
Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Ranking big multicriteria performance tableaux

Raymond Bisdorff

Université du Luxembourg
FSTC/ILAS

ORBEL’30
Louvain-la-Neuve, January 2016

1 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Motivation: showing a performance tableau

Consider a perfor-

mance table show-

ing the service qual-

ity of 12 commercial

cloud providers mea-

sured by an exter-

nal auditor on 14 in-

commensurable per-

formance criteria.

Legend: 0 = ’very weak’, 1 = ’weak’, 2 = ’fair ’, 3 = ’good ’, 4 = ’very good ’,’NA’ =

missing data; ‘green’ and ‘red’ mark the best, respectively the worst, performances on

each criterion.

2 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Motivation: showing an ordered heat map

The same perfor-

mance tableau may

be optimistically col-

ored with the high-

est 7-tiles class of

the marginal per-

formances and pre-

sented like

a heat map,

eventually linearly ordered, following for instance the Copeland ranking

rule, from the best to the worst performing alternatives (ties are

lexicographically resolved).

3 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

How to handle big performance tableaux ?

• The Copeland ranking rule is based on crisp net flows
requiring the in- and out-degree of each node in the
outranking digraph;

• When the order n of the outranking digraph becomes big
(several thousand), this requires handling a huge set of n2

pairwise outranking situations;

• We shall present hereafter a sparse model of the outranking
digraph, where we only keep a linearly ordered list of quantiles
equivalence classes with local outranking content.

4 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Content

1. Sparse model of outranking digraph
Single criteria quantiles sorting
Multiple criteria quantiles sorting

2. Ranking a q-tiled performance tableau
Properties of the q-tiles sorting
Ordering the q-tiles sorting result
q-tiles ranking algorithm

3. HPC-ranking a big performance tableau
Multithreading the sorting&ranking procedure
Profiling the HPC sorting&ranking procedure

5 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Performance quantiles

• Let X be the set of n potential decision alternatives evaluated
on a single real performance criteria.

• We denote x , y , ... the performances observed of the potential
decision actions in X .

• We call quantile q(p) the performance such that p% of the
observed n performances in X are less or equal to q(p).

• The quantile q(p) is estimated by linear interpolation from the
cumulative distribution of the performances in X .

6 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Performance quantile classes

• We consider a series: pk = k/q for k = 0, ...q of q + 1 equally
spaced quantiles like
• quartiles: 0, .25, .5, .75, 1,
• quintiles: 0, .2, .4, .6, .8, 1,
• deciles: 0, .1, .2, ..., .9, 1, etc

• The upper-closed qk class corresponds to the interval
]q(pk−1); q(pk)], for k = 2, ..., q, where q(pq) = maxX x and
the first class gathers all data below p1:]−∞; q(p1)].

• The lower-closed qk class corresponds to the interval
[q(pk−1); q(pk)[,for k = 1, ..., q − 1, where q(p0) = minX x
and the last class gathers all data above q(pq−1):
[q(pq−1),+∞[.

• We call q-tiles a complete series of k = 1, ..., q upper-closed
qk , resp. lower-closed qk , quantile classes.

7 / 32

q-tiles sorting on a single criteria
If x is a measured performance, we may distinguish three sorting
situations:

x

 k−1

q(p)
k

q(p)

1. x 6 q(pk−1) and x < q(pk)
The performance x is lower
than the qk class;

2. x > q(pk−1) and x 6 q(pk)
The performance x belongs
to the qk class;

3. (x > q(pk−1) and)
x > q(pk)
The performance x is higher
than the pk class.

If the relation < is the dual of >, it will be sufficient to check that
both, q(pk−1) 6> x , as well as q(pk) > x , are verified for x to be a
member of the k-th q-tiles class.

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Multiple criteria extension

• A = {x , y , z , ...} is a finite set of n objects to be sorted.

• F = {1, ...,m} is a finite and coherent family of m
performance criteria.

• For each criterion j in F , the objects are evaluated on a real
performance scale [0; Mj],

supporting an indifference threshold indj

and a preference threshold prj such that 0 6 indj < prj 6 Mj .

• The performance of object x on criterion j is denoted xj .

• Each criterion j in F carries a rational significance wj such
that 0 < wj < 1.0 and

∑
j∈F wj = 1.0.

9 / 32

Performing marginally at least as good as

Each criterion j is characterizing a double threshold order >i on A in the
following way:

r(x >j y) =

+1 if xj − yj > −indj
−1 if xj − yj 6 −prj
0 otherwise.

(1)

+1 signifies x is performing
at least as good as y
on criterion j ,

−1 signifies that x is not
performing at least as
good as y on criterion
j .

0 signifies that it is
unclear whether, on
criterion j , x is
performing at least as
good as y .

jj

j

j j jx − y

+1

0

−1

r(x >= y)

−pr

−ind

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Performing globally at least as good as

Each criterion j contributes the significance wj of his “at least as
good as” characterization r(>j) to the global characterization
r(>) in the following way:

r(x > y) =
∑

j∈F
[

wj · r(x >j y)
]

(2)

r > 0 signifies x is globally performing at least as good as y ,

r < 0 signifies that x is not globally performing at least as good as
y ,

r = 0 signifies that it is unclear whether x is globally performing at
least as good as y .

11 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

The bipolar outranking relation %
From an epistemic point of view, we say that:

1. object x outranks object y , denoted (x % y), if

1.1 a significant majority of criteria validates a global outranking
situation between x and y , i.e. (x > y) and

1.2 no veto (x 6≪ y) is observed on a discordant criterion,

2. object x does not outrank object y , denoted (x 6% y), if

2.1 a significant majority of criteria invalidates a global outranking
situation between x and y , i.e. (x 6> y) and

2.2 no counter-veto (x 6≫ y) observed on a concordant criterion.

12 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Polarising the global “at least as good as ” characteristic

The valued bipolar outranking characteristic r(%) is defined as
follows:

r(x % y) =

{
0, if

[
∃j ∈ F : r(x ≪j y)

]
∧
[
∃k ∈ F : r(x ≫k y)

]
[

r(x > y) >−r(x ≪ y)
]

, otherwise.

And in particular,

• r(x % y) = r(x > y) if no very large positive or negative
performance differences are observed,

• r(x % y) = 1 if r(x > y) > 0 and r(x ≫ y) = 1,

• r(x % y) = −1 if r(x > y) 6 0 and r(x ≪ y) = 1,

13 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

q-tiles sorting with bipolar outrankings

Proposition

The bipolar characteristic of x belonging to upper-closed q-tiles
class qk , resp. lower-closed class qk , may hence, in a multiple
criteria outranking approach, be assessed as follows:

r(x ∈ qk) = min
[
− r
(
q(pk−1) % x

)
, r
(
q(pk) % x

)]

r(x ∈ qk) = min
[

r
(

x % q(pk−1)
)
, −r

(
x % q(pk)

)]

Proof.
The bipolar outranking relation %, being weakly complete, verifies the
coduality principle (Bisdorff 2013). The dual (6%) of % is, hence, identical
to the strict converse outranking � relation.

14 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

The multicriteria (upper-closed) q-tiles sorting algorithm

1. Input: a set X of n objects with a performance table on a
family of m criteria and a set Q of k = 1, .., q empty q-tiles
equivalence classes.

2. For each object x ∈ X and each q-tiles class qk ∈ Q
2.1 r(x ∈ qk) ← min

(
− r(q(pk−1) % x), r(q(pk) % x)

)

2.2 if r(x ∈ qk) > 0 :
add x to q-tiles class qk

3. Output: Q

Comment

1. The complexity of the q-tiles sorting algorithm is O(nmq); linear in the
number of decision actions (n), criteria (m) and quantile classes (q).

2. As Q represents a partition of the criteria measurement scales, i.e. the
upper limits of the preceding category correspond to the lower limits of
the succeeding ones, there is a potential for run time optimization.

15 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Example of sparse outranking Digraph

>>> from bigOutrankingDigraphs import *

>>> t = RandomPerformanceTableau(numberOfActions=50,seed=5)

>>> bg = BigOutrankingDigraphMP(t,quantiles=5)

>>> bg.showDecomposition()

--- quantiles decomposition in decreasing order---

c1. [0.60-0.80[: [’a22’,’a24’,’a32’]

c2. [0.40-0.80[: [’a16’, ’a28’,’a31’,’a40’]

c3. [0.40-0.60[: [’a01’,’a02’,’a05’,’a06’,’a10’,

’a13’,’a15’,’a25’,’a27’,’a35’,

’a36’,’a37’,’a39’,’a41’,’a48’]

c4. [0.20-0.60[: [’a09’,’a14’,’a18’,’a20’,’a26’,

’a38’,’a43’,’a45’,’a49’]

c5. [0.20-0.40[: [’a03’,’a04’,’a07’,’a08’,’a11’,

’a12’,’a17’,’a21’,’a29’,’a30’,

’a33’,’a34’,’a42’,’a44’,’a47’]

c6. [0.00-0.40[: [’a46’,’a50’]

c7. [0.00-0.20[: [’a19’,’a23’]

16 / 32

Sparse versus standard outranking digraph of order 50

Symbol legend

> certainly valid

+ more or less valid

’ ’ indeterminate

- more or less
invalid

⊥ certainly invalid

Sparse digraph bg :
Actions : 50
Criteria : 7

Sorted by : 5-Tiling
Ranking rule :

Copeland
Components : 7
Minimal order : 1

Maximal order : 15
Average order : 7.1
fill rate : 20.980%

correlation : +0.7563

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Content

1. Sparse model of outranking digraph
Single criteria quantiles sorting
Multiple criteria quantiles sorting

2. Ranking a q-tiled performance tableau
Properties of the q-tiles sorting
Ordering the q-tiles sorting result
q-tiles ranking algorithm

3. HPC-ranking a big performance tableau
Multithreading the sorting&ranking procedure
Profiling the HPC sorting&ranking procedure

18 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Properties of q-tiles sorting result

1. Coherence: Each object is always sorted into a non-empty
subset of adjacent q-tiles classes.

2. Uniqueness: If the q-tiles classes represent a discriminated
partition of the measurement scales on each criterion and
r 6= 0, then every object is sorted into exactly one q-tiles class.

3. Independence: The sorting result for object x , is independent
of the other object’s sorting results.

Comment
The independence property gives us access to efficient parallel
processing of class membership characteristics r(x ∈ qk) for all
x ∈ X and qk in Q.

19 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Ordering the q-tiles sorting result

The q-tiles sorting result leaves us with a more or less refined partition of
the set X of n potential decision actions. For linearly ranking from best
to worst the resulting parts of the q-tiles partition we may apply three
strategies:

1. Optimistic: In decreasing lexicographic order of the upper and lower
quantile class limits;

2. Pessimistic: In decreasing lexicographic order of the lower and upper
quantile class limits;

3. Average: In decreasing numeric order of the average of the lower
and upper quantile limits.

20 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

q-tiles ranking algorithm

1. Input: the outranking digraph G(X ,%), a partition Pq of k
linearly ordered decreasing parts of X obtained by the
q-sorting algorithm, and an empty list R.

2. For each quantile class qk ∈ Pq:

if #(qk) > 1:
Rk ← locally rank qk in G|qk

(if ties, render alphabetic order of action keys)
else: Rk ← qk

append Rk to R
3. Output: R

21 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

q-tiles ranking algorithm – Comments

1. The complexity of the q-tiles ranking algorithm is linear in the
number k of components resulting from a q-tiles sorting which
contain more than one action.

2. Three local ranking rules are available – Copeland ’s, Net-flows’ and
Kohler ’s rule – of complexity O(#(qk)2) on each restricted
outranking digraph G|qk .

3. In case of local ties (very similar evaluations for instance), the local
ranking procedure will render these actions in increasing alphabetic
ordering of the action keys.

22 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Content

1. Sparse model of outranking digraph
Single criteria quantiles sorting
Multiple criteria quantiles sorting

2. Ranking a q-tiled performance tableau
Properties of the q-tiles sorting
Ordering the q-tiles sorting result
q-tiles ranking algorithm

3. HPC-ranking a big performance tableau
Multithreading the sorting&ranking procedure
Profiling the HPC sorting&ranking procedure

23 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Multithreading the q-tiles sorting & ranking procedure

1. Following from the independence property of the q-tiles
sorting of each action into each q-tiles class, the q-sorting
algorithm may be safely split into as much threads as are
multiple processing cores available in parallel.

2. Furthermore, the ranking procedure being local to each
diagonal component, these procedures may hence be safely
processed in parallel threads on each restricted outranking
digraph G|qk .

24 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Generic algorithm design for parallel processing
from multiprocessing import Process, active_children

class myThread(Process):

def __init__(self, threadID, ...)

Process.__init__(self)

self.threadID = threadID

...

def run(self):

... task description

...

nbrOfJobs = ...

for job in range(nbrOfJobs):

... pre-threading tasks per job

print(’iteration = ’,job+1,end=" ")

splitThread = myThread(job, ...)

splitThread.start()

while active_children() != []:

pass

print(’Exiting computing threads’)

for job in range(nbrOfJobs):

... post-threading tasks per job

25 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Choosing the right granularity ?

Is it more efficient:

• to run many simple jobs in parallel ?

• to run in parallel a small number of complex jobs ?

• to align the number of parallel jobs to the number of available
cores ?

• to start more parallel jobs than available cores ?

26 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

HPC performance measurements

digraph standard model sparse model
order #c. tg sec. τg #c. tbg sec. τbg

500 50 7 +0.88 160 2 +0.83
1 000 50 27 +0.88 160 3 +0.83
2 000 50 108 +0.88 160 7 +0.83
2 500 50 160 +0.88 160 9 +0.83

10 000 160 49
15 000 160 72
50 000 119 425

100 000 119 854
200 000 119 2232
250 000 119 3417

Legend:

• #c. = number of cores;

• g : standard outranking digraph, bg : the sparse outranking digraph;

• tg , resp. tbg , are the corresponding constructor run times;

• τg , resp. τbg are the ordinal correlation of the Copeland ordering with the given
outranking relation.

27 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Choosing a ranking rule – run time statistics

Sample of 100 random outranking graphs of order 250

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

S
e
co

n
d

s

Epistemic determination

Run times for ranking rules

Net flows
Kohler

Copeland

28 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Choosing a ranking rule – fitness of ranking rule

Sample of 100 random outranking graphs of order 250

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

O
rd

in
a
l
co

rr
e
la

ti
o
n
 i
n
d
e
x

Ranking rule

Fitness of ranking rules

Copeland net flows Kohler

29 / 32

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Standard versus 50-tiled sparse outranking digraphs

30 / 32

Profiling the local ranking procedure

It is opportune to use Copeland’s rule for ranking form the standard
outranking digraph, whereas both, Net Flows and Copeland’s ranking
rule, are equally efficient on the sparse outranking digraph.

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.3 0.35 0.4 0.45 0.5 0.55

O
rd

in
a
l
co

rr
e
la

ti
o
n
 o

f
lin

e
a
r

o
rd

e
ri

n
g
 w

it
h
 g

iv
e
n
 o

u
tr

a
n
ki

n
g

Epistemic determination of the outranking digraph

Fitness of sparse outranking model

net flows
Copeland

spares net flows
sparse Copeland

Sample of 43 random digraphs

Order = 3000

HPC cores = 32

The quality of the sparse model based linear ordering is depending on the

alignment of the given outranking digraph, but not on its actual order.

Motivation Qantiles sorting Global ranking HPC ranking Conclusion

Concluding ...

• We implement a sparse outranking digraph model coupled
with a linearly ordering algorithm based on quantiles-sorting &
local-ranking procedures;

• Global ranking result fits apparently well with the given
outranking relation;

• Independent sorting and local ranking procedures allow
effective multiprocessing strategies;

• Efficient scalability allows hence the ranking of very large sets
of potential decision actions (thousands of nodes) graded on
multiple incommensurable criteria;

• Good perspectives for further optimization and ad-hoc
fine-tuning.

32 / 32

