Glob

HPC r 0000 Cond

Motivation

Qantiles sorting

Global ranking 0 0 HPC ranking 0000 0000 Conclusior

Motivation: showing a performance tableau

Ranking big multicriteria performance tableaux

Raymond Bisdorff

Université du Luxembourg FSTC/ILAS

ORBEL'30 Louvain-la-Neuve, January 2016 Consider a performance table showing the service quality of 12 commercial cloud providers measured by an external auditor on 14 incommensurable performance criteria.

Performance table auditor2_1

criterion	upT	dwT	ouT	LB	MTBF	Rcv	Lat	RspT	Thrpt	stoC	snpC	auT	enC	auD
Amz	2	2	2	4	3	3	NA	3	NA	4	NA	4	4	4
Cen	4	4	0	4	4	4	NA	2	NA	3	NA	4	4	4
Cit	2	4	2	4	3	4	NA	2	NA	3	4	4	4	4
Dig	2	1	4	4	3	3	NA	2	NA	3	NA	4	4	4
Ela	4	4	0	4	4	4	NA	4	NA	3	4	4	4	4
GMO	1	3	4	4	3	2	NA	4	NA	3	NA	4	4	4
Ggl	4	2	1	4	2	3	NA	2	NA	4	4	4	4	4
HP	3	3	2	4	4	3	NA	4	NA	3	4	4	4	4
Lux	2	2	2	4	3	3	NA	2	NA	2	NA	4	4	4
MS	4	4	0	4	4	4	NA	4	NA	4	NA	4	4	4
Rsp	NA	NA	NA	4	NA	3	NA	NA	NA	3	4	4	4	4
Sig	4	4	0	4	4	4	NA	3	NA	3	4	4	4	4

Legend: 0 = 'very weak', 1 = 'weak', 2 = 'fair', 3 = 'good', 4 = 'very good', 'NA' = missing data; 'green' and 'red' mark the **best**, respectively the **worst**, performances on each criterion.

Motivation: showing an ordered heat map

The same performance tableau may be optimistically colored with the highest 7-tiles class of the marginal performances and presented like a heat map, Heatmap of Performance Tableau 'auditor2_1'

eventually linearly ordered, following for instance the Copeland ranking rule, from the best to the worst performing alternatives (ties are lexicographically resolved).

How to handle big performance tableaux ?

- The Copeland ranking rule is based on crisp net flows requiring the in- and out-degree of each node in the outranking digraph;
- When the order n of the outranking digraph becomes big (several thousand), this requires handling a huge set of n² pairwise outranking situations;
- We shall present hereafter a sparse model of the outranking digraph, where we only keep a linearly ordered list of quantiles equivalence classes with local outranking content.

Motivation	Qantiles sorting 000 000000000	Global ranking 0 0 00	HPC ranking 0000 0000	Conclusion	Motivation	Qantiles sorting ●OO ○○○○○○○○	Global ranking 0 0 00	HPC ranking 0000 0000	Conclusion		
		Content				Performance quantiles					
1. Spa S	rse model of outrai Single criteria quan Multiple criteria qua	nking digraph tiles sorting antiles sorting			• L 0	et <mark>X</mark> be the set of a single real perfo	n potential decisio ormance criteria.	n alternatives eva	aluated		
2. Ranking a <i>q</i> -tiled performance tableau					• We denote x, y, \dots the performances observed of the potential						

Properties of the *q*-tiles sorting Ordering the *q*-tiles sorting result q-tiles ranking algorithm

3. HPC-ranking a big performance tableau

Multithreading the sorting&ranking procedure Profiling the HPC sorting&ranking procedure

				5 / 32
Motivation	Qantiles sorting	Global ranking	HPC ranking	Conclusion
	000	0	0000	
	00000000	0	0000	

Performance quantile classes

- We consider a series: $p_k = k/q$ for k = 0, ...q of q + 1 equally spaced quantiles like
 - quartiles: 0, .25, .5, .75, 1,
 - quintiles: 0, .2, .4, .6, .8, 1,
 - deciles: 0, .1, .2, ..., .9, 1, etc
- The upper-closed q^k class corresponds to the interval $[q(p_{k-1}); q(p_k)]$, for k = 2, ..., q, where $q(p_q) = \max_X x$ and the first class gathers all data below $p_1:] - \infty; q(p_1)].$
- The lower-closed q_k class corresponds to the interval $[q(p_{k-1}); q(p_k)]$, for k = 1, ..., q - 1, where $q(p_0) = \min_X x$ and the last class gathers all data above $q(p_{q-1})$: $[q(p_{q-1}), +\infty[.$
- We call *q*-tiles a complete series of k = 1, ..., q upper-closed q^k , resp. lower-closed q_k , quantile classes.

q-tiles sorting on a single criteria

• We call quantile q(p) the performance such that p% of the

• The quantile q(p) is estimated by linear interpolation from the

observed *n* performances in X are less or equal to q(p).

cumulative distribution of the performances in X.

If \mathbf{x} is a measured performance, we may distinguish three sorting situations:

If the relation < is the dual of \ge , it will be sufficient to check that both, $q(p_{k-1}) \not\ge x$, as well as $q(p_k) \ge x$, are verified for x to be a member of the k-th q-tiles class.

decision actions in X.

6/32

Global ranking 0 0

Multiple criteria extension

- $A = \{x, y, z, ...\}$ is a finite set of *n* objects to be sorted.
- *F* = {1, ..., *m*} is a finite and coherent family of *m* performance criteria.
- For each criterion j in F, the objects are evaluated on a real performance scale [0; M_j],
 - supporting an indifference threshold indj

and a preference threshold pr_j such that $0 \leq ind_j < pr_j \leq M_j$.

- The performance of object x on criterion j is denoted x_j .
- Each criterion j in F carries a rational significance w_j such that 0 < w_j < 1.0 and ∑_{j∈F} w_j = 1.0.

Performing marginally at least as good as

Each criterion *j* is characterizing a double threshold order \ge_i on *A* in the following way:

$$r(\mathbf{x} \ge_j \mathbf{y}) = \begin{cases} +1 & \text{if } x_j - y_j \ge -ind_j \\ -1 & \text{if } x_j - y_j \le -pr_j \\ 0 & \text{otherwise.} \end{cases}$$
(1)

- +1 signifies x is performing at least as good as y on criterion j,
- -1 signifies that x is not performing at least as good as y on criterion j.

0 signifies that it is unclear whether, on criterion j, x is performing at least as good as y.

				9 / 32					
on	Qantiles sorting	Global ranking	HPC ranking	Conclusion	Motivation	Qantiles sorting	Global ranking	HPC ranking	C
	000 00 0 00000	0 0 00	0000			000 00000000	0 0 00	0000	

Performing globally at least as good as

Each criterion *j* contributes the significance w_j of his "at least as good as" characterization $r(\ge_j)$ to the global characterization $r(\ge)$ in the following way:

$$r(\mathbf{x} \geq \mathbf{y}) = \sum_{j \in F} \left[w_j \cdot r(\mathbf{x} \geq_j \mathbf{y}) \right]$$
(2)

- r > 0 signifies x is globally performing at least as good as y,
- r < 0 signifies that x is not globally performing at least as good as y,
- r = 0 signifies that it is *unclear* whether x is globally performing at least as good as y.

The bipolar outranking relation \succsim

From an epistemic point of view, we say that:

- 1. object x outranks object y, denoted $(x \succeq y)$, if
 - 1.1 a significant majority of criteria validates a global outranking situation between x and y, i.e. $(x \ge y)$ and
 - 1.2 no veto $(x \not\ll y)$ is observed on a discordant criterion,
- 2. object x does not outrank object y, denoted $(x \not\gtrsim y)$, if
 - 2.1 a significant majority of criteria invalidates a global outranking situation between x and y, i.e. $(x \ge y)$ and
 - 2.2 no counter-veto (x ≫ y) observed on a concordant criterion.

Qantiles sorting

HPC ranki 0000 0000 Conclusion

Polarising the global "at least as good as " characteristic

The valued bipolar outranking characteristic $r(\succeq)$ is defined as follows:

$$r(\mathbf{x} \succeq \mathbf{y}) = \begin{cases} 0, & \text{if } \left[\exists j \in F : r(x \lll_j y)\right] \land \left[\exists k \in F : r(x \ggg_k y)\right] \\ \left[r(x \ge y) \oslash -r(x \lll y)\right] & \text{, otherwise.} \end{cases}$$

And in particular,

Qantiles sorting

000000000

- r(x ≿ y) = r(x ≥ y) if no very large positive or negative performance differences are observed,
- $r(x \succeq y) = 1$ if $r(x \ge y) \ge 0$ and $r(x \ggg y) = 1$,
- $r(x \succeq y) = -1$ if $r(x \ge y) \le 0$ and $r(x \ll y) = 1$,

q-tiles sorting with bipolar outrankings

Proposition

The bipolar characteristic of x belonging to upper-closed q-tiles class q^k , resp. lower-closed class q_k , may hence, in a multiple criteria outranking approach, be assessed as follows:

$$r(\mathbf{x} \in \mathbf{q}^{k}) = \min \left[-r(\mathbf{q}(p_{k-1}) \succeq x), r(\mathbf{q}(p_{k}) \succeq x) \right]$$
$$r(\mathbf{x} \in \mathbf{q}_{k}) = \min \left[r(\mathbf{x} \succeq \mathbf{q}(p_{k-1})), -r(\mathbf{x} \succeq \mathbf{q}(p_{k})) \right]$$

Proof.

The bipolar outranking relation \succeq , being weakly complete, verifies the coduality principle (Bisdorff 2013). The dual (\gtrsim) of \succeq is, hence, identical to the strict converse outranking \precsim relation.

				13 / 32					14 / 32
Motivation	Qantiles sorting ○○○ ○○○○○○●○○	Global ranking O OO	HPC ranking 0000 0000	Conclusion	Motivation	Qantiles sorting ○○○ ○○○○○○○●○	Global ranking o o	HPC ranking 0000 0000	Conclusion

The multicriteria (upper-closed) q-tiles sorting algorithm

- 1. **Input**: a set X of n objects with a performance table on a family of m criteria and a set Q of k = 1, ..., q empty q-tiles equivalence classes.
- 2. For each object $x \in X$ and each *q*-tiles class $q^k \in Q$ 2.1 $r(x \in q^k) \leftarrow \min(-r(\mathbf{q}(p_{k-1}) \succeq x), r(\mathbf{q}(p_k) \succeq x))$ 2.2 if $r(x \in q^k) \ge 0$: add x to *q*-tiles class q^k
- 3. Output: \mathcal{Q}

Comment

- 1. The complexity of the q-tiles sorting algorithm is O(nmq); linear in the number of decision actions (n), criteria (m) and quantile classes (q).
- 2. As Q represents a partition of the criteria measurement scales, i.e. the upper limits of the preceding category correspond to the lower limits of the succeeding ones, there is a potential for run time optimization.

Example of sparse outranking Digraph

>>> from bigOutrankingDigraphs import * >>> t = RandomPerformanceTableau(numberOfActions=50, seed=5) >>> bg = BigOutrankingDigraphMP(t,quantiles=5) >>> bg.showDecomposition() *--- quantiles decomposition in decreasing order---* c1. [0.60-0.80[: ['a22', 'a24', 'a32'] c2. [0.40-0.80[: ['a16', 'a28', 'a31', 'a40'] c3. [0.40-0.60[: ['a01', 'a02', 'a05', 'a06', 'a10', 'a13', 'a15', 'a25', 'a27', 'a35', 'a36','a37','a39','a41','a48'] c4. [0.20-0.60[: ['a09', 'a14', 'a18', 'a20', 'a26', 'a38','a43','a45','a49'] c5. [0.20-0.40[: ['a03', 'a04', 'a07', 'a08', 'a11', 'a12', 'a17', 'a21', 'a29', 'a30', 'a33', 'a34', 'a42', 'a44', 'a47'] c6. [0.00-0.40[: ['a46','a50'] c7. [0.00-0.20[: ['a19', 'a23']

Sparse versus standard outranking digraph of order 50

alid 1. Sparse model of Single criteria Multiple criteria Multiple criteria Properties of Ordering the q-tiles ranking 7 1. 3. HPC-ranking a to Multithreadin Profiling the 563

Qantiles sorting 000 00000000

Global ranking

HPC ranking 0000 0000 Conclusion

Content

- 1. Sparse model of outranking digraph Single criteria quantiles sorting Multiple criteria quantiles sorting
- Ranking a *q*-tiled performance tableau Properties of the *q*-tiles sorting Ordering the *q*-tiles sorting result *q*-tiles ranking algorithm

3. HPC-ranking a big performance tableau

Multithreading the sorting&ranking procedure Profiling the HPC sorting&ranking procedure

Properties of q-tiles sorting result

- 1. *Coherence*: Each object is always sorted into a non-empty subset of adjacent *q*-tiles classes.
- 2. Uniqueness: If the q-tiles classes represent a discriminated partition of the measurement scales on each criterion and $r \neq 0$, then every object is sorted into exactly one q-tiles class.
- 3. *Independence*: The sorting result for object *x*, is independent of the other object's sorting results.

Comment

The independence property gives us access to efficient parallel processing of class membership characteristics $r(x \in q^k)$ for all $x \in X$ and q^k in Q.

Ordering the *q*-tiles sorting result

The q-tiles sorting result leaves us with a more or less refined partition of the set X of n potential decision actions. For linearly ranking from best to worst the resulting parts of the q-tiles partition we may apply three strategies:

- 1. Optimistic: In decreasing lexicographic order of the upper and lower quantile class limits;
- 2. Pessimistic: In decreasing lexicographic order of the lower and upper quantile class limits;
- 3. Average: In decreasing numeric order of the average of the lower and upper quantile limits.

23 / 32

M	ot	ivat	

from multiprocessing import Process, active_children

Process.__init__(self) self.threadID = threadID

def __init__(self, threadID, ...)

... task description

... pre-threading tasks per job

... post-threading tasks per job

print('iteration = ',job+1,end=" ") splitThread = myThread(job, ...)

class myThread(Process):

def run(self):

. . .

for job in range(nbrOfJobs):

splitThread.start() while active_children() != []:

print('Exiting computing threads') for job in range(nbrOfJobs):

nbrOfJobs = ...

pass

Generic algorithm design for parallel processing

HPC ranking

0000

HPC ranking 0000

Choosing the right granularity ?

Is it more efficient:

- to run many simple jobs in parallel ?
- to run in parallel a small number of complex jobs ?
- to align the number of parallel jobs to the number of available cores ?
- to start more parallel jobs than available cores ?

HPC performance measurements

digraph	st	andard m	odel	sparse model			
order	#c.	t_g sec.	$ au_{g}$	#c.	t_{bg} sec.	$ au_{bg}$	
500	50	7	+0.88	160	2	+0.83	
1 000	50	27	+0.88	160	3	+0.83	
2 0 0 0	50	108	+0.88	160	7	+0.83	
2 500	50	160	+0.88	160	9	+0.83	
10000				160	49		
15 000				160	72		
50 000				119	425		
100 000				119	854		
200 000				119	2232		
250 000				119	3417		

Legend:

- **#c**. = number of cores;
- g: standard outranking digraph, bg: the sparse outranking digraph;
- t_g , resp. t_{bg} , are the corresponding constructor run times;
- τ_{g} , resp. τ_{bg} are the ordinal correlation of the Copeland ordering with the given outranking relation.

Choosing a ranking rule – run time statistics

Sample of 100 random outranking graphs of order 250

Choosing a ranking rule – fitness of ranking rule

Sample of 100 random outranking graphs of order 250

Profiling the local ranking procedure

It is opportune to use Copeland's rule for ranking form the standard outranking digraph, whereas both, Net Flows and Copeland's ranking rule, are equally efficient on the sparse outranking digraph.

The quality of the sparse model based linear ordering is depending on the alignment of the given outranking digraph, but not on its actual order.

Standard versus 50-tiled sparse outranking digraphs

- We implement a sparse outranking digraph model coupled with a linearly ordering algorithm based on quantiles-sorting & local-ranking procedures;
- Global ranking result fits apparently well with the given outranking relation;
- Independent sorting and local ranking procedures allow effective multiprocessing strategies;
- Efficient scalability allows hence the ranking of very large sets of potential decision actions (thousands of nodes) graded on multiple incommensurable criteria;
- Good perspectives for further optimization and ad-hoc fine-tuning.