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The outranking situation

• We say that “a decision alternative a outranks a decision alternative
b” if and only:

1. There is a weighted majority of criteria, or objectives
(coalitions of criteria) who warrant that a is perceived at least
as good as b and,

2. No considerable negative performance difference is observed
between a and b on any criterion (or objective).

• We say that “a decision alternative a does not outrank a decision
alternative b” if and only if:

3. There is only a weighted minority of criteria, or objectives, who
warrant that a is perceived at least as good as b and,

4. No considerable positive performance difference between a and
b is observed on any criterion (or objective).

• Case (2), respectively (4), is called a veto, respectively a
counter–veto situation.
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Best office choice (1)

Example
Let us consider the following best office choice problem.

• A SME, specialized in printing and copy services, has to move into
new offices.

• The CEO of the SME has gathered the performances of seven
potential office sites with respect to three objectives:

Site Costs (↓) Turnover (↑) Work. Cond. (↑)
(in €) (0-81 pts) (0-19 pts)

A 35 000 70.6 10.2
B 17 800 29.5 9.9
C 6 700 43.8 3.6
D 14 100 42.3 10.0
E 34.800 49.1 15.7
F 18 600 16.1 4.8
G 12 000 49.1 10.4
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Best office choice (2)

Example (Significant preferential judgments)

• The CEO judges the “Costs” and the cumulated “Benefits”
objectives (“Turnover” and “Working Conditions”) to be
equi-significant for selecting the best office site.

• Hence, the CEO considers that a concordant preferential
judgment with respect to “Costs” and one of the two
“Benefits” objectives is significant for him.
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Certainly confirmed outranking situation

Example

Site Costs (↓) Turnover (↑) Work.Cond. (↑)
(in €) (0-80 pts) (0-20 pts)

G 12 000 49.1 10.4
F 18 600 16.1 4.8

• Site G certainly outranks site F as G is at least as well
performing than F on all three objectives (unanimous
concordance = Pareto dominance).
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Positively confirmed outranking situation

Example

Site Costs (↓) Turnover (↑) Work.Cond. (↑)
(in €) (0-80 pts) (0-20 pts)

C 6 700 43.8 3.6
B 17 800 29.5 9.9

• Site C outranks site B as C is at least as well performing than
B on objective “Costs” (6 700 against 17 800) and on
objective “Turnover” (43.8 against 29.5).
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Positively rejected outranking situations

Example

Site Costs (↓) Turnover (↑) Work.Cond. (↑)
(in €) (0-80 pts) (0-20 pts)

F 18 600 16.1 4.8
G 12 000 49.1 10.4
C 6 700 43.8 3.6

• Site F certainly does not outrank site G as F is less
performing than G on all three objectives (unanimous
concordance = Pareto dominance).

• Site F does not outrank site C as F is less performing than C
on objective “Costs” (18 600 against 6 700) and objective
“Turnover” (16.1 against 43.8).
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Indeterminate outranking situation

Example

Site Costs (↓) Turnover (↑) Work.Cond. (↑)
(in €) (0-80 pts) (0-20 pts)

F 18 600 16.1 4.8
E 34.800 49.1 15.7

• As site F is less expensive than site E (18 600 against 34 800), but
also, at the same time less advantageous on objective “Turnover”
(16.1 against 49.1) and objective “Work.Cond.” (4.8 against 15.7),
one can neither confirm, nor reject this outranking situation.

• This indeterminate situation is similar to a voting result where the
number of favorable votes balance the number of disfavorable votes.
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Indeterminate outranking situation

Example

Site Costs (↓) Turnover (↑) Work.Cond. (↑)
(in €) (0-80 pts) (0-20 pts)

B 17 800 29.5 9.9
A 35 000 70.6 10.2

• A similar indeterminate outranking situation is observed when
comparing sites B and A. On the one hand, B is less expensive than
site A (17 800 against 35 000), but, on the other hand, B is less
advantageous both on objective “Turnover” (29.5 against 70.6) ans
on objective “Work.Cond.” (9.9 against 10.2).

• Yet, is the performance difference of 0.3 pts between grades 9.9 and
10.2 effectively significant ?
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Taking into account the performances’ imprecision

Definition (Discrimination thresholds)

The concept of performance discrimination threshold allows to take
into account on each criterion (or objective):

• The imprecision of our knowledge about present or past facts;

• The uncertainty which necessarily affects our knowledge of the
future;

• The difficulties to quantify essentially qualitative
consequences.
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Taking into account the performances’ imprecision

Definition (Discrimination thresholds – continue)

• Performance discrimination thresholds allow us to model the
fact that the numerical difference observed between the
performances of two potential decision alternatives on a
criterion (or objective) may be:

1. compatible with them being indifferent (indifference threshold)
2. warranting a clear preference of one over the other (preference

threshold)
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Best office site for the SME

• Let us reconsider the performance table of our best office
choice problem:

Site Costs (↓) Turnover (↑) Work.Cond. (↑)
(in €) (0-80 pts) (0-20 pts)

B 17 800 € 29.5 9.9
A 35 000 € 70.6 10.2

A difference of 0.5 pts on objective “Work.Cond.” is still
considered to compatible with an indifference judgment of the
potential office sites,

• Hence, site B outranks site A, as the former is clearly less
expensive (17 800 against 35 000) and also more or less at
least as good as A on objective “Work.Cond.”; a 0.3 pts
difference being smaller than the supposed indifference
threshold.
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Taking into account large performance differences

Definition (Veto situations)

• The concept of veto situation allows us to take into account
on each criterion (or objective):

the presence of a negative performance difference large enough
to render insignificant the otherwise observed weighted
majority of concordance of a preferential judgment.

• or, similarly:

the presence of a positive performance difference large enough,
to render insignificant the otherwise warranted weighted
minority of concordance of a preferential judgment.
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Taking into account large performance differences

Definition (Veto thresholds)

The concept of veto threshold allows us to model the fact that the
performance difference observed between two potential decision
alternatives on a criterion (or objective) may be:

either, attesting the presence of a counter-performance large enough
to put to doubt a significantly affirmed outranking situation;

or, attesting the presence of an out-performance large enough to
put to doubt a significantly refuted outranking situation.

15 / 64

Revisiting the best office site problem
• Consider the performances of alternatives A and F with respect to

the three objectives:

Site Costs (↓) Turnover (↑) Work.Cond. (↑)
(in €) (0-80 pts) (0-20 pts)

A 35 000 € 70.6 10.2
F 18 600 € 16.1 4.8

The outranking situation between A and F is indeterminate.

• Let the CEO consider that a performance difference of 50 pts on the
“Turnover” objective attests for him a veto situation.

Hence, the out-performance on objective “Turnover” of site A over
site F (70.6− 16.1 = 54.6 > 50.0 pts) resolves this
indeterminateness in favour of site A.

Similarly, site F does certainly not outrank site A, as the
counter-performance on objective “Turnover” is so high that it
renders insignificant the fact that F is less expensive (18600 against
35000).
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Notation

• Let X be a finite set of p decision alternatives.

• Let N be a finite set of n > 1 criteria supporting an increasing
real performance scale from 0 to Mi .

• Let 0 6 qi < pi < vi 6 Mi + ε represent resp. the
indifference, the preference, and the veto discrimination
threshold observed on criterion i .

• Let wi ∈ Q be the significance of criterion i in the global
preference modelling.

• Let W be the sum of all marginal significances.

• Let x and y be two alternatives in X .

• Let xi be the performance of x on criterion i
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Performing marginally at least as good as

Each criterion i is characterising a double threshold order >i on A
in the following way:

r(x >i y) =





+1 if xi + qi > yi

−1 if xi + pi 6 yi

0 otherwise.

(1)

+1 signifies that “x is performing at
least as good as y” on criterion i ,

−1 signifies that “x is not performing
at least as good as y” on
criterion i .

0 signifies that “it is unclear
whether, on criterion i , x is
performing at least as good as y”.

x − y

+1

0

ii

−p

−q i

i

i

ir(x  >= y )i

−1
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Performing globally at least as good as

Each criterion i contributes the significance wi of his “at least as good
as” characterisation r(>i ) to the characterisation of a global “at least as
good as” relation r(>) in the following way:

r(x > y) =
∑

i∈F
[

wi

W · r(x >i y)
]

(2)

Denotational semantics:
1. 1.0 > r(x > y) > 0.0 signifies x is globally performing at least as good as y ,

2. −1.0 6 r(x > y) < 0.0 signifies that x is not globally performing at least as
good as y ,

3. r(x > y) = 0.0 signifies that it is unclear whether x is globally performing at
least as good as y .

4. The global “at least as good as” defines a median relation at minimal sum of
Kendall distances from the marginal “at least as good as” relations.
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Epistemic truth semantics of the r -valuation

Let ξ and υ be two preferential statements.

r(ξ) = +1 means that assertion ξ is certainly valid,

r(ξ) = −1 means that assertion ξ is certainly invalid,

r(ξ) > 0 means that assertion ξ is more valid than invalid,

r(ξ) < 0 means that assertion ξ is more invalid than valid,

r(ξ) = 0 means that validity of assertion ξ is indeterminate,

r(ξ) > r(υ) means that
assertion ξ is more valid than assertion υ,

r(¬ ξ) = − r(ξ)
logical (strong) negation operates by changing sign,

r(ξ ∨ υ) = max(r(ξ), r(υ))
logical disjonction operates via the max operator,

r(ξ ∧ υ) = min(r(ξ, r(υ))
logical conjonction operates via the min operator.
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Performing marginally and globally less than

Each criterion i is characterising a double threshold order <i (less than)
on A in the following way:

r(x <i y) =





+1 if xi + pi 6 yi

−1 if xi + qi > yi

0 otherwise.

(3)

And, the global less than relation (<) is defined as follows:

r(x < y) =
∑

i∈F
[
wi

W · r(x <i y)
]

(4)

Property
The global “less than” relation < is the dual ( 6>) of the global “at least
as good as” relation >.
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Taking into account vetoes

Roy introduced the concept of veto threshold vi (pi < vi 6 Mi + ε)
to characterise the observation of considerably less performing
situations on the family of criteria. This leads to a single threshold
order, denoted �i which characterises considerably less performing
situations as follows:

r(x �i y) =

{
+1 if xi + vi 6 yi

−1 otherwise
(5)

And a global veto situation x � y is characterised as:

r(x � y) = r
( ∨

i∈F
(x �i y)

)
= max

i∈F

[
r(x �i y)

]
(6)
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The classic Electre outranking relation

An object x outranks an object y , denoted x < y , when:

1. a significant majority of criteria validates the fact that x is
performing at least as good as s, i.e. r(x > y) ≥ λ, where λ
represent a significant majority margin.

2. And, there is no veto raised against this claim, i.e.
r(x � y) < 0.

The corresponding characteristic gives:

r(x < y) = r
[

(x > y) ∧ (x 6� y)
]

= min
[

r(x > y), −r(x � y)
]
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Problem with the classic Electre outranking concept

Property
Let < be the classic Electre outranking relation.

• The asymmetric part � of the <, i.e. (x < y) and (y 6< x), is in
general not identical to its codual relation 64 (Pirlot & Bouyssou
2009).

• Apart from the unanimous case, where r(x >i y) = ±1.0 for all
criteria, the absence of any veto situation is sufficient and necessary
for making � = 64.

Comment

1. This hiatus raises a serious concern with respect to the logical soundness of the
classical Electre outranking model;

2. Only the complete absence of any veto mechanism can guarantee the coduality
principle;

3. This, however, is obliterating the very interest of the outranking concept.
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Marginal considerably better or worse performing situations

We define a single threshold order, denoted ≪i which represents
considerably less performing situations as follows:

r(x ≪i y) =





+1 if xi + vi 6 yi

−1 if xi − vi > yi

0 otherwise.

. (7)

And a corresponding dual considerably better performing situation
≫i characterised as:

r(x ≫i y) =





+1 if xi − vi > yi

−1 if xi + vi 6 yi

0 otherwise.

. (8)

26 / 64

Introduction Outranking Theory MCDA recommendations Conclusions Bibliography

Global considerably better or considerably worse
performing situations

A global veto, or counter-veto situation is defined as follows:

r(x ≪ y) = >i∈F
[
r(x ≪i y)

]
, (9)

r(x ≫ y) = >i∈F
[
r(x ≫i y)

]
. (10)

where > represents the epistemic polarising (Bisdorff 1997) or
symmetric maximum (Grabisch et al. 2009) operator:

r > r ′ =





max(r , r ′) if r > 0 ∧ r ′ > 0,

min(r , r ′) if r 6 0 ∧ r ′ 6 0,

0 otherwise.

(11)
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Characterising veto and counter-veto situations

1. r(x ≪ y) = 1 iff there exists a criterion i such that
r(x ≪i y) = 1 and there does not exist otherwise any
criterion j such that r(x ≫j y) = 1.

2. Conversely, r(x ≫ y) = 1 iff there exists a criterion i such
that r(x ≫i y) = 1 and there does not exist otherwise any
criterion j such that r(x ≪j y) = 1.

3. r(x ≫ y) = 0 if either we observe no very large performance
differences or we observe at the same time, both a very large
positive and a very large negative performance difference.

4. ≪ verifies the coduality principle: r( 6≪)−1 is identical to
r(≫).
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The bipolar outranking relation %
From an epistemic point of view, we say that:

1. alternative x outranks alternative y , denoted (x % y), if

1.1 a weighted majority of criteria validates a global outranking
situation between x and y , and

1.2 no considerable counter-performance is observed on a
discordant criterion,

2. alternative x does not outrank alternative y , denoted (x 6% y),
if

2.1 a weighted majority of criteria invalidates a global outranking
situation between x and y , and

2.2 no considerably better performing situation is observed on a
concordant criterion.
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Polarising the global “at least as good as” characteristic

The bipolarly-valued characteristic r(%) is defined as follows:

r(x % y) = r(x > y) > r(x 6�1 y) > ...> r(x 6�n y)

Properties:

1. r(x % y) = r(x > y) if no considerable positive or negative
performance differences between x and y are observed;

2. r(x % y) = 1.0 when r(x > y) > 0 and r(x ≫ y) = 1.0;

3. r(x % y) = −1.0 when r(x > y) 6 0 and r(x ≪ y) = 1.0;

4. If r(x % y) < 0.0 then r(y % x) > 0.0.
We say that % is a weakly complete on X .
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Semantics of the bipolar characteristic valuation

The valuation r(%) has following interpretation:

• r(% (x , y) = +1.0 signifies that the statement x % y is
certainly valid.

• r(% (x , y) = −1.0 signifies that the statement x % y is
certainely invalid.

• r(% (x , y) > 0 signifies that the statement x % y is more
valid than invalid.

• r(% (x , y) < 0 signifies that x % y is more invalid than valid.

• r(% (x , y) = 0 signifies that the statement x % y is
indeterminate.
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% verifies the coduality principle

Property

The dual (6%) of the bipolarly-valued outranking relation % is
identical to the strict converse outranking � relation.

Proof: We only have to check the case where r(x ≪ y) 6= 0.0:

r(x 6% y) = −r(x % y) = −
[
r(x > y) >−r(x ≪ y)

]

=
[
− r(x > y) > r(x ≪ y)

]

=
[
r(x 6> y) >−r(x ≫ y)

]

=
[
r(x < y) > r(x 6≫ y)

]
= r(x � y).

Else, there exist conjointly two criteria i and j such that

r(x ≪i y) = 1.0 and r(x ≫i y) = 1.0. Hence,

r(x % y) = r(x 6% y) = r(x � y) = 0.0.
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The bipolarly-valued outranking digraph

Definition

• We denote G̃ (X , r(%)) the bipolarly-valued digraph modelled
by r(%) on the set of potential decision alternatives X .

• We denote G (X ,%), the crisp digraph associated with G̃
where we retain all arcs x % y such that r(x % y) > 0.

• G (X ,%) is called the Condorcet or median cut digraph
associated with G̃ (X , r(%)).
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The office site choice problem revisited
If the CEO considers the following preference discrimination thresholds and
significance weights:

Objective indifference preference veto weight

“Costs” 1000€ 2500€ 20000€ 2
“Turnover” 2.5 pts 5 pts 50 pts 1
“Work. Cond.” 0.5 pt 1 pt 10 pts 1

the global characteristic of the bipolar outranking relation % restricted, for instance, to
the following three sites {A,C ,G} becomes:

r(%) A C G

A - -1.0 -1.0
C +1.0 - 0.0
G +1.0 0.0 -

Potential

best choices

A C

G

+1.0

−1.0

+
1.0

−
1
.0

0.0
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The office site choice problem – continue

Site Costs (↓) Turnover (↑) Work.Cond. (↑)

weight 2.0 1.0 1.0
indiff. 1000€ 2.5 0.5
pref. 2500€ 5 1
veto 20 000€ 50 10

A 35 000 70.6 10.2
C 6 700 43.8 3.6
G 12 000 49.1 10.4

Comment

• The bipolar outranking characteristics show that:

1. Sites G and C are significantly better performing than site A.
2. No significant outranking situations may be confirmed between

sites G and C .

• Hence, both G and C may be recommended as potential best
choices.

The complete bipolar outranking relation

r(x % y) A B C D E F G

A − 0.00 −1.00 −1.00 +0.50 +1.00 −1.00
B +0.50 − −0.50 −0.50 +0.00 +1.00 −0.50
C +1.00 +0.50 − +0.50 0.00 +0.50 0.00
D +1.00 +1.00 −0.25 − +1.00 +1.00 0.00
E +0.50 0.00 0.00 −1.00 − +1.00 −1.00
F −1.00 0.00 −0.50 −1.00 −1.00 − −1.00
G +1.00 +1.00 0.00 +1.00 +1.00 +1.00 −

• No apparent Condorcet winner, but

• two weak Condorcet winners: {C ,G}.
• Both together give the dominating kernel of

G(X ,%).

Site Costs (↓) Turnover (↑) Work.Cond. (↑)
weight (2.0) (1.0) (1.0)

C 6 700 43.8 3.6
G 12 000 49.1 10.4 Rubis Python Server (graphviz), R. Bisdorff, 2008

A

C

B

E

D

G

F
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Rubis : a best choice recommender system

[1] R. Bisdorff, M. Pirlot and M. Roubens, Choices and kernels from bipolar
valued digraphs. European Journal of Operational Research, 175 (2006)
155-170.

[2] R. Bisdorff, P. Meyer and M. Roubens, RUBIS: a bipolar-valued outranking
method for the choice problem. 4OR, A Quarterly Journal of Operations
Research, Springer-Verlag, Volume 6 Number 2 (2008) 143-165.

• Traditionally, solving a best choice problem consists in finding the
unique best decision alternative.

• In Rubis , we adopt a modern recommender system’s approach
which shows a subset of alternatives which contains by construction
the potential best alternative(s).

• If not reduced to a singleton, the Best Choice Recommendation
(BCR), has to be refined in a later decision process phase.
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Pragmatic principles for a best choice recommendation

P1: Elimination for well motivated reasons.
Each eliminated alternative has to be outranked by at least one
alternive in the BCR.

P2: Minimal size.
The BCR must be as limited in cardinality as possible.

P3: Efficient and informative.
The BCR must not contain a self-contained sub-recommendation.

P4: Effectively better.
The BCR must not be ambiguous in the sense that it is not both a
best choice as well as a worst choice recommendation.

P5: Maximally significant.
The BCR is, of all potential best choice recommendation, the most
significantly supported one by the marginal “at least as good as”
relations.
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Qualification of a BCR in G̃ (X , r(%))

Let Y be a non empty subset of X , called a choice in G̃ .

• Y is called outranking (resp. outranked) iff for all non
retained alternative x there exists an alternative y retained
such that r(y % x) > 0.0 (resp. r(x % y) > 0.0).

• Y is called independent iff for all x 6= y in Y , we observe
r(x % y) 6 0.0.

• Y is an outranking kernel (resp. outranked kernel) iff Y is an
outranking (resp. outranked) and independent choice.

• Y is an outranking (resp. outranked) hyper-kernel iff Y is an
outranking (resp. outranked) choice containing chordless
circuits of odd order p > 1.
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Translating the pragmatic principles
in terms of choice qualification

P1: Elimination for well motivated reasons.
The BCR is an outranking choice.

P2+3: Minimal and stable recommendation.
The BCR is a hyper-kernel.

P4: Effectivity.
The BCR is a choice which is strictly more outranking than
outranked.

P5: Maximal significance.
The BCR is the most determined one in the set of potential
outranking hyper-kernels observed in a given bipolar outraking
digraph G̃ (X , r(%)).

Property
Every bipolar strict outranking digraph G̃ (X , r(�)) admits at least one
outranking and one outranked hyper-kernel.
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The Rubis best choice recommendation (RBCR)

• A strictly outranking hyper-kernel of maximal significance, if it
exists, renders a RBCR.

• A RBCR verifies the five pragmatic principles.

• A RBCR is a recommended subset of alternatives which
contains the best alternative, provided that it exists.

• A RBCR must not be confused with the actual best choice
retained by the decision maker.

• Being only a recommendation, the Rubis best choice
approach is only convenient in a progressive decision aiding
process.
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Computing ranking recommendations

A second traditional solving of a decision problem consists in
ranking the alternatives. For this purpose we rely on related work
by Lamboray who revisited the prudent orders introduced initially
by:

[1] K. Arrow and H. Raynaud, Social choice and Multicriterion
decision-making. MIT Press (1986).

[2] C. Lamboray, A comparison between the prudent order and the ranking
obtained with Borda’s, Copeland’s, Slater’s and Kemeny’s rules.
Mathematical Social Sciences 54 (2007) 1-16.

[3] C. Lamboray, A prudent characterization of the Ranked Pairs Rule.
Social Choice and Welfare 32 (2009) 129-155.

[4] L.C. Dias and C. Lamboray, Extensions of the prudence principle to exploit
a valued outranking relation. European Journal of Operational Research
Volume 201 Number 3 (2010) 828-837.
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Definition and properties of ranking rules

Definition

• A ranking rule is a procedure which aggregates the n marginal
at least as good as relations >i into a global ranking – either
a linear ordering, or a preordering with ties – which “best”
exploits the preferential information contained in the bipolar
outranking digraph G̃ (X , r(%)).

• A ranking rule is called Condorcet-consistent (Lamboray
2007,2009) if it holds that:
When the Condorcet graph G (X ,%) models a linear order on
X , then this linear order is the unique ranking solution
resulting from applying the rule.
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Condorcet-consistent ranking rules (1)

Kohler’s Rule: Optimistic sequential maximin rule.
In: G̃ (X , r(%)); out: linear ordering.
At step k (where k goes from 1 to n):

1. Compute for each alternative x the smallest r(x % y) (x 6= y);

2. Select the alternative for which this minimum is maximal. If there
are ties select one of these alternatives at random;

3. Put the selected alternative at rank k in the final ranking;

4. Delete the row and the column corresponding to the selected
alternative and restart from (1).
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Condorcet-consistent ranking rules (2)

Arrow & Raynaud’s Rule: Pessimistic sequential minmax rule.
In: G̃ (X , r(%)); out: linear ordering.
At step k (where k goes from 1 to n):

1. Compute for each alternative x the largest r(x % y) (x 6= y);

2. Select the alternative for which this maximum is minimal. If there
are ties select one of these alternatives at random;

3. Put the selected alternative at rank n − k + 1 in the final ranking;

4. Delete the row and the column corresponding to the selected
alternative and restart from (1).

Property
Arrow & Raynaud’s rule applied to the codual G̃(X , r(�)) is equivalent to Kohler’s

rule applied to G̃(X , r(%)) and vice versa.
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Condorcet-consistent ranking rules (3)

Tideman’s Ranked Pairs Rule
In: G̃ (X , r(%)); out: linear ordering.

1. Rank in decreasing order the ordered pairs (x , y) of alternatives
according to their weighted majority margin r(x % y).

2. Take the linear order compatible with this weak order where ties are
resolved by alphabet order of the alternatives.

3. Consider the pairs (x , y) in that order and do the following:

3.1 If the considered pair creates a cycle with the already blocked
pairs, skip this pair;

3.2 If the considered pair does not create a cycle with the already
blocked pairs, block this pair.

Property
Tideman’s ranked pairs rule on G̃(X , r(%)) is equivalent to Dias & Lamboray’s

Leximin prudent ranking rule (see [4]) applied on G̃(X , r(�)), and vice versa.
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Ranking-by-scoring rule
Borda’s Rule
In: rank analysis table Qxk ; out: weak ordering.

• The rank analysis table Qxk gathers the number of times each
alternative x is placed at rank k in the linear ordered preferences at
hand.

• The Borda score bx is computed as follows:

∀x ∈ X , bx =
n∑

k=1

Qxk · k.

• The Borda ranking �B is the weak order defined as follows:

∀x , y ∈ X , (x , y) ∈ �B ⇔ bx 6 by .

!!! Borda’s ranking-by-scoring rule is not Condorcet-consistent
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Condorcet-consistent ranking-by-scoring rule

Copeland’s Rule
In: G (X ,%); out: weak ordering.

• The idea is that the more a given alternative beats other
alternatives at majority the better it should be ranked.

• Similarly, the more other alternatives beat a given alternative at
majority, the lower this alternative should be ranked.

• The Copeland score cx of alternative x ∈ X is defined as follows:

cx = #{y 6= x ∈ X : r(x % y) > 0}
−#{y 6= x ∈ X : r(y % x) > 0}

• The Copeland ranking �C is the weak order defined as follows:
∀x , y ∈ X , (x , y) ∈ �C ⇔ cx > cy .
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Optimal Condorcet-consistent ranking rules (1)

Kemeny’s Rule
In: G̃ (X , r(%)); out: linear ordering.

• The idea is finding a compromise ranking O that minimizes the sum
of distances to the n marginal outrankings, according to the
symmetric difference measure δ (If R1 and R2 are two relations,
δ(R1,R2) = |R1 ⊕ R2| / 2).

• The Kemeny (also called median) order O∗ is a solution of the
following optimization problem:

maxargO

∑
(x,y)∈O r(x % y)

such that O is a linear order on X

• The Kemeny order is invariant under the coduality principle.

• Finding a Kemeny order O∗ is an NP-complete problem.

Optimal Condorcet-consistent ranking rules (2)

Slater’s Rule
In: G (X ,%); out: linear ordering.

• The idea is to select a ranking that is closest, according to the
symmetric difference distance δ, to the Condorcet (median cut)
outranking relation % ≡ {(x , y) : r(%) > 0.0}.

• The Slater order O∗ is a solution of the following optimization
problem:

minargO δ(O,%)

such that O is a linear order on X

• The distance δ(O∗,%) is called the Slater index of the outranking
relation.

• Computing the Slater index of a relation is an NP-hard problem.
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Ranking the potential office sites

Rule Linear Order Rank Corr. with r(%)

Kohler: [G , C , D, B, E , A, F ] 0.96
Arrow & Raynaud: [G , C , D, E , B, A, F ] 0.96
Ranked Pairs: [C , G , D, B, A, E , F ] 0.97
Leximin: [C , G , D, B, A, E , F ] 0.97

Kemeny: [C , G , D, B, A, E , F ] 0.97
Copeland: [G , C , D, E , A, B, F ] 0.93
Slater: [C , G , D, B, A, E , F ] 0.97

Comment
In our example problem, the Ranked Pairs rule delivers an optimal Kemeny
order, that is a ranking whose rank correlation with the given bipolarly valued
outranking relation is maximal (0.97).
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Cumputing sorting recommendation

• The sorting problematique consists in comparing each
alternative to predefined norms of absolute performances;

• These norms are modelled by k ordered categories from the
best to the least desired alternatives;

• A frequently used set of categories consists for instance in:
excellent, very good, good, fair, weak, very weak;

• These norms take usually two distinct forms: either, limiting
performances profiles, or, central prototypical profiles;

• We tackle only the case of limiting profiles here, the other
case being more related to a supervised ordered clustering
problematique.
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K-Sorting on a single criterion
Category K is an interval [mk ; Mk [ on the criterion performance
scale; x is a measured performance.
We may distinguish three sorting situations:

x

 km

M
k

1. x < mk (and x < Mk)
The performance x is lower
than category K ;

2. x > mk and x < Mk

The performance x belongs
to category K ;

3. (x > mk and) x > Mk

The performance x is higher
than category K .

If the relation < is the dual of >, it will be sufficient to check that
x > mk as well as x 6> Mk are true for x to be a member of K .
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K-Sorting on p criteria

Let mk = (mk
1 ,m

k
2 , ...,m

k
p) denote the lower limits and

Mk = (Mk
1 ,M

k
2 , ...,M

k
p ) the corresponding upper limits of category

K on the criteria.
Let G̃ (X ∪mk ∪Mk , r(%)) represent the bipartite digraph giving
the bipolarly-valued outrankings between X and the lower and
upper category limits.

Property

That alternative x ∈ X belongs to category K may be
characterised as follows:

r(x ∈ K ) = min
(

r(x % mk), r(x 6% Mk)
)

Follows, indeed, from the coduality principle:
r(x 6% Mk) = r(Mk � x).

55 / 64

Introduction Outranking Theory MCDA recommendations Conclusions Bibliography

Multiple criteria K-Sorting algorithm

1. Input: a set X of n alternatives with a performance table on
a family of p criteria and a set C of k empty categories K
with lower limit mk and upper limit Mk .

2. For each alternative x ∈ X and each category K ∈ C
2.1 r(x ∈ K ) ← min

(
r(x % mk), r(x 6% Mk)

)

2.2 if r(x ∈ K ) > 0 :
add x to category K

3. Output: C

Comment

1. The complexity of the K-Sorting algorithm is linear: O(nkp).

2. In case, C represents p partitions of the criteria measurement scales, i.e.
the upper limits of the preceding category correspond to the lower limits
of the succeeding ones, there is a potential for reducing the complexity
even more.
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Revisiting the best office choice problem

Supervised 6-sorting of the
office sites in descending or-
der using a common par-
tition of six lower closed
%-classes of equally spaced
performance limits on each
objective’s scale.

Limits Category

]> - 100%] []
]100% - 80%] [G ]
]80% - 60%] [B, C , D, E , F , G ]
]60% - 40%] [A, B, D, E , F ]
]40% - 20%] [A, E , F ]
]20% - 0%] []

Comment

1. Site G is ’best’ sorted between 60% and 100%, followed by site C
sorted between 60% and 80%.

2. Then come sites B and D sorted between 40% and 80%, followed
by sites E and F sorted between 20% and 80%.

3. Finally, site A is sorted between 20% and 60%.
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Properties of K-Sorting result

1. Coherence: Each alternative is always sorted into a possibly empty
subset of adjacent categories.

2. Weak Unicity: In case of non overlapping categories and the
absence of indeterminate bipolar outrankings, i.e. r 6= 0, every
alternative is sorted into at most one category;

3. Unicity: If the categories represent a discriminated partition of the
performance measurement scales on each criterion and r 6= 0, then
every alternative is sorted into exactly one category;

4. Independance: The sorting result for alternative x , is independent of
the other alternatives’ sorting results.

5. Monotonicity: If r(x > y) = 1, then alternative x is sorted into a
category which is at least as high ranked as the category into which
is sorted alternative y .

6. Stability: If a category is dropped from C, the content of the
remaining categories will not change thereafter.
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Conclusions

• Similarly to MAVT, the outranking approach stresses the necessicity
to follow a consistent and systematic approach for evaluating the
performances of the potential decision alternatives.

• Similarly to MAVT, the outranking approach allows to model costs
and benefits with the help of multiple qualitative and/or
quantitative performance criteria.

• Contrary to MAVT, the outranking approach does not make the
assumption that the evaluations on all the criteria must be
commensurable in order to model global preferences.

• Contrary to weighted scoring approaches, the significance of the
criteria (not to be confused with substitution rates) in the global
outranking credibility calculus does not need to take into account
type and scope of the marginal performance measurement scales.
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Conclusions

• By adopting a pairwise comparison approach à la Condorcet, we
abandon the idea of complete comparability and transitivity of the
preferences and receive in return the independence of all pairwise
preferential statements from irrelevant alternatives (see Arrows
impossibility theorem).

• Taking into account performance discrimination thresholds allows to
efficiently model imprecision, uncertainties and even very large
positive and negative differences in the performance data.

• The bipolar characteristic valuation r(%) in [−1.0; +1.0] allows with
the median value 0.0 to handle safely highly contradictory as well as
missing data.

• Due the verification of the coduality principle, the bipolar
outranking relation allows us to solve efficiently multiple criteria
based choice, ranking, sorting and also clustering problems.
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