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Abstract. This article presents the problem of the selection of k best alternatives in the
context of multiple criteria decision aid. We situate ourselves in the context of pairwise com-
parisons of alternatives and the underlying bipolar-valued outranking digraph. We present
three formulations for the best k-choice problem and detail how to solve two of them directly
on the outranking digraph.

Mots-Clefs. best k-choice decision problem, multiple criteria decision aid, bipolar-valued
outranking relation.

Introduction

In this article we discuss the problem of choosing k best decision objects (or alternatives) in
the context of multiple criteria decision aid (best k-choice problem). We situate ourselves in the
particular framework where the alternatives are compared pairwisely. Such a comparison produces
a so-called bipolar-valued outranking relation on the set of alternatives which expresses the degree
of confidence in the truth of a global pairwise preference situation.

The particular problem of selecting one best alternative (k = 1) is thoroughly discussed in [4].
In that particular work, the authors suggest a set of five pragmatic principles which underlie a
progressive search (called the RuBy method) for one best alternative in a bipolar-valued outranking
digraph. On basis of these principles, they determine the characteristics of the set of alternatives
(namely the hyperkernel) of the digraph which must be retained for further considerations in the
progressive search for the best decision object.

The work that we present in this article is based on the methodological studies of [4]. Neverthe-
less we extend the algorithm of the RuBy method to the problem of choosing k potentially best
decision alternatives. As we show, this problem can have different formulations depending on the
operational objectives.

The paper is organised as follows. In Section 1, we introduce the basic concepts and notations
which will be necessary for our future discourse. Then, in Section 2, we present three formulations
of the best k-choice problem. The third section deals with the resolution of two of these problems.
In the fourth and last section, we present a small example which shows the differences between the
two last formulations of the best k-choice problem.

1 Preliminary considerations . . .

In order to clearly present the context in which this article is situated, we first define a certain
number of useful concepts. For details on these notions, we advise the interested reader to refer
to [4].

. . . on the decision aiding process

We focus on so-called progressive decision aiding processes. They allow to progressively and inter-
actively reach the desired objective by refining the problem at different steps which require the
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interaction of the decision maker (DM). Two reasons motivate the use of such a progressive decision
aiding process.

Firstly, it allows to treat the underlying problem with a lot of care in the sense that at each
step of the refinement process, there must be well motivated reasons when it comes to drawing
conclusions. For example, in the case of the search for one best alternative, at each step of the
process, decision objects are removed from the set of potential best alternatives if and only if there
are enough well motivated arguments which are in favour of such withdrawals.

Secondly, it allows to deal with problems with limited economic resources. Indeed, it is easily
imaginable that at a given step of the decision process, all the decision objects cannot be evaluated
on each of the ideally required criteria. In the context of a progressive approach it is nevertheless
still possible to draw strong conclusions with the available information and to refine the evaluations
at a later stage.

The search for a single best choice as defined in [4] clearly integrates into this type of approaches
as it allows to explicit intermediate subsets of best decision objects which need to be reevaluated
at each step of the progressive analysis. We call a best choice recommendation (bcr) such an
intermediate recommendation. For the classical best choice decision problem, the ultimate bcr is
a single alternative.

. . . on the bipolar-valued outranking relation

Let X = {x, y, z, . . .} be the finite set of n ≥ 2 potential decision objects evaluated on a finite,
coherent family F = {1, . . . , p} of p ≥ 2 criteria. In order to model a global pairwise preference
situation between any two alternatives of X , we use a bipolar-valued outranking relation as defined
in [4].

Classically, an outranking situation xSy (x outranks y) between two decision alternatives x, y ∈
X is assumed to hold if there is a sufficient majority of criteria which supports an “at least as good
as” preferential statement and there is no criterion which raises a veto against it [10]. The formal

definition given in [4] allows to assign a valuation S̃ : X × X → L (called the bipolar-valued
characterisation) to each element of the outranking relation S ⊆ X ×X and which takes its values

in a so-called rational credibility scale L = [−1, 1]. The semantics linked to the values of S̃ are
listed hereafter:

– S̃(x, y) = +1 signifies that the statement “xSy” is certainly true;

– S̃(x, y) > 0 signifies that statement “xSy” is more true than false. A sufficient majority of
criteria warrants the truth of the outranking;

– S̃(x, y) = 0 signifies that statement “xSy” is logically undetermined, i.e. could be either true
or false;

– S̃(x, y) < 0 signifies that assertion “xSy” is more false than true. There is only a minority of
the criteria which warrants the truth of the outranking. This is equivalent to saying that a
sufficient majority of criteria warrants the truth of the negation of the outranking;

– S̃(x, y) = −1 signifies that assertion “xSy” is certainly false.

S̃(x, y) represents the degree of confidence in the truth of the outranking statement, for each

(x, y) ∈ X ×X . S̃ is called the bipolar-valued characterisation of S, or for short the bipolar-valued
outranking relation.

The truthfulness of the disjunction (resp. the conjunction) of two logical statements on an
outranking situation corresponds to the maximum (resp. the minimum) of their credibilities. The
truthfulness of the negation of a logical statement corresponds to the opposite of its credibility.
This establishes the median value 0 of L clearly as a so-called negational fixpoint [2, 3].

It is possible to recover the crisp outranking relation S as the set of pairs (x, y) ∈ X ×X such

that S̃(x, y) > 0. The set X associated to the bipolar-valued characterisation S̃ of the outranking

relation S ∈ X × X is called the bipolar-valued outranking digraph, denoted G̃(X, S̃). We write

G(X, S) the corresponding so-called strict 0-cut crisp outranking digraph associated to G̃(X, S̃).

. . . on choices, kernels and hyperkernels

This subsection lists a certain number of definitions which lead to the concept of hyperkernel of a
digraph.
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A path of order m ≤ n in G̃(X, S̃) is a sequence (xi)
m
i=1 of alternatives of X such that

S̃(xi, xi+1) ≥ 0, ∀i ∈ {1, . . . , m − 1}. A circuit of order m ≤ n is a path of order m such that

S̃(xm, x1) ≥ 0.

Definition 1. An odd chordless circuit (xi)
m
i=1 is a circuit of odd order m such that S̃(xi, xi+1) ≥

0, ∀i ∈ {1, . . . , m − 1}, S̃(xm, x1) ≥ 0 and S̃(xi, xj) < 0 otherwise.

Note here that an odd chordless circuit may contain arcs which are in an undetermined state (and
which may evolve later to a determined outranking situation in the progressive decision aid).

A choice in a given bipolar-valued outranking digraph is a non-empty subset of decision objects.
A k-choice is a choice which contains k decision objects.

Definition 2.

1. A choice Y in G̃(X, S̃) is said to be outranking (resp. outranked) if and only if x 6∈ Y ⇒

∃y ∈ Y : S̃(y, x) > 0 (resp. S̃(x, y) > 0);
2. Y is said to be independent (resp. strictly independent) if and only if for all x 6= y in Y we

have S̃(x, y) 6 0 (resp. S̃(x, y) < 0);

Let us continue by the definition of the outranking and outranked neighbourhoods in a digraph.

Definition 3.

1. The outranking neighbourhood Γ+(x) of a node (or equivalently an alternative) x of X is the
union of x and the set of alternatives which are outranked by x;

2. The outranking neighbourhood Γ+(Y ) of a choice Y is the union of the outranking neighbour-
hoods of the alternatives of Y ;

3. The private outranking neighbourhood Γ+

Y (x) of an alternative x in a choice Y is the set
Γ+(x) \ Γ+(Y \ {x}).

For a given alternative x of a choice Y , the set Γ+

Y (x) represents the personal contribution of x
to the outranking quality of Y . If the private outranking neighbourhood of x in Y is empty, this
means that, when x is dropped from this choice, Y still remains an outranking choice. From this
observation one can derive the following definition (which will be useful in Section 3).

Definition 4. A choice Y is said to be irredundant if all the alternatives of Y have non-empty
private neighbourhoods.

Definition 5 introduces the main concepts developed in [4] which allow to progressively search
for one best decision object. As we will see later in this article, these concepts are also useful in
the context of the best k-choice decision problems.

Definition 5.

1. An outranking (resp. outranked) and independent choice is called an outranking (resp. out-
ranked) kernel;

2. An outranking (resp. outranked) and strictly independent choice is called a determined out-
ranking (resp. outranked) kernel;

3. A choice Y in G̃(X, S̃) is said to be hyperindependent (resp. strictly hyperindependent) if and
only if it consists of odd chordless circuits of order p ≥ 1 which are independent (resp. strictly
independent) of each other;

4. An outranking (resp. outranked) and hyperindependent (resp. strictly hyperindependent) choice
is called an outranking (resp. outranked) hyperkernel (resp. determined hyperkernel).

Note that in point 4 of Definition 5 above, singletons are assimilated to odd chordless circuits of
order 1.

Classically, in the best choice methods like Electre I or Electre IS [9, 11], the outranking kernel(s)
of an outranking digraph are taken as bcrs in the progressive search for one best alternative.
Nevertheless, as it is shown in [4], the kernel may be too restrictive and in certain situations and
either no recommendation may be performed, or obvious bcrs may be left out. In order to overcome
this problem, the authors of [4] have defined the concept of hyperkernel as a generalisation of the
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classical kernel. They show in particular that an outranking hyperkernel can always be found in
any bipolar-valued outranking digraph.

To conclude this subsection, we need to introduce the concept of valued kernels. A choice Y in
G̃(X, S̃) may be characterised with the help of bipolar-valued membership assertions Ỹ : X → L,

denoting the credibility of the fact that x ∈ Y or not, for all x ∈ X . Ỹ is called a bipolar-valued
characterisation of Y , or for short a bipolar-valued choice in G̃(X, S̃). Similar semantics as for S̃

(see above) can be recovered for Ỹ .
The following proposition, which establishes a link between the classical graph-theoretic and

the algebraic representations of kernels has been proved in [5].

Proposition 1. The outranking (resp. outranked) kernels of G̃(X, S̃) are among the bipolar-valued

choices Ỹ satisfying the respective following bipolar-valued kernel equation systems:

max
y 6=x

[min(Ỹ (y), S̃(y, x))] = −Ỹ (x), for all x ∈ X ; (1)

max
y 6=x

[min(S̃(x, y), Ỹ (y))] = −Ỹ (x), for all x ∈ X. (2)

In [5] it is also shown that a particular subset (namely the maximal sharp (determined) choices)
of the solutions of the outranking (resp. outranked) kernel equation systems characterise the out-

ranking (resp. outranked) (determined) kernels of G̃.
In the case where the bipolar-valued outranking digraph contains odd chordless circuits, it may

happen that no solution can be found to the outranking (resp. outranked) kernel equation systems.
Nevertheless, as it is shown in [4], after applying the kernel equations to a proper modification of
the original outranking digraph, they always provide at least one outranking (resp. outranked)
hyperkernel.

. . . on the RuBy bcr

We now can turn to the RuBy bcr in the context of the search for one best alternative (1-best
choice problem). As already mentioned, in [4] the authors list a set of five pragmatic principles
which underlie a progressive search for one best decision object and which characterise the so-called
RuBy bcr.

Theorem 1. A choice in an outranking digraph G̃(X, S̃) is a RuBy bcr if and only if it is a
maximally determined strict outranking hyperkernel.

The determinateness of a choice Y in G̃(X, S̃) is given by the average value of the absolute values

of the membership assertions of its bipolar-valued characterisation Ỹ . The strictness of the out-
ranking of a choice is guaranteed if its determinateness as an outranking choice is bigger than its
determinateness as an outranked choice.

Let us now illustrate the concepts of this first section on the following example (taken from
[4]).

Example 1 Let G̃1(X1, S̃1) be a bipolar-valued outranking digraph, where X1 = {a, b, c, d, e} and

S̃1 is given in table 1 and the associated strict 0-cut crisp digraph G1(X, S) is represented in
figure 1. Note the dashed arc from b to e which represents an undetermined outranking situation.
At this stage of the progressive analysis, it could not yet be determined if b outranks e or not.

The choices {a, b, e}, {b, c, d}, as well as {a, b, c} for instance, are all outranking choices. {a, b, e},
{b, c, d}, {b, e, d}, and {a, c} are irredundant outranking choices. Choice {a, b, d, e} is an outranking
hyperkernel. The undetermined outranking relation between d and e implies that the choice is not
strictly hyperindependent. Note here that this potential bcr would have been left out if the search
was restricted to outranking kernels.

G̃1 admits an outranking kernel {a, c} and a hyperkernel {{a, b, d}, e} which is both outrank-
ing and outranked, but not with the same degree of determinateness as we may see in Table 2.
As hyperkernel {{a, b, d}, e} more outranking than outranked, we finally have two potential bcrs:
{{a, b, d}, e} and {a, c}. The first one is significantly more determined (0.5 against 0.2) than the
second one. The RuBy “best choice recommendation” therefore is {{a, b, d}, e}, where alternative
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S̃1 a b c d e

a 1.0 0.2 -1.0 -0.7 -0.8
b -0.6 1.0 0.8 1.0 0.0
c -1.0 -1.0 1.0 0.2 0.8
d 0.6 -0.6 -1.0 1.0 -0.4
e -1.0 -0.8 -0.4 -0.6 1.0

Table 1. Example 1: the bipolar-valued outranking relation

e is in an undetermined situation. In a future step of the decision aid, it might be determined
whether e should be removed or not from the bcr.

?

ec

b

a

d

Fig. 1. Example 1: the associated strict 0-cut digraph and an undetermined arc

Y {a, b, d} a b c d e D

{{a, b, d}, e}+ 0.6 -0.6 -0.6 -0.6 -0.6 0.0 0.5
{a, c} -0.2 0.2 -0.2 0.2 -0.2 -0.2 0.2

{{a, b, d}, e}− 0.0 0.0 0.0 -0.6 0.0 0.6 0.2

Table 2. Example 2: the characteristic vectors of the outranking (+) and outranked (−) hyperk-
ernels.

This preliminary section on the main results of [4] was necessary as the future discourse requires
the clear understanding of the concepts of RuBy bcr, bipolar-valued outranking relation and
digraph. Furthermore, in Section 3 we show that the resolution of the best k-choice problem can
be performed by searching for the RuBy bcr in an appropriately modified outranking digraph.

2 Different formulations of the best k-choice problem

A classical definition of the best 1-choice problem is given in [4]. From a pragmatic point of view,
the goal of the best 1-choice problem is to select a unique best alternative. Nevertheless it is less
obvious to give a single definition of the best k-choice problem. Indeed, different formulations to
the selection of k best decision objects can be given:

K1 Search for the first k best alternatives (k first-ranked);
K2 Search for a set of k alternatives better than any other coalition of k alternatives (best k-team);
K3 Search for a set of k alternatives better than all the other alternatives (best k-committee).

Let us now detail these formulations one by one.
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2.1 K1: considerations on the k first-ranked problem

This first formulation K1 corresponds probably to what people have commonly in mind when they
hear about “selecting the best k alternatives” among a set of decision objects:

Consider the k objects ranked in the first k positions of a total order or a total preorder
(commonly called a ranking).

In case of multiple criteria decision aid, such a total order or total preorder can nevertheless only
hardly be achieved in the framework of pairwise comparisons of alternatives. Indeed, the outranking
relation which results from such pairwise comparisons is in general neither transitive nor total (some
alternatives may be incomparable in terms of the outranking relation). Furthermore, in case the
outranking relation is a partial order (or a partial preorder), it is difficult to conceive what the k
first positions of the ranking could be.

These observations show that the outranking relation can difficultly be exploited directly to
solve the problem of the k first-ranked alternatives. To overcome this problem, the outranking
relation must first be exploited in order to build a total order or at least a preorder (see for
example [1] or the Electre II, III and IV methods [11] or the Promethee I and II method [7, 6]).
In that case, it is then possible to rank (possibly with ties) the alternatives from the best to the
worst one (in terms of some measure derived from the outranking relation) and to select the k first
ones. In case of ties in a preorder, selecting the k first ones might not be possible and it will be
necessary to select k′ > k alternatives.

Another possibility to achieve total comparability of the alternatives in multiple criteria decision
aid is via multi-attribute utility theory (MAUT)1. The aim of MAUT [8] is to model the preferences
of the decision maker, represented by a binary relation �, by means of an overall utility function
U : X → R such that,

x � y ⇐⇒ U(x) ≥ U(y), ∀x, y ∈ X.

The preference relation � is assumed to be complete and transitive. This type of models generate
a total order or a total preorder via the overall utilities. It is then possible to determine the k
first-ranked alternatives in the same way as already mentioned earlier in the context of outranking
methods.

From all the previous considerations, it is possible to derive a quite obvious, but nevertheless
important and very general property:

Property 1. Let Yi be the set of i first-ranked alternatives. ∀k ≤ n, if Yk−1 and Yk exist, we have

Yk−1 ⊂ Yk.

This property is simply a translation of a quite natural intuition: the k−1 first-ranked alternatives
also belong to the set of k first-ranked alternatives. This property is clearly verified in both cases
described earlier. The possibly non-existence of Yk−1 or Yk is simply due to the difficulty which
arises in case of ties in total preorders.

It is obvious that in the case where k = 1, the k first-ranked problem amounts to selecting the
first (and therefore best) alternative in the ranking.

Due to the necessity to exploit the outranking relation in order to obtain a total order or a total
preorder, we will not explore this option further here. We will rathermore focus on the remaining
two formulations K2 and K3 (which produce different results in general).

2.2 K2: introducing the best k-team problem

The second formulation of the best k-choice problem in a set X of alternatives can be summarised
by the following intuitive procedure:

Search for a set Y of cardinality k which is better than any other set of cardinality k.

1 Here we briefly leave the framework of outranking methods. We nevertheless think that it quite natural
to situate the k first-ranked problem in the context of MAUT.
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The main difficulty lies in the formal definition of the “is better than”-relation for this particular
case. Nevertheless, before dealing with this problem, let us first present practical situations in
which the determination of the best k-team is applicable.

A first potential practical context is given by any situation where teams of k persons have to
compete against each other and where each person has been evaluated individually on the family
F of criteria. In our context, a pairwise comparison of all possible teams of k persons has then to
be performed on basis of the individual outrankings.

A second kind of situations is given by facility location problems, where k locations have to
be selected simultaneously. Again, any possible combination of k locations have to be pairwisely
compared to determine which one is the most appropriate.

More generally, the best k-team problem is applicable in any situation where sets of alternatives
have to be compared. Let us now turn to a more formal definition of the best k-team problem.

In the context of K2, a k-choice is called a k-team. Recall that we situate ourselves in a
framework of pairwise comparisons of alternatives. Therefore it is quite natural to require that the
following pragmatic conditions are verified by a k-team:

T1 Inheritance
A k-team inherits the outranking and outranked properties of its members;

T2 Intra-team indiscernibility
A k-team is considered as a unity from the outside;

T3 Exclusive inter-team comparisons
Two teams are exclusively compared on basis of information related to inter-team information.

The first property originates from the following observation. If an alternative y ∈ X certainly
outranks an alternative y′ ∈ X and if y and y′ respectively belong to k-teams Y and Y ′, then this
positive information for Y and negative information for Y ′ should be reflected in the way the two
sets are compared.

The second property defines a very important characteristic of a k-team. The elements of a
k-team should act together as a coalition and when compared to the other members of the team,
a given alternative’s weakness or strength should not be regarded. This clearly states the k-team
as a coherent unity.

The third property is very important in the case where two teams which have a non-empty
intersection are compared. In such a delicate situation, we require that the two sets of alternatives
are only compared on basis of information which is not linked to their intersection. This will be
clarified in the example which will be discussed hereafter.

Let us present a short example which allows to better understand the necessity of the three
pragmatic principles T1 to T3.

Example 2 Let us consider a set of 4 alternatives X2 = {a, b, c, d} and an outranking relation
built from pairwise comparisons of these decision objects, S2 = {(a, d), (b, c), (c, d)}. Recall that

S2 can be recovered from its bipolar-valued characterisation S̃2 (see Table 3 and Figure 2). Let us
analyse how the three 2-teams {a, b}, {a, c} and {b, c} should be pairwisely compared.

Sets {a, b} and {b, c} have alternative b in common, which is outranking alternative c. The arc
between b and c is internal to the set {b, c}. In accordance with principle T3, this information should
not be taken into account when comparing {a, b} and {b, c}. Therefore with the available outranking
information, these two sets are incomparable.

Sets {a, b} and {a, c} have alternative a in common. In that case, the arc between b and c is
clearly inter-team information and the set {a, b} should outrank the set {a, c}.

It is now clearer how the comparison of the sets of alternatives in the best k-team problem should
be performed on basis of the outranking relation built on pairs of alternatives. A detailed analysis
of this example is given in Section 4.

The three pragmatic properties above lead very naturally to the following literal definition of
the outranking relation on the set of k-teams:

Definition 6. Let Y, Y ′ ⊂ X be two k-teams. Y outranks (resp. is outranked by) Y ′ if ∃(y, y′) ∈
(Y × Y ′) \ (Y ∩ Y ′)2 s.t. ySy′ (resp. y′Sy).
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S̃2 a b c d
a 1 < 0 < 0 > 0
b < 0 1 > 0 < 0
c < 0 < 0 1 > 0
d < 0 < 0 < 0 1

Table 3. Example 2: Generic table representing S̃2

c

b

a

d

Fig. 2. Example 2: 0-cut outranking digraph

This definition clearly shows how the k-team should inherit the outranking and outranked char-
acteristics of its elements, in accordance with principle T1. We will detail the construction of the
outranking relation between pairs of sets of alternatives in Section 3. Note already at this point
that due to principle T2, no condition is imposed on the incomparability (or independence) of the
alternatives in a best k-team.

In Subsection 3.1 we will show how to solve the best k-team problem by basing our discourse
on the previous pragmatic considerations, Definition 6 and the RuBy best choice method. To
conclude this subsection, let us situate the best k-team problem in the context of progressive
decision aid methods. In practice the ultimate objective is to determine a unique k-team which
is considered as the best set of k alternatives. Nevertheless, as already mentioned in Section 1 it
may be necessary to go through a few intermediate steps, where at each step, some k-teams are
rejected for well motivated reasons. As we will show in Section 3, the problem of the best k-team
can easily be solved by using the progressive RuBy method for the 1-best choice on a modified
outranking digraph.

2.3 K3: introducing the best k-committee problem

In this subsection we start by giving a third intuitive definition of what the selection of k best
alternatives could be:

Search for a set Y of cardinality k which is in its entirety better than all the other alterna-
tives.

Again, the problem here is to understand what the better than-relation signifies in this particular
case. Similarly as for the K2 formulation, let us start by presenting a type of problem that the
search for the best k-committee could address.

A potential practical context is given by any situation where in a set X of persons, a subset
Y of k of them has to direct, pilot or command the remaining ones (for example a committee). In
that case, each non-retained person of X \ Y has to be considered as “less preferred” than Y in its
collectiveness.

The main difference with the previous formulation K2 is that here, sets of alternatives have
to be compared to single alternatives. In this context, a k-choice is called a k-committee. In the
search for the best k-committee, we require that the following pragmatic principles are verified for
any k-committee:

C1 Inheritance
A k-committee inherits the outranking and outranked properties of its members;
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C2 Intra-committee indiscernibility
A k-committee should be considered as a unity from the outside;

C3 Inter-committee comparisons
k-committees are pairwisely compared via the alternatives they are outranking.

Principles C1 and C2 are similar to T1 and T2 for the best k-team problem of Subsection 2.2.

Principle C3 clearly shows the main difference between the best k-team and the best k-committee
problem. Committees are compared via the single alternatives they outrank, whereas teams are
compared to other teams.

Let us analyse on the reference example of Subsection 2.2 how committees behave in an out-
ranking digraph.

Example 2 (continued) Let us analyse how the three 2-committees {a, b}, {a, c} and {b, c}
behave when compared to the remaining alternatives.

Set {a, b} has to be compared to alternatives c and d. c is outranked by b and d is outranked
by a. Therefore, the set {a, b} should outrank both b and d (inheritance principle C1). Set {b, c}
has to be compared to alternatives a and d. A similar reasoning as before leads to saying that the
set {b, c} should outrank d but be incomparable to a. Finally, the set {a, c} should be outranked by
alternative b and outrank alternative d.

Once again, a detailed analysis of this example in the case of the problem of searching for the best
k-committee is presented in Section 4.

The three pragmatic principles lead to a definition of the outranking relation in the case of the
k-committee problem.

Definition 7. Let Y ⊂ X be a k-committee and x ∈ X. Y outranks x if ∃y ∈ Y s.t. ySx.

Again, this definition shows that a k-committee inherits the outranking and outranked charac-
teristics of its elements. In Section 3 we will detail the construction the outranking relation between
sets of alternatives and single ones. Note again that no condition is given on the incomparability
(or independence) of the alternatives in a k-committee. Similarly as for the best k-team problem,
it is once again possible to situate the best k-committee problem in the framework of progressive
outranking methods.

This section has presented three formulations for the best k-choice decision problem in the
framework of outranking methods. In Subsection 2.1 we explained why we focus on the two prob-
lems K2 and K3 in this paper. In the following section we detail the resolution of the two best
k-choice problems by means if the RuBy best choice method.

3 Solving K2 and K3

In this section we present how both formulations K2 and K3 of the best k-choice problem can be
solved by using the progressive RuBy best choice decision method. In both cases the bipolar-valued
outranking digraph, built on the set of alternatives, needs to be modified to obtain the desired bcr.
The main motivation to use the RuBy method because it has strong pragmatic foundations which
are developed in [4].

3.1 K2: best k-team

Recall that the goal of the best k-team problem is to select a set of k alternatives which is better
than any other set of k alternatives. In view of the discussions of Subsection 2.2 one can easily
understand that the best k-team problem can be solved in an outranking digraph G̃t(Xt, S̃t) where
the nodes represent all possible sets of k alternatives.

If the outranking relation S̃t is appropriately defined (see Definition 6) , then the progressive
search for the best k-team amounts to the progressive search for the RuBy bcr in that new
digraph. Let us now detail the construction of G̃t.
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The nodes Xt of G̃t represent all possible subsets of k alternatives of X . The cardinality of Xt

is therefore
(
n
k

)
(which might be quite large for certain combinations of n and k). We label the

nodes of Xt by capital letters in the sequel2 as they represent subsets of X .
The outranking relation S̃t is built as follows (based on Definition 6):
Let Y, Y ′ ⊂ X be two k-teams. Y outranks (resp. is outranked by) Y ′ if ∃(y, y′) ∈ (Y × Y ′) \

(Y ∩ Y ′)2 s.t. ySy′ (resp. y′Sy).

∀(V, W ) ∈ Xt × Xt :

S̃t(V, W ) = max{S̃(v, w) : (v, w) ∈ (V × W ) \ (V ∩ W )2}.
(3)

The crisp outranking relation St associated to S̃t can be recovered as the set of pairs (V, W ) ∈

Xt × Xt such that S̃t(V, W ) > 0.
As mentionned in Section 1, the max operator models the truthfulness of the disjunction of

logical statements. In fact, for a k-team Y to outrank another k-team Y ′, it is sufficient that one
alternative of Y (positively) outranks another alternative of Y ′. Furthermore, this aggregation of
the outrankings allows to model complementarity among the different alternatives of a k-team and
the alternatives of a k-team are considered as a unity. All in all, the construction of S̃t as detailed
in formula 3.1 clearly satisfies principles T1, T2 and T3.

It is now obvious that all the concepts introduced in Section 1 can be used in G̃t(Xt, S̃t) and

have a signification in G̃(X, S̃) in terms of subsets of alternatives. For example, a hyperindependent

choice in G̃t(Xt, S̃t) is a choice in G̃(X, S̃) which is composed of independent odd chordless circuits
of subsets of X .

The objective of K2 – select a set of k alternatives which is better than any other set of k
alternatives – can now be reinterpreted in G̃t(Xt, S̃t). The goal of K2 in G̃t(Xt, S̃t) is to select one
unique node which is considered as the best one. This definition is very comparable to the search
for one best alternative in an outranking digraph (see Section 2 or [4]).

Consequently, in the context of a progressive approach for the determination of the best k-
team, the solution is to apply the RuBy method to the digraph G̃t(Xt, S̃t). As already mentioned,
it will exploit the bipolar-valued outranking relation in order to extract at least one maximally
determined strict outranking hyperkernel (the bcr). The elements of this hyperkernel are subsets
of k elements of X which are incomparable (or considered as equivalent in an odd chordless circuit).

In the case where the bcr is unique and only contains one element V of G̃t(Xt, S̃t), then the
problem is solved and V is a subset of k alternatives of X which can be considered as the best
k-team. If the bcr contains more than one element of G̃t(Xt, S̃t), then these k-teams should not be
considered as the best ones, but merely as a collection of hardly comparable subsets of alternatives,
among which the best k-team can be found (the not selected k-teams have been rejected for a
well motivated reason). Similarly, in the case of multiple bcrs of equal determinateness, it is
recommendable to continue the progressive approach with the union of the elements of the bcrs.
Indeed, the only certain information is that some k-teams could be set aside for well motivated
reasons. In the next step of the progressive approach the decision maker can restrict his analysis to
these potential k-teams and refine their evaluations or evaluate their members on further criteria.
At this step, the rejected subsets of k alternatives are rejected for well motivated reasons and can
be left out without any regret. The ultimate step of this progressive approach will then be the
determination of the best k-team.

One can easily see that the search for one best alternative as defined in [4] is a particular case
of the best k-team problem for which k = 1.

3.2 K3: best k-committee

Recall that the goal of the search for the best k-committee is to determine a set Y of cardinality
k which is in its entirety better than all the other alternatives. The problem will this time again
be solved in a modified bipolar-valued outranking digraph G̃c(Xc, S̃c), but this time its construc-
tion is less obvious than for K2. We will nevertheless show in this subsection that after a proper
construction of G̃c, the problem of finding the best k-committee is again a particular case of the
RuBy method in that new digraph.

2 For the sake of simplicity, an element Z of X
t will represent a node of X

t as well as a subset of X.
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As this time the comparison is between sets of nodes and single alternatives, the set Xc is
defined as the union of X and a set of supplemental nodes which represent all possible subsets
of k nodes of X . We use the same conventions as for K2 (see footnote 2) and therefore label the
supplemental nodes (called k-nodes) in Xc by capital letters (and the nodes of X in Xc are still
labelled with lower case letters).

The construction of S̃c is somehow trickier. The original relation S̃ is not included into S̃c.
Then S̃c is built as follows:

∀(V, W ) ∈ Xc × Xc : S̃c(V, W ) = 0; (1)

∀(V, w) ∈ Xc × Xc s.t. w ∈ V : S̃c(V, w) = 1 and S̃t(w, V ) = 1; (2)

∀(V, w) ∈ Xc × Xc s.t. w /∈ V : S̃c(V, w) = max{S̃(v, w) : v ∈ V }; (3)

∀(v, W ) ∈ Xc × Xc s.t. v /∈ W : S̃c(v, W ) = max{S̃(v, w) : w ∈ W}. (4)

∀(v, w) ∈ Xc × Xc : S̃c(v, w) = 0 (5)

Let us explain this construction in further details. Formulae (1) and (5) puts any two k-committees
and any two single alternatives in an undetermined situation. Two k-committees are compared
via the alternatives they outrank. This motivates why they are pairwisely put in undetermined
situations. As we will see later in the resolution algorithm, this is necessary for the first step
which is a filtering stage. A similar reasoning justifies why pairs of alternatives are also put in an
undetermined situation. In Formula (2) k-committees are quite naturally considered as equivalent
to their members. Formulae (3) and (4) allow the comparison of k-committees to the remaining
alternatives, pursuant to Definition 7.

Let us detail the determination of the best k-committee, at a given step of the progressive
search. Recall that the best k-committee is a set of k alternatives which is in its entirety better
than all the other ones. In G̃c this amounts to searching for at least one k-node V which outranks
all the alternatives x ∈ X .

The algorithm for the progressive search of the k-committee is a 2-step one:

Algorithm

Input: G̃c(Xc, S̃c)

1. Search for the set Ic of irredundant outranking choices of G̃c(Xc, S̃c) containing exclusively
k-nodes;

2. ∀ Y c ∈ Ic:

- Remove any k-nodes from Xc which are not in Ic (:= Xc
∗);

- if |Y c| = 1 then determine the RuBy best choice in G̃c
∗(X

c
∗ , S̃

c);
- else :

i. modify S̃c as follows into S̃c
∗:

S̃c
∗(V, W ) = −1 ∀(V, W ) ∈ Y c × Y c;

S̃c
∗(x, y) = S̃c(x, y) else.

ii. Determine the RuBy best choice in G̃c
∗(X

c
∗, S̃

c
∗) (containing exclusive k-nodes);

3. Select the most determined bipolar-valued RuBy best choice(s) among all those determined at
step 2;
Output: a single (resp. a set of) RuBy bcr(s).

In the present context, the output RuBy bcrs each contains independent potential best k-
committees.

Let us analyse this algorithm in further details. Due to the particular way we construct G̃c (and

in particular S̃c), the output of the first step is one or more irredundant outranking choices contain-
ing exclusively k-nodes (the potential candidates for the best k-committee). This shows that the
first stage of the algorithm is used for filtering purposes. In the second step, the RuBy best choice
algorithm is applied to a modified graph for each irredundant outranking choice determined in the
first step. Each graph G̃c

∗ is composed of the original alternatives and an irredundant outranking
choice. The modification of the outranking relation consists in removing the undetermined arcs
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that link the potential k-committees in the outranking choice. This allows the RuBy algorithm to
determine the desired strict bcr.

Similarly as earlier, if the output is not a single k-node, then the progressive search must be
reapplied to the set of potential best k-committees (and the set of alternatives which compose the
k-committees).

4 Example

In this section we develop a detailed description of the example presented in Section 2. In order to
simplify the notations, we will label the alternatives of Xt for example by concatenations of the
labels of the alternatives of X . For example, the node of Xt representing the subset {a, b, c} of X
will be labelled abc.

ab

ad

bc

bd

cdac

Fig. 3. 0-cut outranking digraph for the best 2-team problem

abc

abd bcd

acd

Fig. 4. 0-cut outranking digraph for the best 3-team problem

Two possible best k-team searches can be performed on this example (namely for k = 2 and
k = 3). Both situations are represented on Figures 3 and 4.

The RuBy bcr for the 2-team problem is given by the set
{
{a, b}, {b, c}

}
. These two potential

candidates as a best 2-team are incomparable and are therefore selected for a further analysis. This
signifies that in the next step of the progressive approach, the decision maker can focus on these
two subsets of alternatives in order to determine which one is the best one. The other subsets of
2 alternatives can already be rejected without any regret at this stage of the progressive decision
aiding process.

The RuBy bcr for the 3-team problem is given by the set
{
{a, b, c}, {a, c, d}

}
. Again, these two

potential candidates for a best 3-team are incomparable and the best candidate might be found in
a further step of the decision aiding process.

In case of the search for the best k-committee, again two searches can be performed (namely for
k = 2 and k = 3). Both situations are represented on Figures 5 and 6. The dotted (resp. dashed)

arcs represent the 0-cut relations of type (1) (resp. (2)) from the definition of S̃c. As one can clearly
see, they are merely technical arcs to allow the use of the RuBy bcr algorithm.
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ab

cd

ad

ac

bc

bd

a b

cd

Fig. 5. 0-cut outranking digraph for the best 2-committee problem

a b

cd

abd

acd bcd

abc

Fig. 6. 0-cut outranking digraph for the best 3-committee problem

The RuBy bcr for the 2-committee problem is given by the choice {a, b}. Indeed, the set {a, b}
clearly respects the definition of the 2-committee, namely that both alternatives are outranking in
their entirety c and d.

For the best 3-committee problem, two potential k-sets could be considered: either the choice
{a, b, c} or the choice {a, b, d}. The final selection of either one (or both) of these choices as bcr(s)
will depend on their determinateness and / or their strictness. Both concepts directly depend on
the precise values of the bipolar-valued characterisations of the two potential choices.

Concluding remarks

This article presents our work on the problem of the selection of k best alternatives in the context
of multiple criteria decision aid in presence of a bipolar-valued outranking relation. We show that
there are (at least) three formulations to the best k-choice decision problem and give solutions for
two of them.
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