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How to specify the criteria significances?

• The numerical criteria significances play a crucial role in the
construction of the bipolarly-valued outranking digraph.

• Two different approaches are mainly proposed for specifying
the criteria significances:

a. either, directly by knowledge or assessment,
• Roy & Bouyssou 93;
• Roy & Mousseau 96,

b. or, indirectly via some a priori partial knowledge of the
resulting global outranking relation:

• Mousseau & S lowinski 98;
• Meyer, Marichal & Bisdorff 08.
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Indirect estimation of criteria significances (2)

Here, we focus on the indirect approach.

Similar disaggregation-aggregation or ordinal regression
methods have been proposed in MAUT and MAVT contexts:

• Jacquet-Lagrèze & Siskos 82;
• Mousseau, Figueira, Dias, Gomes da Silva & Cĺımaco 03;
• Greco, Mousseau & S lowinski 08;
• Grabisch, Kojadinovic & Meyer 08.

In our Electre-like outranking approach, we will use, as a priori
knowledge, the robustness of the Condorcet outranking
graph, i.e. the robustness of the significant majority that a
decision maker acknowledges for his/her pairwise outranking
comparisons (Bisdorff 04).
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Notations

• Let F be a set of m performance criteria;

• Let W denote a vector of m criteria significances;

• Let wW be the preorder modelled on F by the numerical > relation
defined on significance vector W .

• The equivalence quotient of wW induces s ordered equivalence
classes: ΠW

1 AW . . . AW ΠW
s where 1 ≤ s ≤ m; All criteria gathered

in a same equivalence class have same significance.

• For i < j , those of ΠW

i have a higher significance than those of ΠW

j .

• If W represents the set of all potential significance vectors,
then WwW

⊂ W denotes the set of all significance vectors that are
preorder-compatible with wW .
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The Condorcet robustness denotation

Consider a bipolarly-valued outranking graph G̃ (X , rW (%)) using a
significance vector W . For any pair (x , y) of alternatives, the
Condorcet robustness of the outranking (x % y),
denoted J(x %W y)K is defined as follows:

1. J(x %W y)K = ±3 if rW (x % y) = ±1.0;

2. J(x %W y)K = ±2 if rW (x % y) > 0.0, resp. < 0.0, for all
wW -compatible significance vectors;

3. J(x %W y)K = ±1 if rW (x % y) > 0.0, resp. < 0.0, for some but not
for all wW -compatible significance vectors;

4. J(x %W y)K = 0 if rW (x % y) = 0.0.
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Measuring the Condorcet robustness

• Let r %(x >i y) =
(
r(x >i y) + 1

)
/2 be the [0, 1]-recoded

marginal characteristic r -functions and let there be
k = 1, ..., s significance classes Πk .

• Let cW
k (x , y) be the sum of “at least as good as”

characteristics r %(x >i y) for all criteria i ∈ ΠW
k , and

cW
k (x , y) the sum of the negation: 1− r %(x >i y), of these

characteristics.

• Furthermore, let CW
k (x , y) =

∑k
i=1 cW

i (x , y) be the cumulative
sum of “at least as good as” characteristics for all criteria
having significance at least equal to the one associated to ΠW

k ,
and

let CW
k (x , y) =

∑k
i=1 cW

i (x , y) be the cumulative sum of the
negation of these characteristics for all k in {1, . . . , s}.
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Measuring the Condorcet robustness (continue)

In the absence of ±3 denotations, the following proposition
gives us a test for the presence of a +2 denotation:

Proposition (Bisdorff 2004, 4OR:2(4))

J(x %W y)K(x , y) = +2 ⇐⇒
{
∀k ∈ 1, ..., s : CW

k (x , y) > CW
k (x , y) ;

∃k ∈ 1, ..., s : CW
k (x , y) > CW

k (x , y).

The negative −2 denotation corresponds to similar conditions
with reversed inequalities.

The proof relies on the verification of first order stochastic
dominance conditions.
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Example of valued outranking

1 2 3

a 10 4 8
b 5 6 4
c 7 2 3
d 5 7 2

p 1.0 1.0 1.0

W 3.0 1.5 2.0

r(%W ) a b c d

a - .54 1.0 .54

b -.54 - .08 .54

c -1.0 -.08 - .54

d -0.54 0.38 -.54 -
The Condorcet

Outranking Digraph
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Condorcet robustness

1 2 3

p 1.0 1.0 1.0

W 3.0 1.5 2.0
a 10 4 8
b 5 6 4
c 7 2 3
d 5 7 2

Jr(%W )K a b c d

a - +2 +3 +2

b -2 - +1 +2

c -3 -1 - 2

d -2 +2 -2 -
The Condorcet

Outranking Digraph
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Condorcet robustness

1 2 3

p 1.0 1.0 1.0

W 4.0 1.5 2.0
a 10 4 8
b 5 6 4
c 7 2 3
d 5 7 2

Jr(%W )K a b c d

a - +2 +3 +2

b -2 - -1 +2

c -3 +1 +3 +2

d -2 +2 -2 -
The Condorcet

Outranking Digraph
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Inverse Analysis from the Condorcet robustness

In a decision aid problem we are given:

1. A set X of n decision alternatives evaluated on a set F of m
performance criteria;

2. A performance table, of dimension n ×m, but without any
precise information concerning the criteria significances.

3. Suppose we are, now, given the apparent Condorcet
robustness denotation J(x %W y)K, but, without actually
knowning the corresponding significance vector W and, hence,
the associated pairwise bipolarly-valued outranking
characteristics r(x %W y).
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Inverse Analysis from the Condorcet robustness

The criteria significance estimation problem

Given the marginal outranking characteristics r(x >i y)
and a Condorcet robustness denotation J(x %W y)K for
(x , y) in X 2, can we compute a preorder w on the criteria
significances and a numerical instance W ∗ in WwW

(the
set of w-compatible significance vectors) which satisfies
J(x %W y)K? In other terms:

Knowing r(x >i y), how to choose w and W ∗

such that J(x %W∗ y)K = J(x %W y)K ?
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Estimating apparent criteria significances

The decision variables Pm×M

• Each criterion gets an integer significance wi in [1,M], where
the parameter M denotes the maximal admissible value.

• Pm×M is a Boolean (0, 1)-matrix, with general term [pi ,u],
that characterises row-wise the number of significance units
allocated to criterion i such that:

∑M
u=1 pi ,u = wi .

• For instance, if criterion i accepts an integer significance of 3
and if we decide that M = 5, then the ith row of Pm×5

corresponds to (1, 1, 1, 0, 0).
• Each criterion must have a strictly positive significance:∑

i∈F pi ,1 = m,
• And the cumulative constraints require that:

pi ,u > pi ,u+1 (∀i = 1, ...,m, ∀u = 1, ...,M − 1).
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The Condorcet robustness constraint

The Condorcet robustness test may be formulated as:

J(x %W y)K = 2 ⇐⇒
{
∀u ∈ 1, ...,max wi : C ′Wu (x , y) > C ′Wu (x , y) ;

∃u ∈ 1, ...,max wi : C ′Wu (x , y) > C ′Wu (x , y) ;

where C ′Wu (x , y) (resp. C ′Wu (x , y)) is the sum of all
r %(x >i y) (resp. r %(x >i y) = 1− r %(x >i y)) such that
the significance wi ≤ u.

For all pairs (x , y) ∈ X 2
+2 we get

∑
i∈F
(

pi ,u ·
[
r %(x >i y)− r %(x >i y)

])
> bu(x , y),

where the bu(x , y) are Boolean (0, 1) variables for each pair of
alternatives and each equi-significance level u in {1, . . . ,M},
which allow us to impose at least one case of strict inequality
for each (x , y) ∈ X 2

±2 :
∑m

u=1 bu(x , y) > 1.



The objective function
minPm×M

O =

K1

( ∑

gi∈F

M∑

u=1

pi ,u

)
Minimize the sum of the weights;

− K2

( M∑

u=1

( ∑

(x ,y)∈A2
±2

bu(x , y)
) )

Maximise the ±2 robustness;

+ K3

( ∑

(x ,y)∈A2
±1

s±1(x , y)
)

+ K4

( ∑

(x ,y)∈A2
0

(s0
+(x , y) + s0

−(x , y))
)

Comment

• s±1 as well as s0
± are slack variables for softening, the case given,

the ±1 and 0 robustness constraints,

• K1...K4 are parametric constants used for the correct hierarchical
ordering of the four sub-goals.
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The mixed-integer LP model

MILP

Variables:

pi,u ∈ {0, 1} ∀i ∈ F , ∀u = 1, ..,M

bu(x , y) ∈ {0, 1} ∀(x , y) ∈ X 2
±2, ∀u = 1, ..,M

s±1(x , y) > 0 ∀(x , y) ∈ X 2
±1

s0
+(x , y) > 0 , s0

−(x , y) > 0 ∀(x , y) ∈ X 2
0

Parameters:

M usually dm/2e or m
Ki > 0 ∀i = 1...4

Objective function:

min K1

( ∑
gi∈F

M∑
u=1

pi,j

)
− K2

( M∑
u=1

∑
(x,y)∈A2

±2

bu(x , y)
)

+K3

(∑
(x,y)∈A2

±1
s±1(x , y)

)
+ K4

(∑
(x,y)∈A2

0
(s0

+(x , y) + s0
−(x , y))

)
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The mixed-integer LP model (continue)

Constraints:∑
i∈F

pi,1 = m

pi,u > pi,u+1 ∀gi ∈ F , ∀u = 1, ..,M − 1

∑
i∈F

(
pi,u ·

[
r %(x >i y)− r %(x >i y)

])
R bu(x , y) ∀(x , y) ∈ X 2

±2, ∀u = 1, ..,M

M∑
u=1

bu(x , y) > 1 ∀(x , y) ∈ X 2
±2

∑
i∈F

((∑M
u=1 pi,u

)
· ± (r %(x >i y)− r %(x >i y)

)
∀(x , y) ∈ X 2

±1, ∀u = 1, ..,M

± s1
±(x , y) > 1

∑
i∈F

( ∑M
u=1 pi,u

)
· ( r %(x >i y)− r %(x >i y) ) ∀(x , y) ∈ X 2

0 , ∀u = 1, ..,M

+ s0
+(x , y) − s0

−(x , y) = 0
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Result of the Inverse Analysis

1 2 3
p 1.0 1.0 1.0
W 3.0 1.5 2.0
a 10 4 8
b 5 6 4
c 7 2 3
d 5 7 2

W ∗ 3.0 2.0 2.0

Cond a b c d
a - 2 3 2
b -2 - -1 2
c -3 1 3 2
d -2 2 -2 -

r(x %W y) a b c d
a - .54 1.0 .54
b -.54 - .08 .54
c -1.0 -.08 - .54
d -0.54 0.38 -.54 -

Valued majority margins obtained with original
significance vector W = [3.0, 2.0, 1.5].

r(x %W∗
y) a b c d

a - .43 1.0 .43
b -.43 - .14 .43
c -1.0 -.14 - .43
d -0.43 0.43 -.43 -

Valued majority margins obtained with
estimated significance vector W ∗ = [3, 2, 2].
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Solving the MILP

• We solve the MILP model with Cplex associated with an
AMPL front end modeler;

• On more or less real-sized random multiple criteria decision
problems (20 alternatives evaluated on 13 criteria) we observe
quite reasonable reasonable solving times on an 6 threaded
standard application server;

• Depending on the maximal value M allowed for an individual
criterion significance weight we indeed obtain:

• average computation times of 2.5 seconds for M = 7,
• up to 2 minutes for M = 13.
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Partial preference information

Partial preference information may be easily integrated in the
previous MILP model, like

1. fix or confine the a priori significance of some criterion;

2. make a criterion, or a coalition of criteria, more significant
than others;

3. allocate a significant majority to a coalition of criteria.
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A progressive and robust decision aid approach

1. When no information concerning the significances of the
criteria is available, we solve the problem with equi-significant
criteria, i.e. one single weight equivalence class.

2. Some apparent outranking situations may be aknowledged,
some others not. Under this partial preference information,
the most robust valued outranking relation is estimated.

3. As long as the resulting outranking digraph is too
indeterminate, we may ask further partial preference
information until the decision maker is satisfied with the
apparent preference model.
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