 - 5. Industry income: innovation ($w_{Ind} = 1$).
- Browsing the 49-tiles sorting result.

Properties of *q*-tiles sorting result

- 1. Coherence: Each object is always sorted into a non-empty subset of adjacent *q*-tiles classes.
- 2. *Uniqueness*: If the *q*-tiles classes represent a discriminated partition of the measurement scales on each criterion and $r \neq 0$, then every object is sorted into exactly one q-tiles class.
- 3. *Independence*: The sorting result for object x, is independent of the other object's sorting results.

Comment

The independence property gives us access to efficient parallel processing of class membership characteristics $r(x \in q^k)$ for all $x \in X$ and g^k in Q.

31 / 41 32 / 41

The 17-tiles sorting of the THE University ranking data

]0.94 - 1.00]:	{}
]0.88 - 0.94]:	{}
]0.82 - 0.88]:	(ICL-UK')
]0.76 - 0.82]:	{`ETHZ-CH', 'UC-UK', 'UO-UK'}
[0.71 - 0.76]:	('ENSP-FR', 'EUT-NL', 'KI-S',
	'KUL-BE', 'UC-UK', 'UCL-UK'}
]0.65 - 0.71]:	{'ENSP-FR', 'EUT-NL', 'KI-S',
	'KUL-BE', 'UCL-UK'}
]0.59 - 0.65]:	{'EUT-NL', <mark>'KI-S'</mark> , 'KŪL-BE', 'UCL-UK'}
]0.53 - 0.59]:	{'EUT-NL', <mark>'KI-S'</mark> , 'KUL-BE', 'UCL-UK', 'UE-UK'}
]0.47 - 0.53]:	{'EP-FR', 'EUT-NL', 'KI-S', 'KUL-BE', 'LSE-UK',
	'UE-UK', 'UG-DE'}
]0.41 - 0.47]:	{'EPFL-CH', 'EUT-NL', 'KI-S', 'KUL-BE', 'LSE-UK', 'UCD-IR',
	'UE-UK', 'UG-DE', 'UM-DE', 'UM-UK', 'UZ-CH'}
]0.35 - 0.41]:	{'EUT-NL', 'KI-S', 'UCD-IR', 'UM-DE', 'UM-UK'}
]0.29 - 0.35]:	{'EUT-NL', <mark>'KI-S'</mark> , 'UB-UK', 'UCD-IR'}
]0.24 - 0.29]:	{'ENSL-FR', <mark>'KI-S'</mark> , 'UB-CH', 'UB-UK', 'UCD-IR'}
]0.18 - 0.24]:	{'DU-UK', 'ENSL-FR', 'KCL-UK', 'KI-S', 'RKU-DE', 'TUM-DE',
	'UG-CH', 'UH-FI', 'USTA-UK', 'USth-UK', 'UY-UK'}
]0.12 - 0.18]:	{'DU-UK', 'ENSL-FR', <mark>'KI-S'</mark> , 'TCD-IR', 'TUM-DE',
	'UG-CH', 'USTA-UK'}
]0.06 - 0.12]:	{'DU-UK', <mark>'KI-S</mark> ', 'LÚ-S', 'RHL-UK', 'UG-CH', 'US-UK'}
]< - 0.06]:	{'RHL-UK'}

The 17-tiles partition

quantile class	content	quantile class	content
]0.82 - 0.88]	ICL-UK	[0.24 - 0.47]	UCD-IR
]0.76 - 0.82]	UO-UK]0.24 - 0.35]	UB-UK
	ETHZ-CH]0.24 - 0.29]	UB-CH
]0.71 - 0.82]	UC-UK]0.12 - 0.29]	ENSL-FR
]0.65 - 0.76]	ENSP-FR]0.18 - 0.24]	KCL-UK
]0.53 - 0.76]	UCL-UK		RKU-DE
]0.41 - 0.76]	KUL-BE		UY-UK
]0.29 - 0.76]	EUT-NL		UH-FI
]0.06 - 0.76]	KI-S		USth-UK
]0.41 - 0.59]	UE-UK]0.12 - 0.24]	TUM-DE
]0.47 - 0.53]	EP-FR		USTA-UK
	LSE-UK]0.06 - 0.24]	UG-CH
]0.41 - 0.53]	UG-DE		DU-UK
]0.41 - 0.47]	EPFL-CH]0.12 - 0.18]	TCD-IR
	UZ-CH]0.06 - 0.12]	US-UK
]0.35 - 0.47]	UM-DE		LU-S
-	UM-UK]−∞ - 0.12]	RHL-UK

lotivation

Ranking-by-choosin

q-tiles sorting

Boosting Kohler's rule

Conclusion

Motivation

Ranking-by-choosing

q-tiles sorting

Boosting Kohler's rule

Conclusion

Ordering the *q*-tiles sorting result

The q-tiles sorting result leaves us with a more or less refined partition of the set X of n potential decision actions.

In the upper-closed 17-tiles sorting of the 2010 THE University ranking data, we obtain 23 quantile classes, of which 8 contain more than 1 action (1 \times 5 and 7 \times 2 actions).

For linearly ranking from best to worst the resulting parts of the q-tiles partition we may apply three strategies:

- 1. Optimistic: In decreasing lexicographic order of the upper and lower quantile class limits;
- 2. Pessimistic: In decreasing lexicographic order of the lower and upper quantile class limits;
- 3. Average: In decreasing numeric order of the average of the lower and upper quantile limits.

q-tiles ranking algorithm

- 1. **Input**: the outranking digraph $\mathcal{G}(X, \succeq)$, a partition P_q of k linearly ordered decreasing parts of X obtained by the q-sorting algorithm, and an empty list \mathcal{R} .
- 2. For each quantile class $q^k \in P_q$:

```
\begin{array}{ll} \textbf{if} \ \#(q^k) > 1: \\ R_k & \leftarrow \quad \textbf{rank-by-choosing} \ q^k \ \text{in} \ \mathcal{G}_{|q^k} \\ & \quad \text{(if ties, render alphabetic order of action keys)} \\ \textbf{else:} \quad R_k & \leftarrow \quad q^k \\ \textbf{append} \ R_k \ \text{to} \ \mathcal{R} \end{array}
```

3. Output: \mathcal{R}

q-tiles ranking algorithm – Comments

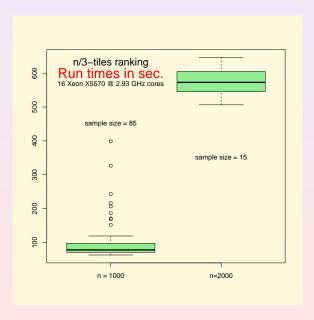
- 1. In case of local ties (very similar evaluations for instance), the rank-by-choosing procedure will render these actions in increasing alphabetic ordering of the action keys.
- 2. The complexity of the *q*-tiles ranking algorithm is linear in the number of parts resulting from a *q*-tiles sorting which contain more than one action.

Profiling the *q*-tiles sorting & ranking procedure

- 1. Following from the independence property of the *q*-tiles sorting of each action into each *q*-tiles class, the *q*-sorting algorithm may be safely split into as much threads as are multiple processing cores available in parallel.
- 2. Furthermore, the **rank-by-choosing** procedure being local, this procedures may thus be safely processed in parallel threads on each restricted outranking digraph $\mathcal{G}_{|q^k}$.

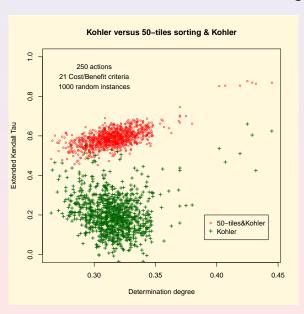
37 / 41

Multiple threading with 16 cores



Profiling the local ranking procedure

It is opportune to use Kohler's rule for the local ranking step.



 Motivation
 Ranking-by-choosing
 q-tiles sorting
 Boosting Kohler's rule
 Conclusion

 000
 0000
 0000

 000
 0000
 000

Concluding ...

- We implement a new ranking (actually: thinly weak-ordering) algorithm based on quantiles sorting and local ranking procedures;
- Final ranking result generally fits well with the underlying outranking relation;
- Independent sorting and local ranking procedures allow effective multiprocessing strategies;
- Efficient scalability allows hence the ranking of very large sets of potential decision actions (thousands of nodes) graded on multiple incommensurable criteria;
- Good perspectives for further optimization and ad-hoc fine-tuning.