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Welcome

Marc Pirlot (UMONS) and Vincent Mousseau (ECP) are welcoming you to the first DA2PL Work-
shop. The aims of this workshop “from multiple criteria decision Aid to Preference Learning” is to
bring together researchers involved in Preference Modeling and Preference Learning and identify re-
search challenges at the crossroad of both research fields.

It is a great pleasure to provide, during two days, a positivecontext for scientific exchanges and
collaboration : four invited speakers will make a presentation, twelve papers will be presented, and we
will have a poster session and a roundtable. We wish to all participants a fruitful workshop, and an
exiting and enjoyable time in Mons.

Marc Pirlot and Vincent Mousseau

Aim of the workshop

The need for search engines able to select and rank order the pages most relevant to a user’s query
has emphasized the issue of learning the user’s preferencesand interests in an adequate way. That is
to say, on the basis of little information on the person who queries the Web, and, in almost no time.
Recommender systems also rely on efficient preference learning.

On the other hand, preference modeling has been an auxiliarydiscipline related to Multicriteria de-
cision aiding for a long time. Methods for eliciting preference models, including learning by examples,
are a crucial issue in this field.

It is quite natural to think and to observe in practice that preference modeling and learning are
two fields that have things to say to one another. It is the maingoal of the present workshop to bring
together researchers involved in those disciplines, in order to identify research issues in which cross-
fertilization is already at work or can be expected. Communications related to successful usage of
explicit preference models in preference learning are especially welcome as well as communications
devoted to innovative preference learning methods in MCDA.The programme of the workshop will
consist of three or four invited lectures and about 15 selected research communications.

Support

This workshop is organized in the framework of the GDRI (Groupement de Recherche Interna-
tional) “Algorithmic Decision Theory”, which is recognized and supported by CNRS (France), FNRS
(Belgium), FNR (Luxemburg).

The support of Fonds de la Recherche Scientifique (FNRS, Belgium), Faculté Polytechnique UMONS,
Ecole Centrale Paris and Belgian Society for Operational Research (SOGESCI-BVWB) is gratefully
acknowledged.
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Organization

The DA2PL workshop is jointly organized by Marc Pirlot, University of Mons (UMONS), Faculté
Polytechnique, Belgium, and Vincent Mousseau, Ecole Centrale Paris (ECP), France

The workshop is one in a series of events organized for commemorating the 175th anniversary of
the foundation of the Faculté Polytechnique de Mons

The Faculté was founded in 1837 by A. Devillez and Th. Guibal,two engineers from Ecole Cen-
trale de Paris ! !

It has been the first engineering school in Belgium (under thename “Ecole des Mines du Hainaut”)

Program committee

– Raymond Bisdorff (University of Luxembourg, Luxembourg),
– Craig Boutillier (University of Toronto, Canada),
– Denis Bouyssou (Paris Dauphine University, France),
– Ronen Brafman (Ben Gurion University, Israel),
– Bernard De Baets (Ghent University, Belgium),
– Yves De Smet (Université libre de Bruxelles, Belgium),
– Luis Dias (University of Coimbra, Portugal),
– Philippe Fortemps (University of Mons, Belgium),
– Patrick Meyer (Telecom Bretagne, France),
– Vincent Mousseau (Ecole Centrale, Paris),
– Patrice Perny (Pierre and Marie Curie University, France),
– Marc Pirlot (University of Mons, Belgium),
– Ahti Salo (Aalto University, Finland),
– Alexis Tsoukias (Paris Dauphine University, France),
– Aida Valls (Universitat Rovira I Virgili, Catalonia, Spain),
– Paolo Viappiani (Aalborg University, Denmark)

Organizing committee

– Valérie Brison, MATHRO, Faculté Polytechnique, Université de Mons
– Olivier Cailloux, Laboratoire de Génie Industriel, EcoleCentrale Paris
– Yves De Smet, CODE-SMG, Ecole Polytechnique, Université libre de Bruxelles
– Philippe Fortemps, MATHRO, Faculté Polytechnique, Université de Mons
– Massimo Gurrieri, MATHRO, Faculté Polytechnique, Université de Mons
– Vincent Mousseau, Laboratoire de Génie Industriel, EcoleCentrale Paris, France
– Wassila Ouerdane, Laboratoire de Génie Industriel, EcoleCentrale Paris
– Marc Pirlot, MATHRO, Faculté Polytechnique, Université de Mons
– Xavier Siebert, MATHRO, Faculté Polytechnique, Université de Mons
– Arnaud Vandaele, MATHRO, Faculté Polytechnique, Université de Mons
– Laurence Wouters, MATHRO, Faculté Polytechnique, Université de Mons
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PROGRAM

Thursday November 15th, 2012

9h00 Registration

9h15 Welcoming Address

9h30 Session 1

– Invited speaker : "Preference Learning : an Introduction", page 1
Eyke Hüllermeier,
Department of Mathematics and Computer Science, Philipps-Universität Marburg, Germany

The topic of "preferences" has recently attracted considerable attention in artificial intelligence
in general and machine learning in particular, where the topic of preference learning has emer-
ged as a new, interdisciplinary research field with close connections to related areas such as
operations research, social choice and decision theory. Roughly speaking, preference learning
is about methods for learning preference models from explicit or implicit preference informa-
tion, typically used for predicting the preferences of an individual or a group of individuals.
Approaches relevant to this area range from learning special types of preference models, such as
lexicographic orders, over “learning to rank” for information retrieval to collaborative filtering
techniques for recommender systems. The primary goal of this tutorial is to survey the field of
preference learning in its current stage of development. The presentation will focus on a syste-
matic overview of different types of preference learning problems, methods and algorithms to
tackle these problems, and metrics for evaluating the performance of preference models induced
from data.

10h30 Coffee break

11h00 Session 2

– “A New Rule-based Label Ranking Method”, pages 3-13
M. Gurrieri1, X. Siebert1, Ph. Fortemps1, S. Greco2 and R. Slowinski3
1 MATHRO, Faculté Polytechnique, UMONS,
2 University of Catania, Italy,
3 Poznan University of Technology, Poland
This work focuses on a particular application of preferenceranking, wherein the problem is to
learn a mapping from instances to rankings over a finite set oflabels, i.e. label ranking. Our
approach is based on a learning reduction technique and provides such a mapping in the form of
logical rules : if [antecedent] then [consequent], where [antecedent] contains a set of conditions,
usually connected by a logical conjunction operator (AND) while [consequent] consists in a
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ranking (linear order) among labels. The approach presented in this paper mainly comprises
four phases : preprocessing, rules generation, classification and ranking generation.

– “Preference-based clustering of large datasets”, pages 14-20
A. Olteanu1 and R. Bisdorff1
1 Université du Luxembourg
Clustering has been widely studied in Data Mining literature, where, through different measures
related to similarity among objects, potential structuresthat exist in the data are uncovered. In
the field of Multiple Criteria Decision Analysis (MCDA), this topic has received less attention,
although the objects in this case, called alternatives, relate to each other through measures of
preference, which give the possibility of structuring themin more diverse ways. In this paper
we present an approach for clustering sets of alternatives using preferential information from a
decision-maker. As clustering is dependent on the relations between the alternatives, clustering
large datasets quickly becomes impractical, an issue we tryto address by extending our approach
accordingly.

– “Learning the parameters of a multiple criteria sorting method from large sets of assignment
examples”, pages 21-31
O. Sobrie1,2, V. Mousseau1 and M. Pirlot2
1 LGI, Ecole Centrale Paris,
2 MATHRO, Faculté Polytechnique, UMONS
ELECTRE TRI is a sorting method used in multiple criteria decision analysis. It assigns each
alternative, described by a performance vector, to a category selected in a set of pre-defined
ordered categories. Consecutive categories are separatedby a profile. In a simplified version
proposed and studied by Bouyssou and Marchant and called MR-Sort, a majority rule is used
for assigning the alternatives to categories. Each alternative a is assigned to the lowest category
for which a is at least as good as the lower profile delimiting this category for a majority of
weighted criteria. In this paper, a new algorithm is proposed for learning the parameters of this
model on the basis of assignment examples. In contrast with previous work ([7]), the present
algorithm is designed to deal with large learning sets. Experimental results are presented, which
assess the algorithm performances with respect to issues like model retrieval, computational
efficiency and tolerance for error.

– “A piecewise linear approximation of PROMETHEE II’s net flow scores”, pages 32-39
S. Eppe1 and Y. De Smet1
1 CoDE, Université Libre de Bruxelles
Promethee II is a prominent outranking method that builds a complete ranking on a set of actions
by means of pairwise action comparisons. However, the number of comparisons increases qua-
dratically with the number of actions, leading to computation times that may become prohibitive
for large decision problems. Practitioners generally seemto alleviate this issue by down-sizing
the problem, a solution that may not always be acceptable though. Therefore, as an alternative,
we propose a piecewise linear model that approximates Promethee II’s net ow scores without
requiring costly pairwise comparisons : our model reduces the computational complexity (with
respect to the number of actions) from quadratic to linear, at the cost of some misranked actions.
Experimental results on artificial problem instances show adecreasing proportion of those mis-
ranked actions as the problem size increases. This observation leads us to provide empirical
bounds above which the Promethee II-ranking of an action setis satisfyingly approximated by
our piecewise linear model.
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13h00 Lunch

14h30 Session 3

– Invited speaker : “Principled Techniques for Utility-based Preference Elicitation in Conversa-
tional Systems”, page 40
Paolo Viappiani,

CNRS-LIP6, Université Pierre et Marie Curie, Paris
Preference elicitation is an important component of many applications, such as decision support
systems and recommender systems. It is however a challenging task for a number of reasons.
First, elicitation of user preferences is usually expensive (w.r.t. time, cognitive effort, etc.). Se-
cond, many decision problems have large outcome or decisionspaces. Third, users are inherently
“noisy” and inconsistent.
Adaptive utility elicitation tackles these challenge by representing the system knowledge about
the user in form of “beliefs” about the possible utility functions, that are updated following user
responses ; elicitation queries can be chosen adaptively given the current belief. In this way, one
can often make good (or even optimal) recommendations with sparse knowledge of the user’s
utility function.
We analyze the connection between the problem of generatingoptimal recommendation sets and
the problem of generating optimal choice queries, considering both Bayesian and regret-based
elicitation. Our results show that, somewhat surprisingly, under very general circumstances, the
optimal recommendation set coincides with the optimal query.

15h30 Coffee break

16h00 Session 4

– “Using Choquet integral in Machine Learning : what can MCDA bring ?”, pages 41-47
D. Bouyssou1, M. Couceiro1, C. Labreuche2, J.-L. Marichal3 and B. Mayag1
1 CNRS-Lamsade, Université Paris Dauphine,
2 Thales,
3 Université du Luxembourg.
In this paper we discuss the Choquet integral model in the realm of Preference Learning, and
point out advantages of learning simultaneously partial utility functions and capacities rather
than sequentially, i.e., first utility functions and then capacities or vice-versa. Moreover, we
present possible interpretations of the Choquet integral model in Preference Learning based on
Shapley values and interaction indices.

– “On the expressiveness of the additive value function and theChoquet integral models”, pages
48-56
P. Meyer1 and M. Pirlot2
1 Institut Télécom, Télécom Bretagne,
2 MATHRO, Faculté Polytechnique, UMONS
Recent - and less recent - work has been devoted to learning additive value functions or a Cho-
quet capacity to represent the preference of a decision maker on a set of alternatives described
by their performance on the relevant attributes. In this work we compare the ability of related
models to represent rankings of such alternatives. Our experiments are designed as follows. We
generate a number of alternatives by drawing at random a vector of evaluations for each of
them. We then draw a random order on these alternatives and weexamine whether this order is
representable by a simple weighted sum, a Choquet integral with respect to a 2- or 3-additive
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capacity, an additive value function in general or a piecewise-linear additive value function with
2 or 3 pieces. We also generate non preferentially independent data in order to test to which
extent 2- or 3-additive Choquet integrals allow to represent the given orders. The results explore
how representability depends on varying the numbers of alternatives and criteria.

– “Using set functions for multiple classifiers combination”, pages 57-62
F. Rico1, A. Rolland1,
1 Laboratoire ERIC - Université Lumière Lyon
In machine learning, the multiple classifiers aggregation problems consist in using multiple clas-
sifiers to enhance the quality of a single classifier. Simple classifiers as mean or majority rules
are already used, but the aggregation methods used in votingtheory or multi-criteria decision
making should increase the quality of the obtained results.Meanwhile, these methods should
lead to better interpretable results for a human decision-maker. We present here the results of a
first experiment based on the use of Choquet integral, decisive sets and rough sets based methods
on four different datasets.

– “Preference Learning using the Choquet Integral”, page 63
E. Hüllermeier1
1 Department of Mathematics and Computer Science, Philipps-Universität Marburg, Germany
This talk advocates the (discrete) Choquet integral as a mathematical tool for preference lear-
ning. Being widely used as a flexible aggregation operator infields like multiple criteria decision
making, the Choquet integral suggests itself as a natural target for learning preference models.
From a machine learning perspective, it can be seen as a generalized linear model that combines
monotonicity and flexibility in a mathematically sound and elegant manner. Besides, it exhibits
a number of additional features, including suitable means for supporting model interpretation.
The learning problem itself essentially comes down to specifying the fuzzy measure in the inte-
gral representation on the basis of the preference data given. The talk will specifically address
theoretical as well as methodological and algorithmic issues related to this problem. Moreover,
applications to concrete preference learning problems such as instance and object ranking will
be presented.

Friday November 16th, 2012

9h Session 5

– Invited speaker : “Ranking Problems, Task Losses and their Surrogates”, page 65
Krzysztof Dembczynski,
Laboratory of Intelligent Decision Support Systems, Poznan University of Technology

From the learning perspective, the goal of the ranking problem is to train a model that is able
to order a set of objects according to the preferences of a subject. Depending on the prefe-
rence structure and training information, one can distinguish several types of ranking problems,
like bipartite ranking, label ranking, or a general problemof conditional rankings, to mention
a few. To measure the performance in the ranking problems oneuses many different evaluation
metrics, with the most popular being Pairwise Disagreement(also referred to as rank loss), Dis-
counted Cumulative Gain, Average Precision, and Expected Reciprocal Rank. These measures
are usually neither convex nor differentiable, so it is, in general, infeasible to optimize them
directly. Therefore they are sometimes referred to as task losses, and in the learning algorithms
one rather employs surrogate losses to facilitate the optimization problem. The question, howe-
ver, arises whether we can design for a given ranking problema surrogate loss that will provide
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a near-optimal solution with respect to a given task loss. For simple ranking problems and some
task losses the answer is positive, but it seems that in general the answer is rather negative. Du-
ring the talk we will discuss several results obtained so far, with the emphasis on the bipartite
and multilabel ranking problem and the pairwise disagreement loss, in which case very simple
surrogate losses lead to the optimal solution.

10h00 Coffee break + Poster session

– "Preference Learning to Rank : An Experimental Case Study", M. Abbas, USTHB, Alger, Al-
gerie

– "From preferences elicitation to values, opinions and verisimilitudes elicitation", I. Crevits, M.
Labour, Université de Valenciennes- pages 66-73

– "Group Decision Making for selection of an Information System in a Business Context", T.
Pereira, D.B.M.M Fontes, Porto, Portugal - pages 74-82

– "Ontology-based management of uncertain preferences in user profiles", J. Borras, A. Valls, A.
Moreno, D. Isern, Universitat Rovira i Virgili, Tarragona -pages 83-89

– "Optimizing on the efficient set. New results", D. Chaabane, USTHB, Alger, Algerie

11h00 Session 6

– Roundtable : "From Multiple Criteria Decision Analysis to Preference Learning"
Participants : E. Hüllermeier, P. Viapianni, K. Dembczynski

12h00 Lunch

13h30 Session 7

– Invited speaker : “Learning GAI networks”, page 90
Yann Chevaleyre,
LIPN, Université Paris 13

Generalized Additive Independence (GAI) models have been widely used to represent utility
functions. In this talk, we will address the problem of learning GAI networks from pairwise
preferences. First, we will consider the case where the structure of the GAI network is known of
bounded from above. We will see how this problem can be reduced to a kernel learning problem.
Then, we will investigate the structure learning problem. After presenting the computational of
algorithms can be used to solve this problem.

14h30 Coffee break

15h00 Session 8

– “On measuring and testing the ordinal correlation between valued outranking relations”, pages
91-100
R. Bisdorff1,
1 University of Luxembourg
We generalize Kendall’s rank correlation measure to valuedrelations. Motivation for this work
comes from the need to measure the level of ap- proximation that is required when replacing a
given valued outranking with a convenient weak ordering recommendation.
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– “Elicitation of decision parameters for thermal comfort on the trains”, pages 101-107
L. Mammeri1,2, D. Bouyssou1, C. Galais2, M. Ozturk1, S. Segretain2 and C. Talotte2
1 CNRS-Lamsade, Université Paris-Dauphine,
2 SNCF
We present in this paper a real world application for the elicitation of decision parameters used in
the evaluation of thermal comfort in high speed trains. The model representing the thermal com-
fort is a hierarchical one and we propose to use different aggregation methods for different levels
of the model. The methods used are rule-based aggregation, Electre Tri and 2-additive Choquet.
We show in this paper the reasons of the choice of such methodsand detail the approach used
for the elicitation of the parameters of these methods.

– “Dynamic managing and learning of user preferences in a content-based recommender system”,
pages 108-114
L. Marín1, A. Moreno1, D. Isern1 and A. Valls1
1 Universitat Rovira i Virgili, Tarragona
The main objective of the work described in this paper is to design techniques of profile learning
to enable a Recommender System to automatic and dynamicallyadapt preferences stored about
the users in order to increase the accuracy of the recommendations. The alternatives (or set of
possible solutions to the recommendation problem) are defined by multiple criteria that can be
either numerical or categorical. A study of the performanceof the whole designed techniques so
far is also included.

– “An algorithm for active learning of lexicographic preferences”, pages 115-122
F. Delecroix1, M. Morge1, J.-Chr. Routier1
1 Université Lille 1
At the crossroad of preference learning and multicriteria decision aiding, recent research on
preference elicitation provide useful methods for recommendation systems. In this paper, we
consider (partial) lexicographic preferences. In this way, we can consider dilemmas and we
show that these situations have a minor impact in practical cases. Based on this observation, we
propose an algorithm for active learning of preferences. This algorithm solve the dilemmas by
suggesting concrete alternatives which must be ranked by the user.

17h00 Closing session
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Session 1

Invited speaker : Eyke Hüllermeier

Department of Mathematics and Computer Science, Philipps-Universität Marburg, Germany
"Preference Learning : an Introduction",

The topic of "preferences" has recently attracted considerable attention in artificial intelligence
in general and machine learning in particular, where the topic of preference learning has emer-
ged as a new, interdisciplinary research field with close connections to related areas such as
operations research, social choice and decision theory. Roughly speaking, preference learning
is about methods for learning preference models from explicit or implicit preference informa-
tion, typically used for predicting the preferences of an individual or a group of individuals.
Approaches relevant to this area range from learning special types of preference models, such as
lexicographic orders, over “learning to rank” for information retrieval to collaborative filtering
techniques for recommender systems. The primary goal of this tutorial is to survey the field of
preference learning in its current stage of development. The presentation will focus on a syste-
matic overview of different types of preference learning problems, methods and algorithms to
tackle these problems, and metrics for evaluating the performance of preference models induced
from data.
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Session 2

– “A New Rule-based Label Ranking Method”,
M. Gurrieri1, X. Siebert1, Ph. Fortemps1, S. Greco2 and R. Slowinski3
1 MATHRO, Faculté Polytechnique, UMONS,
2 University of Catania, Italy,
3 Poznan University of Technology, Poland

– “Preference-based clustering of large datasets”,
A. Olteanu1 and R. Bisdorff1
1 Université du Luxembourg

– “Learning the parameters of a multiple criteria sorting method from large sets of assignment
examples”,
O. Sobrie1,2, V. Mousseau1 and M. Pirlot2
1 LGI, Ecole Centrale Paris,
2 MATHRO, Faculté Polytechnique, UMONS

– “A piecewise linear approximation of PROMETHEE II’s net flow scores”,
S. Eppe1 and Y. De Smet1
1 CoDE, Université Libre de Bruxelles
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Reduction from Label Ranking to Binary Classification

Massimo Gurrieri a,1, Xavier Sieberta, Philippe Fortempsa, Salvatore Grecob; Roman Słowińskic

a UMons, Rue du Houdain 9, 7000 Mons, Belgium
b Faculty of Economics, University of Catania, Corso Italia 55, 95129 Catania, Italy

c Institute of Computing Science, Poznan University of Technology,
3A Piotrowo Street, 60-965 Poznan, Poland

Abstract. This work focuses on a particular application of preference learning, wherein the problem
is to learn a mapping from instances to rankings over a finite set of labels, i.e. label ranking. Our
approach is based on a learning reduction technique to reduce label ranking to binary classification.
The proposed reduction framework can be used with different binary classification algorithms in order
to solve the label ranking problem. In particular, in this paper, we present two variants of this reduction
framework, one where Multi-Layer Perceptron is used as binary classifier and another one where the
Dominance-based Rough Set Approach is used. In the latter, on the one hand it is possible to deal with
possible monotonicity constraints and on the other hand it is possible to provide such a mapping (i.e. a
label ranker) in the form of logical rules: if [antecedent] then [consequent], where [antecedent] contains
a set of conditions, usually connected by a logical conjunction operator (AND), while [consequent]
consists in a ranking (linear order) among labels.

Keywords: Label Ranking, Preference Learning, Decision Rules, Dominance-based Rough Set Approach.

1 Introduction

Preference learning [6] is a relatively new topic that
is gaining increasing attention in data mining and re-
lated fields [8, 9, 10]. The most challenging aspect
of this topic is the possibility of predicting weak or
partial orderings of labels, rather than single val-
ues which is typical of classification problems. Pref-
erence learning problems are typically distinguished
in three topics: object ranking, instance ranking and
label ranking. Object ranking consists in finding
a ranking function F whose input is a set X of in-
stances characterized by attributes and whose out-
put is a ranking of this set of instances, in the form
of a weak order [6]. Such a ranking is typically ob-
tained by giving a score to each x ∈ X and by or-
dering instances with respect to these scores. The
training process takes as input either partial rank-
ings or pairwise preferences between instances of X.
Such a kind of problem is also commonly studied in

the field of Multi-Criteria Decision Aid (e.g. the so-
called Thierry’s choice problem) [19]. In the context
of instance ranking [6], the goal is to find a ranking
function F whose input is a set X of instances char-
acterized by attributes and whose output is a rank-
ing of this set (again a weak order on X). However,
in contrast with object ranking, each instance x is
associated with a class among a set of classes C=
{C1;C2; ...;Ck} and this set is furthermore ordered
(nominal, quantitative or qualitative scales), there-
fore: {C1 � C2 � ... � Ck}. The output of such
a kind of problem consists in rankings wherein in-
stances labeled with higher classes are preferred to
(or precede) instances labeled with lower classes. This
problem is similar to the problem of sorting in the
field of Multi-Criteria Decision Aid (e.g. the contact
lenses problem) [19]. The learning scenario discussed
in this paper concerns a set of training instances (or
examples) which are associated with rankings over a
finite set of labels, i.e. label ranking [4, 5, 6, 7].

1 Corresponding author.
E-mail address: massimo.gurrieri@umons.ac.be
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This paper is organized as follows. In Section 2, we
introduce the label ranking topic and existing ap-
proaches as well. In particular, we discuss existing
learning reduction techniques. In Section 3, we illus-
trate our reduction framework to reduce label ranking
to binary classification and the general classification
and ranking generation phases according to our pro-
posed label ranking method. In Section 4, we illus-
trate two applications of our reduction framework:
an application based on the Variable Consistency
Dominance-based Rough Set Approach (VC-DRSA)
that provides predictions on rankings in the form of
decision rules; and an application based on the Multi-
Layer Perceptron Algorithm (MLP). In Section 5, we
present experimental results that we conducted with
three different configurations of our framework. Fi-
nally, we present some conclusions in Section 6.

2 Label Ranking

In label ranking, the main goal is to predict for any
instance x, from an instance space X, a preference
relation �x: X → L where L= {λ1;λ2; ...;λk} is a set
of labels or alternatives, such that λi �x λj means
that instance x prefers label λi to label λj . More
specifically, we are interested in the case where �x
is a total strict order over L, that is, a ranking of
the entire set L. Such ranking �x can be therefore
identified with a permutation πx of {1, 2, ..., k} in the
permutation space Ω of the index set of L, such that
πx(i) < πx(j) means that label λi is preferred to la-
bel λj (πx(i) represents the position of label λi in the
ranking). A complete ranking (i.e. a linear order) for
the set L is therefore given by:

λπ−1
x (1) �x λπ−1

x (2) �x ... �x λπ−1
x (k) (2.1)

where π−1x (j), j = 1, 2, ...k, represents the index of
the label that occupies the position j in the ranking.
In order to evaluate the accuracy of a model (or label
ranker), once the predicted ranking π′ for an instance
x has been established, it has to be compared to the
actual true ranking π associated to the instance x,
by means of an accuracy measure defined on Ω, the
permutation space over L. As explained in [4], it is
possible to associate an instance x to a probability
distribution P(.|x) over the set Ω so that P(τ |x) is
the probability to observe the ranking τ given the in-
stance x. The prediction quality of a label ranker M

(as in the setting of classification) is typically mea-
sured by means of its expected loss on rankings:

E(D(τx, τ
′
x)) = E(D(τ, τ ′)|x) (2.2)

where D(., .) is a distance function (between permu-
tations in our setting) and τx and τ ′x are the true
outcome and the prediction made by the model M
respectively. Given such a distance metric (i.e. loss
function) to be minimized, the best prediction is:

τ∗ = arg min
τ ′∈Ω

∑
τ∈Ω

P(τ |x)D(τ ′, τ). (2.3)

Spearman’s footrule and Kendall’s tau are two well
known distances between rankings. In a celebrated
result [24], it is showed that Spearman’s footrule and
Kendall’s tau are always within a factor of two from
each other. Given two permutations τ, τ ′ ∈ Ω, the
Spearman’s footrule distance is given by:

F (τ, τ ′) =
k∑
i=1

|τi − τ ′i | (2.4)

and measures the total element-wise displacements
between two permutations. The Kendall’s tau dis-
tance is instead given by:

K(τ, τ ′) = #{(i, j) : i < j|τi > τj ∧ τ ′i < τ ′j} (2.5)

and measures the total number of pairwise inversions
between two permutations. By performing a linear
scaling of K(τ, τ ′) to the interval [−1,+1], it is pos-
sible to define the Kendall’s tau coefficient:

τk =
nc − nd
k(k − 1)

2

(2.6)

where nc and nd are the numbers of concordant and
discordant pairs of labels, respectively. The sum of
squared rank distances is also typically used as a dis-
tance metric:

S(τ, τ ′) =
k∑
i=1

(τi − τ ′i)2 (2.7)

and by performing a normalization in the interval
[−1,+1], it is possible to define the Spearman rank
correlation which is a similarity measure between two
permutations (rankings):

1− 6

k∑
i=1

(τi − τ ′i)2

k(k2 − 1)
. (2.8)
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2.1 Label Ranking Approaches

There are two main groups of approaches to label
ranking. On the one hand, we have decomposition
(or learning reduction) methods, such as Constraint
Classification [3] and Ranking by Pairwise Compar-
isons [4], that transform the original label ranking
problem into a new binary classification problem. On
the other hand, we have direct methods that mainly
adapt existing classification algorithms, such as De-
cision Trees and Instance-based learning [5] (both
being lazy methods), Boosting algorithms [11] and
Support Vector Machines (SVM) [12], to treat the
rankings as target objects without any transforma-
tion over the data set. There also exists an adap-
tation [21] of the association rule mining algorithm
APRIORI for label ranking based on similarity mea-
sures between rankings and where the label ranking
prediction is given in the form of Label Ranking As-
sociation Rules: A → π, where A ⊆ X and π ∈ Ω.
The main idea of this method is that the support of
a ranking π increases with the observation of similar
rankings πi. In this manner it is possible to assign
a weight to each ranking πi in the training set that
represents its contribution to the probability that π
may be observed.

2.2 Learning Reduction Techniques

As already mentioned, decomposition methods trans-
form the original label ranking problem into one or
several binary classification problems, a process that
is called learning reduction which is a generalization
of approaches to multi-label classification [6, 12]. In
the approach Constraint Classification [3], a utility
linear function fi(x) = wi •x is associated to each la-
bel λi, ∀i ∈ {1, 2, ..., k} and to an instance x ∈ X and
where wi = (wi1, ..., w

i
l) is an l-dimensional vector

consisting of label coefficients associated with label
λi. The goal is then to find a linear sorting function:

h(x) = argsorti=1,2,...,kfi(x) (2.9)

which returns a permutation of the index set
{1, 2, ..., k} of labels. A preference of the form λi �x
λj is accordingly converted into a positive constraint
fi(x)− fj(x) > 0 or, equivalently, into a negative one
fj(x)− fi(x) < 0. In this approach, label ranking
can be reduced to binary classification by means of
Kesler’s construction [8]. Constraints can be related
to the sign of the inner product: < z,W >, wherein:

W = (w1, ...,wk) = (w1
1, ..., w

1
l ; ...;w

k
1 , ..., w

k
l )
(2.10)

is an (k× l)-dimensional vector representing the con-
catenation of all label coefficients and z is a (k × l)-
dimensional vector whose components are defined
as follows. If for an instance x, λi �x λj holds,
the components of vector z with index ranging from
((i − 1) × l) + 1 to (i × l) are filled with the compo-
nents of instance x; components with index ranging
from ((j−1)×l)+1 to (j×l) are filled with the oppo-
site of components of instance x; and the remaining
entries are filled with 0’s. A further component with
1 is added in order to have a positive classification
instance. A negative instance is obtained by consid-
ering reversed signs. In such a way, each instance x
will generate an expanded set P(x) given by the union
of positive and negative instances. Finally, the entire
set of preference instances X generates an expanded
training set:

P(X) = ∪x∈X(P (x)) (2.11)

that is linearly separable by learning a separating hy-
perplane with any binary classifier. A very impor-
tant aspect of this approach is that it takes into ac-
count the correlation between labels, since the learn-
ing dataset contains the overall information about
labels. However, this model is very complex and the
preprocessing part is quite cumbersome. Kesler’s con-
struction multiplies the dimensionality of the data by
k and the number of samples by k − 1, where k is
the cardinality of the label set. It is clear that direct
use for training a classifier is in practice not attrac-
tive. In Ranking by Pairwise Comparison (RPC) [4],
instead, the main idea is to explode the original label
ranking problem to several independent binary clas-
sification problems and to learn a binary classifier for
each pair of labels. More particularly, each preference
information of the form λi �x λj is considered as a
training instance for a learner Mi,j which outputs 1
if λi �x λj holds, 0 otherwise. If L= {λ1;λ2; ...;λk},
the number of learners is at most k(k − 1)/2. The
label ranking associated to a new instance is then
obtained by means of a voting strategy, wherein each
label is, for example, evaluated by summing scores
of all learners and then ordered with respect to this
evaluation. However the main drawback of this ap-
proach is that it trains independent binary classifiers
which cannot take into account relations (i.e. corre-
lation) among labels. Consequently, there could be a
loss of preference information.
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3 Reduction Framework

3.1 Preprocessing: from Label Ranking to
Binary Classification

In this section, a general reduction framework is pro-
posed to reduce label ranking to binary classification.
Consequently, the proposed reduction framework can
be used with different binary classifiers (two variants
will be presented in Section 4). In the preprocessing
phase, the original label ranking dataset is converted
into a new dataset where the original ranking πx is
split into pairwise preference relations. Though the
proposed reduction technique is very similar to the
one presented in [4], in the latter each pair of labels
is treated separately so that k(k − 1)/2 independent
binary classifiers are trained during the training pro-
cess. By contrast, in our reduction framework, a sin-
gle classifier is trained and the overall preference in-
formation is treated at once in a single dataset, simi-
larly to the reduction schemes used in [25] or in [26].

The original dataset is a set of instances T =
{(x, πx)}, where x and πx represent, respectively,
the feature vector and the corresponding target la-
bel ranking associated with the instance x. The
feature vector x is in fact an l-dimensional vec-
tor (q1, q2, ..., ql) of attributes (typically numeri-
cal values), so that: (x, πx) = (q1, q2, ..., ql, πx).
Each original instance (x, πx) = (q1, q2, ..., ql, πx) is
transformed into a set of new (simpler) instances
{x1,2, x1,3, ..., xi,j , ...} where:

xi,j = (q1, q2, ..., ql, p, d) (3.1)

with i, j ∈ {1, 2, ..., k}, i < j, p ∈
{(λ1, λ2), ..., (λk−1, λk)} and d ∈ {−1,+1}.

This is obtained by splitting the original set of
labels into k(k − 1)/2 pairs of labels and by consid-
ering an additional nominal attribute p, called re-
lation attribute, whose possible values are all pairs
of labels. A decisional attribute d ∈ {−1;+1} is
added to take into account the preference relation
between two given labels (λi,λj), represented by the
value of relation attribute p, according to the rank-
ing πx. This decision attribute d says in which man-
ner the pair (λi, λj) has to be considered during the
training process. In other words, if for the instance
(x, πx), we want to treat the pair (λi, λj), then we
set p = (λi, λj). Moreover, if λi is preferred to λj
then d = +1, otherwise if λj is preferred to λi then
d = −1. For example, the instance:

(x, πx) = (−1.5, 2.4, 1.6, λ2 � λ1 � λ3)

generates the following set of simpler instances (i.e.,
a new instance for each possible pair of labels):

x1,2 = (−1.5, 2.4, 1.6, (λ1, λ2),−1)
x1,3 = (−1.5, 2.4, 1.6, (λ1, λ3),+1)
x2,3 = (−1.5, 2.4, 1.6, (λ2, λ3),+1).

The total number of training instances obtained
at the end of the reduction (3.1) is nk(k−1)2 , where n is
the number of original training instances and k is the
number of labels, while the total number of attributes
is l+1 where l is the number of original attributes. By
using this reduction framework (3.1), it is therefore
possible to treat pair-wise preference information at
once in a single dataset where correlations between
labels are taken into account simultaneously.

3.2 Classification Process

The classification of an unknown instance x′ (i.e. ei-
ther a testing instance or a new instance to be clas-
sified) can be performed by using some binary clas-
sifier capable of estimating conditional probabilities
(e.g. multilayer perceptron algorithm):

P(λi �x′ λj) = P(d = 1|x′ai,j), (3.2)

P(λj �x′ λi) = P(d = −1|x′ai,j), (3.3)

where x′ai,j is the feature vector of x′ that is augmented
with the relation attribute p = (λi, λj), therefore:

x′ai,j = (q1, q2, ..., ql, p). (3.4)

By using these conditional probabilities, it is possible
to define scores:

Γ+
(i,j) = P(λi �x′ λj) (3.5)

Γ−(i,j) = P(λj �x′ λi). (3.6)

Scores (3.5) and (3.6) represent the probability that
for the instance x′ label λi is ranked higher (preferred
to) than λj and the probability that label λj is ranked
higher (preferred to) than λi, respectively.

3.3 Ranking Generation Process

The final step of our approach concerns the genera-
tion of a final ranking (i.e. a linear order) among the
entire set of labels for the new instance x′, based on
the preference relation �x′ learned during the classi-
fication process. On the one hand, for each pair of la-
bels (λi, λj), i, j ∈ {1, 2, ..., k}, i < j, a decision d(x′)
is provided and on the other hand, each pair is also
associated with scores (3.5) and (3.6). The preference
relation learned for pairs of labels is therefore total,
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asymmetric, irreflexive but, in general, not transitive
(i.e. cycles are likely to happen). In order to over-
come cycles, a Net Flow Score procedure [22] is used
to aggregate pairwise preferences. This procedure al-
lows to obtain a linear order among the entire set of
labels since each label λi is evaluated by considering
the following score:

S(i) =
∑
j 6=i

(Γ+
(i,j) − Γ

−
(i,j)), (3.7)

where Γ+
(i,j) and Γ−(i,j) are given by (3.5) and (3.6).

The final ranking τ is therefore obtained by ordering
labels according to decreasing values of scores (3.7)
(the higher the score, the higher the preference in the
ranking): S(i) > S(i)⇔ τi < τj .

4 Applications of Reduction
Framework

In this section, we discuss two variants of our reduc-
tion framework: an application based on the Variable
Consistency Dominance-based Rough Set Approach
(VC-DRSA) that provides predictions on rankings in
the form of rules; and a variant based on the Multi-
Layer Perceptron Algorithm (MLP).

4.1 VC-DRSA for Label Ranking

This variant is based on the rule induction paradigm,
i.e. a variant that can provide predictions on rank-
ings in the form of decision rules: Φ → Ψ . The rule
learner used in this variant is VC-DRSA [13, 14, 15]
which is an extension of the Dominance-based Rough
Set Approach (DRSA) [2, 23]. The motivation behind
this variant is twofold: on the one hand it is due to
the fact that most of available methods, though are
very efficient algorithms, they lack transparency and
mostly perform like "black boxes", i.e. just like ora-
cles which never clearly show relationships between
input and output. From this point of view, it seems
natural to provide a label ranker in the form of logi-
cal rules. It is well known, in fact, that rules clearly
show relationships between the feature vector (the
antecedent Φ) and the associated output (the con-
sequent Ψ), since both are visible in the rule syntax.
As a consequence, rules are very easy to interpret and
can provide very rich and complete information, es-
pecially in the field of decision aid [16, 19, 20]. How-
ever, in this context, other rule learners could also
be used within our framework as well. On the other

hand, the choice of VC-DRSA as a rule learner is
also motivated by the potential requirement that an
explicit order in the input space (i.e. value-order of
attributes) could be used to monotonically establish
an order among labels in the output space (i.e. label
ranking with monotonicity constraints). We describe
in the following the reduction process proposed in
this variant which is sligtly different from the reduc-
tion (3.1).

Each original instance (x, πx) = (q1, q2, ..., ql, πx)
is transformed into a set of new (simpler) instances
{x1,2, x1,3, ..., xi,j , ...} where:

xi,j = (q≥1 , q
≤
1 , q

≥
2 , q

≤
2 , ..., q

≥
l , q

≤
l , p, d) (4.1)

with i, j ∈ {1, 2, ..., k}, i < j, p ∈
{(λ1, λ2), ..., (λk−1, λk)} and d ∈ {GT,LT}.

The main difference consists in transforming
each attribute qh into a gain and a cost criterion
q≥h , q

≤
h , h ∈ {1, 2, ..., l}, to be maximized and mini-

mized, respectively. This can be justified by the fact
that the monotonic relationship between a certain at-
tribute and the preference relation between labels is
generally unknown. However, in case such a relation
is known, one can set a given attribute to be only
a gain (cost) criterion. A decisional gain criterion
d ∈ {GT ;LT} (i.e., respectively, greater than and less
than, where GT � LT ) is finally added to take into
account the preference relation between two labels
(λi,λj), according to the ranking πx. This decision
criterion says in which manner the relation attribute
p = (λi, λj) has to be considered for a given instance
x. In other words, if for the instance (x, πx), λi is
preferred to λj , then d = GT , otherwise d = LT . For
example, the instance:

x = (−1.5, 2.4, 1.6, λ2 � λ1 � λ3)
generates the following set of simpler instances (i.e.,
a new instance for each possible pair of labels):

x1,2 = (−1.5≥,−1.5≤, 2.4≥, 2.4≤, 1.6≥, 1.6≤, (λ1, λ2), LT )

x1,3 = (−1.5≥,−1.5≤, 2.4≥, 2.4≤, 1.6≥, 1.6≤, (λ1, λ3), GT )

x2,3 = (−1.5≥,−1.5≤, 2.4≥, 2.4≤, 1.6≥, 1.6≤, (λ2, λ3), GT )

Thus, the original label ranking problem is trans-
formed into a simpler binary classification problem
wherein each training instance is represented by cri-
teria instead of attributes, an additional nominal at-
tribute (relation attribute) p and a decisional criterion
d ∈ (GT,LT ). The final dataset, as shown in Table 1,
contains n× [k(k− 1)/2] training instances while the
number of conditional criteria is 2l + 1, where l is
the number of original conditional attributes, n is the
number of original instances and k is the number of
labels.
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q≥1 q≤1 .. .. .. q≥l q≤l Relation Decision
x1,2 q1 q1 .. .. .. ql ql (λ1, λ2) d
x1,3 q1 q1 .. .. .. ql ql (λ1, λ3) d
... .. .. .. .. .. .. .. .. ...

xk−1,k q1 q1 .. .. .. ql ql (λk−1, λk) d
... .. .. .. ...
... .. .. .. ...

Table 1. Learning Reduction Scheme

4.1.1 Classification Rules As already men-
tioned, classification rules are sentences of the form:

Φ→ Ψ

where Φ is called the "antecedent" and Ψ is called
the "consequent". Φ is typically composed of condi-
tions on the values of some attributes, while Ψ is gen-
erally the class to which an instance satisfying the
antecedent should be assigned. More complex "an-
tecedent" and "consequent" forms exist as well. For
example, in DRSA the antecedent is a conjunction of
elementary conditions concerning one or more crite-
ria (either gain or cost criteria) while the consequent
relates to either the upper union of totally ordered
classes Cl≥t or the downard union of totally ordered
classes Cl≤t . When generating rules, two important
measures (among others) are usually taken into ac-
count to evaluate the quality of a rule. Such mea-
sures are confidence and strength. Let H be the set of
training instances verifying the antecedent of a rule
r: Φ → Ψ and K the set of training instances ver-
ifying the consequent of the rule. We say that rule
r holds in the set X with confidence c = |H∩K|

|H| if
c is the percentage of instances in H that verify the
consequent Ψ . On the other hand, rule r has strength
s = |H∩K|

|X| if s is the percentage of instances inX that
verify both the antecedent and consequent. Finally,
the number |H ∩K| represents the support of rule r.
In the field of Rough Set Rule Induction several algo-
rithms have been developed in order to generate rules
based on the Rough Set Approach (RSA) [1], such as:
AQ, LEM2, MLEM2, DomLEM, VC-DomLEM [13,
16, 17]. Such algorithms are typically based on the
scheme of a sequential covering [18] and heuristically
generate a minimal set of rules covering instances.

4.1.2 The Training Process: Inferring Rules
The second phase of our method consists in the infer-
ence of rules on pairs of labels based on the training
set obtained in the previous phase. A set of rules R

is obtained by using VC-DomLEM whose complex-
itity is polynomial [2]. Let l be the number of at-
tributes and n the number of instances in the original
data set, the complexity of the algorithm is given by
nl(n+1)(l+1)/4 and therefore, the time complexity
of the algorithm is in O(n2l2). This algorithm heuris-
tically searches for rules that satisfy a given threshold
value of consistency. The applied heuristic strategy is
called sequential covering or separate and conquer.
It constructs a rule that covers a subset of train-
ing instances, removes the covered instances from the
training set and iteratively learns another rule that
covers some of the remaining instances, until no un-
covered instances remain. VC-DomLEM induces an
approximately minimal set of minimal decision rules
covering all training instances. Since each training in-
stance is considered with each possible pair of labels,
the training process ends up with a set of minimal and
non-redundant decision rules R covering each possi-
ble pair of labels. This set R is comprised of subsets
R(1,2), R(1,3), ..., R(k−1,k) (one for each pair of labels),
where the generic subset R(i,j), i, j ∈ {1, 2, ..., k}, i <
j, contains the set of rules R(i,j,GT ) for which the
decision d associated with the pair (λi, λj) is GT
and the set of rules R(i,j,LT ) for which d = LT .
It is obviuos that R(i,j) = R(i,j,GT ) ∪ R(i,j,LT ) and
R(i,j,GT ) ∩R(i,j,LT ) = ∅.

4.1.3 Computational Complexity We discuss
here the computational complexity of the rule in-
ference process associated to the proposed method.
Firstly, we find the number of training instances that
are obtained by using the learning reduction tech-
nique (4.1) since the total computational complexity
depends on this number as well as on the complexity
of the rule learner used for processing these instances
and generating rules.

Theorem 1 The time complexity of the inferring
rule algorithm (after the learning reduction (4.1))

is O(
(n

k(k−1)
2 )(2s+1)(n

k(k−1)
2 +1)(2l+2)

4 ) where n is the
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number of original training instances, k is the num-
ber of labels and l is the original number of attributes.

Proof. By applying the reduction (4.1), each origi-
nal training instance is split into a set of simpler in-
stances {x1,2, x1,3, ..., xi,j , ...} which contains exactly
k(k−1)

2 new instances (one for each possible pair). As
a consequence, the total number of training instances
obtained at the end of the reduction (3.1) is nk(k−1)2 ,
where n is the number of original training instances
and k is the number of labels. Moreover, the total
number of attributes is 2l + 1 where l is the number
of original attributes. Since the time complexity of
VC-DomLEM is given by O(nl(n+1)(l+1)

4 ) [2], by re-
placing n and l with nk(k−1)2 and 2l+1, respectively,
the total computational complexity of the inferring
rules process is O(

(n
k(k−1)

2 )(2s+1)(n
k(k−1)

2 +1)(2l+2)

4 ).
ut

4.1.4 The Classification Process The classifi-
cation process for an unknown instance x′ (i.e. either
a testing instance or a new instance to be classified)
is performed by means of the set R and aims at pro-
viding a decision (either GT or LT ) for each pair
of labels (λi, λj), i, j ∈ {1, 2, ..., k}, i < j. The clas-
sification is performed by considering the following
scheme for every pair (i, j) ∈ {1, 2, ..., k}, i < j. Let be
R(i,j) the set of rules concerning the pair (λi, λj) and
R(i,j,GT ), R(i,j,LT ) ⊆ R(i,j) subsets having d = GT
and d = LT as decision for the given pair of labels,
respectively. For any rule r ∈ R(i,j), we define the
weight:

ωr =
Sr
Si,j

(4.2)

where Si,j =
∑

r∈Ri,j

Sr and Sr is the support of rule

r. By using weight (4.2), we define these two scores:

W+
(i,j) =

∑
r∈R(i,j,GT )

ωr (4.3)

W−(i,j) =
∑

r∈R(i,j,LT )

ωr. (4.4)

These two scores represent the total sum of weights
of rules for which d = GT and d = LT hold, respec-
tively, for the pair (λi, λj). Let define, for the testing
instance x′:

x′ai,j = (q≥1 , q
≤
1 , q

≥
2 , q

≤
2 , ..., q

≥
l , q

≤
l , p). (4.5)

By testing the antecedent of rule r with x′ai,j , it is
possible to define:

Ti,j =
∑
r∈Ri,j

ωr · δx
′

r (4.6)

with δx
′

r =


1 if x′ai,j supports r,

0 otherwise
. The value Ti,j is

the sum of weights of rules supported by x′ for the
corresponding pair of labels. Finally, we define:

α+
(i,j) =

∑
r∈R(i,j,GT )

ωr · δx
′

r (4.7)

α−(i,j) =
∑

r∈R(i,j,LT )

ωr · δx
′

r (4.8)

which are, respectively, the total sum of weights of
rules, supported by x′, for which d = GT and d = LT
hold for the pair (λi, λj). Finally, by normalizing
weights (4.7),(4.8) in [0,1], we define these two scores:

Γ+
(i,j) =

α+
(i,j)

Ti,j
(4.9)

Γ−(i,j) =
α−(i,j)

Ti,j
(4.10)

For a given unknown instance x′ (testing instance)
and ∀(λi, λj), the classification process provides
scores Γ+

(i,j), Γ
−
(i,j). Scores (4.9), (4.10) verify these

properties:

Γ+
(i,j) = Γ−(j,i) (4.11)

Γ+
(i,j), Γ

−
(i,j) ∈ [0, 1] (4.12)

Γ+
(i,j) + Γ−(i,j) = 1 (4.13)

So that scores (4.9) and (4.10) can be considered as
the probability that for the instance x′ label λi is
ranked higher (preferred to) than λj and the prob-
ability that label λj is ranked higher (preferred to)
than λi, respectively. That is:

Γ+
(i,j) ≈ P(λi �x′ λj) (4.14)

Γ−(i,j) ≈ P(λj �x′ λi) (4.15)
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4.1.5 Classification Scheme I: Majority Class
The classification process for a new instance x′ con-
sists in finding a decision GT or LT for each possible
pair of labels (λi, λj), i, j ∈ {1, 2, ..., k}, i < j, by test-
ing the subset of rules Ri,j . If x′ matches at least one
rule from Ri,j , the final decision for the pair (λi, λj) is
chosen by comparing scores (4.9) and (4.10). The de-
cision d(x) is chosen according to max(Γ+

(i,j), Γ
−
(i,j)).

In case, for a certain pair of labels (λi, λj), x′ does
not match any rule from Ri,j , the model R is silent
w.r.t. this pair and therefore the prediction cannot
be provided. Two different strategies are presented in
this paper in order to deal with this problem.

In the first strategy, we consider a voting proce-
dure consisting in finding the majority class, either
GT or LT , for the pair (λi, λj). The majority class
is determined by using scores (4.3) and (4.4) and a
default decision for x′ is associated with the higher
score. The classification of instance x′ for each pair of
labels (λi, λj), i, j ∈ {1, 2, ..., k}, i < j, can be sum-
marized by the following scheme:

If Γ+
(i,j) = Γ−(i,j) = 0 :

d(x′) =


GT if W+

(i,j) ≥ W−(i,j);

LT otherwise

Else:

d(x′) =


GT if Γ+

(i,j) ≥ Γ−(i,j);

LT otherwise

4.1.6 Classification Scheme II: One Nearest
Neighbor The second strategy is based on the One
Nearest Neighbor scheme (1NN). If for a new in-
stance x′ the prediction (decision) d(x′) for a certain
pair of labels cannot be provided by the model R,
the nearest testing instance x∗ is selected from the
training set (the Euclidean distance is used as the
distance metric) and d(x′) = d(x∗). Moreover, x′ is
associated with same the scores as x∗. The classifi-
cation of instance x′ for each pair of labels (λi, λj),
i, j ∈ {1, 2, ..., k}, i < j, can be summarized by the
following scheme:

If Γ+
(i,j) = Γ−(i,j) = 0 :

d(x′) = d(x∗),

(where x∗ is the nearest neighbor of x′ in the
training set)

Else:

d(x′) =


GT if Γ+

(i,j) ≥ Γ−(i,j);

LT otherwise

4.1.7 Ranking Generation Process The rank-
ing generation process is the same as the one dis-
cussed in 3.3. As discussed above, the set of rules
R provides, for each pair of labels (λi, λj), i, j ∈
{1, 2, ..., k}, i < j, a decision d(x′) and scores (4.9)
and (4.10), which can be approximated with condi-
tional probabilities (4.14), (4.15). The final ranking
τ is therefore obtained by ordering labels accord-
ing to decreasing values of scores (3.7) (the higher
the score, the higher the preference in the ranking):
S(i) > S(i)⇔ τi < τj .

4.2 Multi-layer Perceptron for Label
Ranking

As discussed above, our reduction framework can be
used with any binary classifier as long as it can pro-
vide conditional probabilities (3.5), (3.6). In particu-
lar, in our experiments, we run a configuration of our
reduction framework with Multi-layer Perceptron al-
gorithm (MLP) [8, 9] which provides good estimates
of conditional probabilities [27, 28, 29]. Since the per-
ceptron training is based on the minimization of the
(least square) error, its output can be viewed as es-
timation of probability, which is approximated by
the perceptron as a result of training. Weka machine
learning package was used for the implementation of
this variant.

5 Experiments and Discussion

This section is devoted to experimental studies that
we conducted in order to evaluate the performance
of our method in terms of its predictive accuracy.
The data sets used in this paper were taken from
KEBI Data Repository 2. Some information about
the data sets is provided in Table 2. The evalua-
tion measures used in this study are the Kendall’s

2 see http://www.uni-marburg.de/fb12/kebi/research/repository
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DATA SETS #Instances #Labels #Attributes
Glass 214 6 9
Iris 150 3 4

Vehicle 846 4 18
Vowel 528 11 10
Wine 178 3 13

Table 2. Summary of the datasets

Kendall’s Tau RBLR RBLR+ MLPLR ARLR RPC CC LL IBLR LRT
Glass .882(3) .906(1) .863(4) .850(5) .882(3) .846(6) .817(8) .841(7) .883(2)
Iris .956(4) .961(2) .971(1) .960(3) .885(6) .836(7) .818(8) .960(3) .947(5)

Vehicle .812(7) .863(2) .870(1) .750(8) .854(5) .855(4) .601(9) .859(3) .827(6)
Vowel .776(5) .897(1) .858(2) .720(7) .647(8) .623(9) .770(6) .851(3) .794(4)
Wine .883(8) .901(7) .931(4) .910(6) .921(5) .933(3) .942(2) .947(1) .882(9)

Average Rank .861(5) .905(1) .898(2) .838(6) .837(7) .818(8) .789(9) .891(3) .866(4)
Table 3. Comparison of RBLR, RBLR+, MLPLR with state-of-the-art methods (Kendall’s Tau)

tau (2.6) and the Spearman Rank Correlation coeffi-
cient (2.8). The performance of the method was es-
timated by using a cross validation study (10-fold, 5
repeats). In this section, the performance of our rule-
based label ranking method is compared to the per-
formances of constraints classification (CC) [3], pair-
wise comparison(RPC) [4], log-linear (LL) [11], asso-
ciation rules for label ranking (ARLR) [21], instance
based learning (IBLR) [5] and decision tree for label
ranking (LRT) [5]. It should be pointed out that we
did not run the experiment on the other methods.
Our results have been simply compared with pub-
lished results of the other methods. However, even if
results cannot be directly compared, they can pro-
vide some indications of the quality of our method in
comparison to the state-of-the-art. The experimen-
tal results, in terms of (2.6) and (2.8), are discussed
hereinafter. In this experiment, we considered three
different configurations of our approach. In the ba-
sic version (RBLR), we generated certain rules by
using VC-DomLEM with a consistency level of 0.98
and we used the majority class strategy for classifica-
tion. This version, though not very efficient in terms
of prediction accuracy, is the simplest one. Another
configuration of the present method is the One Near-
est Neighbor (RBLR+) version, where instead of us-
ing the majority class strategy for classification, we
used the 1NN class strategy. A third configuration
(MLPLR) was implemented by condidering the Mul-
tilayer perceptron (MLP) as binary classifier where
scores (4.9) and (4.10) are associated with the dis-
tribution probabilities of classes +1 and −1. Results
(shown in Table 3, Table 4, Table 5) clearly show

that the present method is very competitive to other
state-of-the-art methods in terms of prediction ac-
curacy. In particular, RBLR+ shows better perfor-
mances with respect to other methods. Apart from
performance results, our method has several advan-
tages w.r.t. other methods: the modularity of the ar-
chitecture, since any binary classifier can be used (as
long as probability distributions can be provided) and
the simplicity of our reduction framework.

6 Conclusions and Future Work

In this paper we presented a new approach to label
ranking, which is based on a learning reduction tech-
nique.

The contributions of this paper can be summa-
rized as follows. We developed a general reduction
framework to reduce label ranking to binary classi-
fication that can be solved by some binary classifier
(e.g. rule based learners, multilayer perceptron). In
particular, the dataset associated with the label rank-
ing problem is reduced to a single binary classification
dataset so that the overall preference relation on la-
bels is treated at once instead of exploding it into
several independent binary classifiers. In a specific
variant of our approach, we generate a label ranker
in the form of a set of logical rules. In this variant, it
is also possible to take into account potential mono-
tonicity constraints between the input and the out-
put (i.e. preferences on labels). Compared to other
methods, this variant of our approach is more appro-
priate for real-world applications since it gives clear
and directly interpretable results to an end user. By
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Kendall’s Tau RBLR+ MLPLR
Glass .906 ±.006 .863 ±.044
Iris .961 ±.002 .971 ±.003

Vehicle .863±.003 .870 ±.031
Vowel .897 ±.017 .858 ±.018
Wine .901±.001 .931 ±.043

Table 4. Performance of RBLR+, MLPLR in terms of Kendall’s tau (mean and standard deviation)

Spearman’s Rank RBLR+ MLPLR
Glass .928 ±.005 .890 ±.046
Iris .971 ±.001 .977±.025

Vehicle .891 ±.003 .896±.025
Vowel .945 ±.012 .924±.013
Wine .919±.011 .948 ±.032

Table 5. Performance of RBLR+, MLPLR in terms of Spearman’s rank (mean and standard deviation)

using this kind of model, the user could be invited
to analyze rules that are activated for a given query,
i.e. some instance profile or a specific preference rela-
tion between pairs of labels. The activated rules show
which scenarios of cause-effect relationships match
the considered query. For example, suppose that this
following rule is obtained: IF[(q2 ≥ 2.4) ∧ (q3 ≤
1.9)]THEN(λ2 � λ3). This rule not only gives a pre-
diction on the preference relation between labels λ2
and λ3, but it can also serve to argument the recom-
mendation (in this case the reason why λ2 � λ3).
Moreover, this rule could also be used to select a
specific feature vector (e.g. a specific user’s profile):
which kind of input does verify this preference rela-
tion? In other words, by knowing that λ2 � λ3 holds
whenever [(q2 ≥ 2.4)∧ (q3 ≤ 1.9)], one could activate
a query to search a specific group (i.e. a specific tar-
get audience) having [(q2 ≥ 2.4) ∧ (q3 ≤ 1.9)]. Such
a kind of strategy could be useful, for example, in
marketing and advertising for reaching target mar-
kets. Finally, the approach presented in this paper
is very competitive compared to other existing meth-
ods in terms of prediction accuracy. There are several
directions for future work in order to improve the
approach discussed w.r.t. computational complexity
and efficiency. On the other hand, other possibilities
could be investigated with regard to the generation
of final rankings.
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Preference-based clustering of large datasets
Alexandru-Liviu Olteanu 123 and Raymond Bisdorff 1

Abstract. Clustering has been widely studied in Data Mining liter-
ature, where, through different measures related to similarity among
objects, potential structures that exist in the data are uncovered. In the
field of Multiple Criteria Decision Analysis (MCDA), this topic has
received less attention, although the objects in this case, called alter-
natives, relate to each other through measures of preference, which
give the possibility of structuring them in more diverse ways.

In this paper we present an approach for clustering sets of alterna-
tives using preferential information from a decision-maker. As clus-
tering is dependent on the relations between the alternatives, clus-
tering large datasets quickly becomes impractical, an issue we try to
address by extending our approach accordingly.

1 Introduction
In the field of Multi-Criteria Decision Aid we can identify three clas-
sical types of problems [18]: choice, ranking and sorting. The first
consists in constructing a best choice recommendation (ex: selecting
a car to buy), the second aims at building an order, partial or weak, on
a set of decision alternatives (ex: ordering candidates for a job posi-
tion from best to worst), while the last type of problem tries to assign
the alternatives to a predefined set of classes (ex: placing students
into ’good’, ’medium’ or ’bad’ categories).

Clustering is generally defined as an unsupervised process of
grouping objects together. Therefore it relies on certain measures,
classically related to similarity, and groups the objects together based
on the simple logic of placing similar objects in the same cluster and
placing those that are dissimilar in different ones. As there is no in-
teraction with a real person during this process, it is also generally
desired that the number of groups be found automatically. Clustering
has been used in many fields, such as artificial intelligence, infor-
mation technology, image processing, biology, psychology, market-
ing and others. Due to this diversity in the fields of application, and
different requirements, many clustering approaches have been devel-
oped. For a thorough presentation of clustering methods the reader
should refer to [10].

In MCDA the alternatives have additional information on them
from that in Data Mining, the Decision Makers (DM) preferences.
A review of the existing clustering methods in MCDA can be found
in [5]. There, the authors first classify the clustering approaches in
two: those that don’t use the full range of preferential information
and those that do. The latter are also split into relational and ordered
clustering approaches, where the first type propose relations between
clusters, while the latter constructs also an order on these relations.

1 CSC/ILIAS, University of Luxembourg, Faculty of Science, Technology
and Communications, 6 Rue Coudenhove-Kalergi, L-1359, Luxembourg,
Luxembourg

2 Institut Télécom, Télécom Bretagne, UMR CNRS 6285 Lab-STICC,
Technopôle Brest Iroise, CS 83818, 29238 Brest Cedex 3, France

3 Université Européenne de Bretagne, France

Among the classical clustering approaches applied to the field of
MCDA we mention here the efforts of BISDORFF [2] who actually
proceeds to cluster the criteria and not the alternatives. This approach
makes use of a similarity based proximity index for comparing the
criteria together, and extracts the clusters as kernels in the graph de-
rived from this index which is cut at a median level.

DE SMET and GUZMAN have extended the classical K-MEANS

algorithm to the MCDA context in [7], however they don’t propose
a way to construct the relations between the different clusters. In [6],
this work has been extended to propose such relations. In both cases
the authors consider that a crisp outranking relation between the al-
ternatives is given.

FIGUERA et. al. also extended the K-MEANS algorithm in a multi-
criteria framework [9], and a more recent effort on extending this
classical algorithm can be found in [1].

NEMERY and DE SMET also proposed a clustering approach that
finds a set of ordered clusters in [14]. A more recent work on this
topic was done by FERNANDEZ et. al. in [8]. In these approaches,
the order between the clusters is complete, however ROCHA et. al.
[16] have worked very recently on a method that is able to find sets
of partially ordered clusters.

Some clustering methods in MCDA don’t use the additional pref-
erential information while others suffer from common drawbacks of
clustering methods from Data Mining (number of clusters need to be
specified beforehand, falling into locally optimal solutions, etc.). We
therefore explore the problem of clustering in MCDA by using the
preferential information that is available between alternatives. We
present several objectives for clustering in this context, which we
consider to be of interest and propose a method to find them. We
then consider the issues related to the complexity of this approach
and propose an extension in order to deal with large datasets. We
would also like to mention that the approach does not require the
number of clusters to be given beforehand and looks for the optimal
result by making use of a meta-heuristic approach.

The potential applications of this work, as generally with most
classical clustering approaches, lie in exploratory analysis. We may
therefore imagine using the presented approach to cluster a large set
of alternatives and present in the end to the Decision Maker a sum-
mary of the entire dataset through a representative for each cluster
plus some additional measures supporting this information. This may
done in a context where the DMs preferences have been extracted
beforehand, in the form of a preference model. However, it is impos-
sible for a real person to consider a large set of alternatives at one
time, also finding a sample that represents well the original dataset
and is small enough for the DM to consider may be very difficult.
Hence, we may apply our approach to extracting a preference model
of the DM by starting with some standard values for the parameters
of the considered model (or with some general values for them given
by the DM), and construct a set of clusters. We may then confront
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the DM with the summary of the clustering results and elicit infor-
mation based on this summary. In this way we achieve also a level
of abstraction from the original data, where the DM may focus on
certain alternatives he is more familiar with and neglect the others.

The article is structured in the following way. We first outline the
ways in which alternatives can be compared together, and focus on
one such approach. Then we present a way to construct such rela-
tions between clusters followed by defining the clustering objectives.
In Section 3 we outline the method that we propose and its extension,
while finally in the last part of this article we validate our clustering
algorithm using empirical results obtained from solving a set of arti-
ficially generated benchmarks.

2 Defining the problem of clustering
In this section we define formally the problem of clustering in MCDA
and the different potential structures it can uncover.

2.1 Comparing alternatives
We consider the set of alternativesX = {x, y, z, ...}, which are eval-
uated on a family of criteria F = {1, 2, ...,m}. The evaluation of al-
ternative x on criterion i is denoted through xi. We assume without
loss of generality that all criteria have ratio measurement scales on
the [0, 1] interval, and that the preference direction on all of them is
increasing. Many ways of comparing these alternatives exist which
use preferential information from a DM. The two main directions are
those that construct value functions [11] or outranking relations [17],
though from a general perspective, all of them draw the following
conclusions between two alternatives: indifference (the alternatives
are equivalent), strict preference (one alternative is better than the
other) and incomparability (there is insufficient support for any of
the previous situations). Note that the last preferential relation can
only appear when using outranking relations.

We will use from this point on the bipolar-valued outranking re-
lation S in order to compare the alternatives together. This relation
is constructed using several parameters which are used to model the
preferences of a DM (significance weights, indifference, preference
and veto thresholds) and has attached to it a bipolar-valued charac-
teristic function r. Due to the way in which it is constructed, the
value of the characteristic function for the converse of the S can be
easily extracted from the value for the S by reversing the sign. For
more details on this relation the reader should refer to [3]. Using this
characteristic function, the following statements can be made:

x S y ⇐⇒ r(x S y) > 0

x 6S y ⇐⇒ r(x S y) < 0. (1)

This means that an alternative outranks another if the value of the
characteristic function attached to this statement is strictly positive.
A similar judgement can be made with respect to the fact that an
alternative does not outrank another, while if the value of r is equal to
0 then neither of the statements can be made, and therefore a situation
of indetermination occurs.

From this relation only the relations of indifference, denoted with
I and that of preference, denoted with P can be constructed. Similar
to [19], these relations are constructed as follows, ∀x, y ∈ X:

x I y ⇐⇒ xS y and y Sx

xP y ⇐⇒ x S y and y 6Sx. (2)

The absence of a relation between two alternatives is attributed to
an indetermination.

The I relation is reflexive and symmetric while P is asymmetric.
We may extend the characteristic function r to these relations

through:

r(x I y) = min
(
r(xS y), r(y Sx)

)
r(xP y) = min

(
r(xS y),−r(y Sx)

)
(3)

We notice that only the credibility of one of the x I y, xP y and
yPx statements will be strictly positive at a given time, except for
the case when two or more of these credibilities will be equal to 0.
Therefore, the way in which the credibility of these relations have
been constructed is consistent with their definitions.

2.2 Comparing sets of alternatives
Having shown the way in which we compare alternatives together we
define a way of extending this to sets of alternatives.

For any two sets of alternatives C,D ⊆ X , we extend the charac-
teristic function for the S relation through:

r(C SD) :=

∑
x∈C,y∈D

x6=y

r(xS y)

|C| · |D| − |C ∩D| (4)

Following this, we can make the same statements as in the case of
pairs alternative, related to the outranking relation S, in Equation (1),
but between sets of alternatives. We extend the indifference and pref-
erence relations to sets of alternatives as follows:

C ID ⇐⇒ C SD and D SC

C PD ⇐⇒ C SD and D 6SC. (5)

In the case where an indetermination occurs with respect to the
outranking relations between the two sets, we give precedence to the
relation of preference. In addition, both outranking relations may be
indeterminate, therefore the choice of the direction of the relations of
preference is made randomly. The characteristic functions for these
relations between sets of alternatives are:

r(C ID) = min
(
r(C SD), r(D SC)

)
r(C PD) = min

(
r(C SD),−r(D SC)

)
(6)

One important property related to the P relation between sets of
alternatives, which we may wish to obtain when clustering, is that of
transitivity. We first define the characteristic function for detecting
if for three disjoint sets of alternatives C,D,E ⊆ X this property
holds:

Tr(C,D,E) := max
(
r(C PE),−min

(
r(C PD), r(DPE)

))
(7)

Following this, the property of transitivity of the P relation on a
partition K of X may be checked if for all triples of sets from K the
above property holds. We define the crisp characteristic function of
transitivity as follows:
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Tr(K) :=


1 , if min

C,D,E∈K
C 6=D 6=E

Tr(C,D,E) > 0,

−1 , otherwise.
(8)

If Tr(K) is 1 then the P relation is transitive on K, whereas if
this function is −1 then the relation is not transitive on K.

2.3 Clustering objectives

We will now focus on the different structures that could be uncovered
through the process of clustering in MCDA.

Before this we remind several particular types of binary relations:
• identity relation: S is reflexive, symmetric and antisymmetric;
• tournament: S is asymmetric and complete;
• strict total order: S is asymmetric, complete and transitive;

In Data Mining, clustering is very generally defined as the process
of grouping objects that are similar and separating those that are dis-
similar. However, in MCDA we compare alternatives with respect to
a decision-makers preferences. The complementary notions of simi-
larity and dissimilarity are no longer the object of clustering and are
replaced by those of indifference, preference or in some cases in-
comparability. From these notions, the indifference is the only one
that can be used to bring alternatives together, while the rest are used
to set them apart.

Figure 1. Classification of clustering objectives;

Clustering in MCDA is therefore the process of grouping alter-
natives that are indifferent and separating those that are preferred
or incomparable. Additionally we may try to place certain relations
between clusters and enforce properties on them. The result is that
clustering in MCDA may yield different types of results. We present
a classification of the different clustering objectives in Figure 1.

Non-relational clustering

We begin with the simplest clustering objective, the one where we
look only at the level of indifference between alternatives.

Non-relational clustering is the process that groups alternatives
that are indifferent and separates those that are not.

At this point we search for groups of alternatives which are in-
different to each other with a higher degree of confidence than with
the alternatives from other groups. Notice that we are not concerned
with the relations between the clusters, therefore we call this non-
relational clustering.

A non-relational clustering result can be described with respect to
the binary relation I as a partition K of X where I is an identity
relation on K.

We may model a fitness function that measures how well the result
is supported by the valued indifference relation through:

fnr(K) :=
2

|X|(|X| − 1)

( |C|(|C| − 1)

2

∑
C∈K

r(C IC)

− |C||D|
∑

C 6=D∈K

r(C ID)
)
. (9)

The first factor is used to bring this measure to a [−1, 1] interval,
while the other two scaling factors account for the number of rela-
tions that the I relation summarises. The first term adds positively
the support of the indifference relations inside each cluster while the
second adds those between different clusters negatively. This func-
tion needs to be maximized in order to find the ideal clustering result
based on our definition of non-relational clustering.

The practical applications of such a process would be to determine
the different groups of alternatives from which, if a decision-maker
would select such a group, he would have very little drawbacks in
taking any of the alternatives inside to substitute the entire group with
it. This clustering objective can thus have a purpose of summarising
and compressing the original dataset.

Relational clustering

We may restrict the definition of non-relational clustering by trying
to find a result where the relation between the clusters is more struc-
tured and has certain properties.

Since the relation of indifference has a role of bringing the alterna-
tives together, and so we try to maximize its support inside a cluster,
we may not use it also to define the relation between clusters. Given
the case that r(C ID) > 0 for any two sets C,D ⊆ X , merging
them would yield a set that will contain a positive support of I, there-
fore a good cluster. As a result, only P will be used to define the
relation between clusters.

Relational clustering is the process that groups alternatives that
are indifferent and separates those that are preferred to others in one
direction or the other.

A relational clustering result can be described with respect to the
binary relations I and P as a partitionK ofX where I is a an identity
relation on K and P is a tournament on K.

We model the fitness function for this clustering objective through:

fr(K) :=
2

|X|(|X| − 1)

( |C|(|C| − 1)

2

∑
C∈K

r(C IC)

− |C||D|
∑

C 6=D∈K

max
(
r(C PD), r(DPC)

))
. (10)

We acknowledge the fact that this two clustering objective may
not hold many practical applications except, as that of non-relational
clustering, to provide a description of the dataset.

Ordered clustering

A particular group of relational clustering objectives look for the re-
lation P between clusters to be transitive, therefore ordering the clus-
ters from best to worst.
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Ordered clustering is the process that groups alternatives that are
indifferent and separates those that are preferred to others in one di-
rection or the other in such a way that the clusters are ordered.

This clustering result is translated into the partition K of X on
which I is an identity relation and P is a strict total order.

The fitness of this clustering objective is defined as:

fo(K) := min
(
Tr(K), fr(K)

)
. (11)

This fitness is the same as that from relational clustering, with the
exception that it is brought to 0 if the relation between clusters is not
transitive.

This objective provides results that may be compared to those from
ranking problems in MCDA, as the alternatives are ordered from best
to worst, allowing for ties to occur. It be viewed as a ranking proce-
dure where the result of placing an alternative at a certain level in the
ranking is supported by the relations between it and the others.

3 Solving the problem of clustering
As most clustering problems are difficult to solve in an exact manner,
enumerating all partitions of the data in order to find the optimal one
with respect to the fitness functions defined so far is impractical. For
this reason we will present in the following a meta-heuristic approach
for solving this problem.

3.1 Brief overview of the clustering approach
We propose an extension of our previous work on clustering on
similarities [4] to clustering on the richer information given by the
MCDA context. We mention here also the extension to preferentially
ordered clustering in [13]. We will not detail the approach in too
great detail as it is very similar to our most recent work. In addition,
any method that groups alternatives that are indifferent and separates
those that are not can be employed at this stage, as the main focus of
this paper is placed on the extension to clustering large datasets.

The method is split in two parts:

1. building an initial partition based on the relations of indifference
between alternatives;

2. refining this partition by taking in account also the relations of
preference and incomparability between the alternatives.

This step aims at building an initial partition where inside each
cluster alternatives are predominantly indifferent to each other, and
between different clusters there are few or no indifference relations.
The problem can thus be defined as finding dense regions in the graph
constructed from the indifference relations denoted with G(X, I).
The approach we have proposed first looks at finding cores in this
graph, which are represented as alternatives that are all indifferent to
each other, i.e. cliques, and that are consistently indifferent and not
indifferent to the same alternatives from the dataset. Based on these
characteristics the step that follows the selection of the cores builds
the initial partition by adding the remaining alternatives to the core to
which they are linked by the largest number of indifference relations.
This step is greedy in nature and is motivated by the refinement step
that follows.

The second step of the clustering approach consists in a meta-
heuristic, related to simulated annealing, which moves one alterna-
tive from one cluster to another in order to bring the result closer to
the optimal value of the fitness function for a given clustering objec-
tive.

When faced with clustering large datasets, taking into account all
the alternatives and the entirety of the relations between them quickly
becomes impractical. As a result we propose to proceed to cluster
only a subset of the original data. From this result we then extract
certain information which can then be used by a much simpler pro-
cedure that will split the entire dataset.

We have selected the two most pertinent clustering objectives to
extend in such a way: non-relational and strict complete order clus-
tering.

3.2 Non-relational clustering of large datasets

We remind that non-relational clustering aims at grouping alterna-
tives that are indifferent and separating those that are not. As a result
we may characterise a group of indifferent alternatives by a single
one.

Considering a partition K of X , which contains k sets of al-
ternatives, we define a central profile for each set of alternatives
Kl,∀l ∈ 1..k, and denote it through cl. This central profile will be
characterised through a high level of indifference to the alternatives
of the cluster to which it is assigned.

We may extract this central profile in two ways, either by selecting
an existing one from Kl,∀l ∈ 1..k, or by constructing it.

We define the fitness of a central profile through:

fc(cl,Kl) :=
∑
x∈Kl

r(x I cl) (12)

Selecting an alternative from Kl to become a central profile for
this set can be summarised as:

cl := argmax
x∈Kl

fc(x,Kl) (13)

If several alternatives from Kl equally have the highest value of
fc then one of them is selected at random.

The second approach consisting in the construction of a fictive
alternative will potentially yield a central profile with a higher value
of this function and in the worst case will not improve this value
becoming identical to one of the alternatives from the set Kl.

We present in the following the general outline of the meta-
heuristic used to infer a central profile. We have chosen to adapt
simulated annealing [12] to our problem, though we could apply any
single-solution based meta-heuristic by using the fitness function de-
fined before and the set of operations that we can make when con-
structing the central profile, which will be presented further.

The simulated annealing meta-heuristic is based on the process
of heating and then slowly cooling a substance in order to obtain a
strong crystalline structure. It can be described by the series of steps
in Algorithm 1.

The algorithm starts with an initial solution and an initial tem-
perature variable. As this temperature variable decreases towards its
minimum value, a series of operations are made on the current so-
lution. A neighbour is randomly generated and if it improves the fit-
ness function from that of the old solution then it replaces it. The
algorithm also allows for non-improving neighbours to be selected,
with a probability proportional to the decrease in fitness and to the
temperature variable. Therefore, in the beginning of the algorithm,
non-improving solutions have a higher probability of being selected,
therefore we tend to explore the solution space, while towards the
end the algorithm converges to a final solution. For each temperature
level a fixed number of steps may be performed.
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Algorithm 1 Simulated Annealing meta-heuristic;
1: s← INITIALSOLUTION()
2: T ← Tmax

3: while T > Tmin do
4: while not EQUILIBRIUMCONDITION() do
5: s

′
← GENERATERANDOMNEIGHBOUR(s)

6: if f(s
′
)− f(s) ≥ 0 then

7: s← s
′

8: else if random(0, 1) > e
f(s)−f(s

′
)

T then
9: s← s

′

10: end if
11: end while
12: T ← UPDATETEMPERATURE(T )
13: end while
14: return s

In out case, s will be cl, the central profile of cluster Kl. In the
initialization step we select the alternative from Kl which has the
highest value of the fitness defined in Equation (15). Each neighbour
is then generated by changing the value of cl on one criterion with the
smallest amount, either positively or negatively, which would yield
a change in the way in which it compares to the alternatives in Kl.
Therefore, there are a number of 2·|F | possible operations on the cur-
rent solution. As the number of criteria usually used in any decision
problem is generally small, we proceed to generate all neighbours
and then select one as the next solution.

In keeping with the outranking philosophy, each of the mentioned
changes of the current solution is evaluated through a voting pro-
cedure. Each alternative in Kl will act as a voter, placing a vote to
increase or decrease the evaluation of cl on each criterion i ∈ F . Of
course, each voter may sustain from this process if no change to cl
is required from the perspective of that particular alternative. In ad-
dition each voter that needs for the evaluation of cl on criterion i to
change also gives the amount with which this change should be made
in order to make a difference in the way it compares to the profile.
The result of this vote will give the direction in which the evaluation
should be changed and also the smallest amount needed. The fitness
of this operation will be equal to the majority margin that decided the
result of the vote.

In order to explore also non-improving solutions, a neighbour
which changes cl in contrast to the result of the vote is also cre-
ated, but it will have a fitness equal to 0. When there is a tie between
the votes, both neighbours will be created in this way and will have
a fitness equal to 0. In case no vote has been cast for a particular
change of cl on i, a new evaluation is generated at random in order
to continue exploring the solution space.

We present below the rules on which each alternative x ∈ Kl votes
on the increase or decrease of the evaluation of cl on criterion i.
• cli − xi > vi: → decrease cli to xi + vi − ε
• cli − xi > pi: → decrease cli to xi + pi − ε
• cli − xi > qi: → decrease cli to xi + qi
• cli − xi < −qi: → increase cli to xi − qi
• cli − xi 6 −pi: → increase cli to xi − pi + ε
• cli − xi 6 −vi: → increase cli to xi − vi + ε

If we take for example the first case, the evaluation of cl on i is
much greater than that of x, by an amount larger then the veto thresh-
old vi. In this case this evaluation needs to be lowered. However, as
we are only looking at the pair of alternatives x and cl, we proceed in
a prudent manner and propose to decrease it by the smallest amount
that will change the result of this comparison. For this purpose we

have also place the strictly positive constant ε� 1.
After the initial generation of the neighbours, the initial tempera-

ture of the annealing process is computed followed by the main loop.
In here a neighbour is selected through different mechanisms such as
roulette wheel selection, or stochastic universal sampling to name a
few. Afterwards, the new individual is evaluated with respect to the
globally best solution, a new set of neighbours is generated and the
temperature of the system is updated. This temperature has the role
of giving initially higher probabilities to non-improving neighbours,
probability which gets lower as the system cools. This is translated
in an affinity to explore the solution space at early stages followed by
a convergence towards a final solution towards the end.

With the exception of the creation of the neighbours, all the other
steps of this approach are based on standards in the simulated anneal-
ing literature.

Being able to characterise any set of alternatives through a central
profile, to which the alternatives in the set have a high level of indif-
ference, we may proceed to proposing a method of clustering large
datasets.

In order to reduce the complexity of the problem we propose to
cluster into K using the presented method a sample of the origi-
nal dataset. Different strategies for drawing the sample can be used,
however, in out implementation we have chosen a simple random
selection approach.

After clustering the sample, we construct a central profile for each
cluster and the proceed to assigning the alternatives in the original
dataset to the clusters defined by these profiles following the rule:

x ∈ Km : m = argmax
l∈1..k

r(x I cl), ∀x ∈ X. (14)

Therefore, each alternative will be placed in the cluster to whose
profile it is most indifferent. As a result the complexity of clustering
the initial large dataset becomes linear.

3.3 Ordered clustering of large datasets
Ordered clustering aims at grouping alternatives that are indifferent
and creating an order between these groups.

A parallel can be easily made between the ordered clustering prob-
lem and that of sorting. When sorting, the alternatives are grouped
into categories based on the relations between them and several al-
ternatives that are external to the original dataset. Usually these al-
ternatives are given by the decision-maker, or they are inferred from
assignment examples [15]. These alternatives are called profiles, and
can be either central or delimiting. Sorting will only consider the
relations between the alternatives in the original dataset and these
profiles, whereas clustering takes into account only the relations be-
tween the alternatives.

We will consider in what follows the ELECTRETRI methodology
[20], which follows two assignment rules: pessimistic and optimistic.

The pessimistic assignment rule places an alternative in the lowest
category whose lower delimiting profile it outranks.

The optimistic assignment rule places an alternative in the highest
category whose upper delimiting profiles outranks it.

For a given set of k clusters K, ordered from best to worst, we
define the delimiting profiles ll, ∀l ∈ 1..k − 1. There is no need for
an upper profile for the best cluster or a lower profile for the worst
cluster. l1 will represent the lower profile of the best cluster, and the
upper one of the second best cluster.

We define the fitness of a delimiting profile, considering either the
pessimistic or the optimistic assignment rules through:
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fpes
l (ll,K) :=

k∑
i=1

∑
x∈Ki

r(xS ll)−
k−1∑

i=k+1

∑
x∈Ki

r(xS ll)

fopt
l (ll,K) :=

k−1∑
i=k+1

∑
x∈Ki

r(ll Sx)−
k∑

i=1

∑
x∈Ki

r(ll Sx) (15)

Using these fitness functions we employ the same meta-heuristic
approach to construct these profiles as in the case of non-relational
clustering. The only difference is that we will consider all the profiles
at once, looping from on to another as opposed to the case of non-
relational clustering, where we considered only one at a time.

We detail here the way in which the neighbours are generated,
which differs from the previous approach. Each alternative will again
vote to increase or decrease the value on a particular criterion i ∈ F
of a delimiting profile ll considering in this case all the alternatives in
X . Depending on the assignment procedures described before, each
alternative will vote based on the need to ensure that an outranking
relation is validated or not between them and a particular profile.

Considering that alternative x ∈ X should outrank profile ll, then
the following situations may occur on a particular criterion i ∈ F :
• lli − xi > vi: → decrease lli to xi + vi − ε
• lli − xi > pi: → decrease lli to xi + pi − ε
• lli − xi > qi: → decrease lli to xi + qi

In case alternative x should not outrank ll we have the following
rules:
• lli − xi < −qi: → increase lli to xi − qi
• lli − xi 6 −pi: → increase lli to xi − pi + ε
• lli − xi 6 −vi: → increase lli to xi − vi + ε

Similar rules can be derived for the optimistic assignment proce-
dure.

We may again apply a similar approach as for non-relational clus-
tering, where we draw a sample from the original dataset, cluster it
using our approach to find an ordered clustering result, followed by
the inference of the delimiting profiles and the sorting of the original
dataset using an ELECTRETRI approach. In this case too, the com-
plexity of clustering the original dataset is brought to a linear one.

4 Empirical results
We will present in this section several empirical results generated by
running our approach on several artificially constructed benchmarks.

We have created three groups of 100 benchmarks containing 1000,
5000 and 10000 alternatives respectively, that are defined on 10 cri-
teria. We have used qualitative measurement scales for all criteria on
an interval from 0 to 1.

When constructing each problem instance, each alternative may
fall into one of three categories: good, medium or bad. This corre-
sponds to the values of the alternative on all criteria being gener-
ated based on normal distributions with either higher, or lower cen-
tral points. These distributions do overlap, therefore there exists a
chance that alternatives from the good category may be similar to
certain alternatives from the medium category. The same is true for
the medium and bad categories.

On these benchmarks we then proceeded to drawing a sample of
50 alternatives, which we then clustered using our approach. We
did so for both non-relational and ordered clustering approaches de-
scribed in this paper. Following this step we then inferred the central
profiles in the case of the non-relational clustering approach and the
delimiting profiles in the case of ordered clustering, following both
the pessimistic and the optimistic assignment procedures. In the end,

the entire datasets were grouped following the principles described
in the previous section.

Both steps of clustering the sample and of inferring the profiles
were given one minute of computational time, and we have repeated
the simulations 100 times over each benchmark.

We highlight below the results on all the benchmarks using the
Rand Index, which show how well the clusters found by our approach
match the original classes.

Table 1. Average Rand Index (standard deviation in brackets);

Clustering Profile Instance size
objective type 1000 5000 10000

non-rel. central 0.91 (0.05) 0.92 (0.05) 0.91 (0.05)
ordered pessimistic 0.87 (0.06) 0.87 (0.06) 0.87 (0.06)
ordered optimistic 0.72 (0.09) 0.72 (0.09) 0.71 (0.09)

We find that the proposed methods work with the same perfor-
mance across all sizes of the datasets. This is expected, as the way in
which the datasets are constructed is exactly the same for all sizes.
However, we find that the ordered clustering approaches have lower
performances than the non-relational clustering one, which we at-
tribute to the assignment procedures which are not completely con-
sistent with the manner in which the ordered clustering results were
initially constructed. This issue should be explored further.

5 Conclusions
In this paper we have outlined the problem of clustering in the field
of MCDA, and three possible structures that can be extracted from
a set of alternatives. We have briefly presented a method for solving
this problem and its extension to clustering large datasets, through
the use of central or delimiting profiles. These profiles both have the
property of summarizing the original set of alternatives. They can
also be used in conjunction with simpler classifiers to cluster large
datasets, when these profiles have been constructed by clustering a
small sample of the original dataset.

The results look promising, though we would like at this stage to
test this approach on benchmarks where the alternatives are struc-
tured in more diverse ways then those presented in this paper. This
also brings the issue of using a good sampling technique, which we
need to explore further. Finally we envision a new definition of the
delimiting profiles which is more in accordance to the construction
of the ordered clustering results, potentially constructing two delim-
iting profiles, upper and lower, for each cluster independently of the
others.
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Learning the parameters of a multiple criteria
sorting method from large sets of assignment

examples
Olivier Sobrie1,2,1 and Vincent Mousseau2 and Marc Pirlot3

Abstract. ELECTRE TRI is a sorting method used in mul-
tiple criteria decision analysis. It assigns each alternative, de-
scribed by a performance vector, to a category selected in a
set of pre-defined ordered categories. Consecutive categories
are separated by a profile. In a simplified version proposed
and studied by Bouyssou and Marchant and called MR-Sort,
a majority rule is used for assigning the alternatives to cate-
gories. Each alternative a is assigned to the lowest category
for which a is at least as good as the lower profile delimiting
this category for a majority of weighted criteria. In this pa-
per, a new algorithm is proposed for learning the parameters
of this model on the basis of assignment examples. In contrast
with previous work ([8]), the present algorithm is designed to
deal with large learning sets. Experimental results are pre-
sented, which assess the algorithm performances with respect
to issues like model retrieval, computational efficiency and

1 Introduction

ELECTRE TRI is a sorting method used in decision analysis
to assign each alternative to a category. The categories are
pre-defined and ordered. A simplified version, called MR-Sort
(Majority Rule Sorting method) has been studied by Bouys-
sou and Marchant (see [2, 3]). Alternatives are assigned to a
category based on a majority rule. Each category is associated
a lower profile defining its boundary with the category below.
An alternative is assigned to one of the categories above a
profile as soon as its performances are at least as good as
those of the profile for a weighted majority of criteria.

Methods for eliciting the parameters of such a sorting
method on the basis of assignment examples already exist
but are limited to relatively small datasets. The question we
are interested in is whether it is possible to use such rules in
the context of preference learning, assuming that the learn-
ing datasets consist of a large number of assignment examples.
For instance, the dataset can be composed of students’ grades
(satis bene, cum laude, magna cum laude, summa cum laude)
corresponding to their results in the different disciplines. The
goal is then to learn a MR-Sort model that assigns a grade to
a student whenever a vector of his/her results in the different

1 email: olivier.sobrie@gmail.com
2 École Centrale Paris, Grande Voie des Vignes, 92295 Châtenay
Malabry, France, email: vincent.mousseau@ecp.fr

3 Université de Mons, Faculté Polytechnique, 9, rue de Houdain,
7000 Mons, Belgium, email: marc.pirlot@umons.ac.be

courses is entered. Learning such a model amounts to com-
pute the profiles limiting the categories, the criteria weights
and the majority threshold on the basis of a list of students,
their marks and the grade they have been assigned to by the
jury.

In [8], learning all the parameters of the MR-Sort has been
formulated as a mixed integer linear program This formula-
tion has a drawback: it is not suitable for large learning sets
since it requires computing times that grow rapidly with the
number of assignment examples.

This paper presents a metaheuristic we devised to infer all
the parameters of an MR-Sort model. It reports the results
of experiments testing the following aspects of the algorithm
performance:

Model retrieval Given a set of alternatives assigned by a
known MR-Sort model, what is the ability of the algorithm
to determine the parameters of a model assigning these
alternatives as much as possible to the same categories as
the original model?

Algorithm efficiency What is the practical complexity of
the algorithm? Is it able to deal with large learning sets?
How much time does it take to learn the parameters of a
model for a given number of categories, criteria and assign-
ment examples?

Tolerance for error The learning set given as input to the
algorithm might contain errors, e.g. an alternative that
should belong to some category considering its evaluations
could be erroneously assigned to a different category. The
question is: How does the algorithm react to learning sets
that are not entirely compatible with a MR-Sort model?
Has the algorithm the ability to correct assignment errors?

In the next section of this paper, we briefly recall the rules
of the MR-Sort procedure and which difficulties are involved
in the elicitation of its parameters. We also discuss previous
work done in view of eliciting the parameters of the MR-
Sort rule. In section 3, we present the new metaheuristic. The
experiments designed for testing it are described in section
4; our first experimental results are commented. We conclude
with some perspectives for further work in view of improving
the current version of the algorithm.
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2 Sorting procedure

2.1 MR-Sort model

The ELECTRE TRI procedure, originally developed in [14]
(see also [13]), aims to assign every alternative ai of a set
A = {a1, ..., an} to one of the pre-defined and ordered cate-
gories going from C1 to Cp, with C1 the worst one and Cp the
best one. Alternatives are evaluated on a set of n criteria; ai,j
denotes the performance of ai on criterion j. The criterion
scales are assumed to be ordered in increasing order of the
decision maker’s preference. The assignment to a category is
done by comparing each alternative performances to the per-
formances of the p−1 profiles, delimiting the p categories, on
each criterion. The profiles are denoted by bh, h = 1, . . . , p−1
and the performance of profile h on criterion j is bh,j . The
lower boundary of category Ch is profile bh−1. For notational
convenience, we sometimes use two trivial profiles b0 and bp.
b0 (resp. bp) is the lower (resp. upper) profile of category C1

(resp. Cp). For all j, the performance of b0 on criterion j is
the worst possible performance on this criterion, so that every
alternative is at least as good as b0 on all criteria. bp plays
a symmetric role in the sense that bh is at least as good as
every alternative on all criteria.

It is assumed that the profiles dominate each other, i.e.:

bh−1,j ≤ bh,j ≤ bh+1,jh = 1, . . . , p− 1; j = 1, . . . , p− 1. (1)

The original procedure presents some drawbacks. In partic-
ular, it involves numerous parameters which may play inter-
related roles. Although several papers have been devoted to
learning the parameters of such a model [10, 11, 9, 12, 6, 5],
it is not advisable to use this method for learning prefer-
ences on the basis of large sets of assignment examples. In
this article we consider a version of ELECTRE TRI called
the non-compensatory sorting model. It is based on the work
of Bouyssou and Marchant who have established an axiomatic
characterization of this model in the case of two [2] or more
categories [3].

To describe the assignment rule, we need to recall the def-
inition of an outranking relation. An alternative ai outranks
a profile bh if and only if there is a sufficient coalition of
(weighted) criteria for which ai is at least as good as bh on
each criterion of the coalition, and there is no criterion on
which ai is so much worse than bh that compensating this
disadvantage is impossible. The idea that some large disad-
vantages cannot be compensated usually is called a veto; it
precludes asserting that ai outranks bh. The “at least as good”
relation Sj on criterion j can be defined for instance by:

aiSjbh ⇔ ai,j ≥ bh,j (2)

The sufficient majority of criteria j on which aiSjbh needed
to say that the alternative ai outranks the profile bh is deter-
mined by the majority (or concordance) threshold λ.

The veto relation Vj on criterion j can be defined as follows:

aiVjbh ⇔ bh,j < ai,j − vj(bh), (3)

where vj(bh) is called the veto threshold w.r.t. profile bh.
If the sum of the weights wj of the criteria j for which ai is

at least as good as bh is larger than or equal to λ, and if there
is no criterion on which there is a veto, then ai outranks bh.

The global outranking relation S is defined by:

aiSbh ⇔
∑

j∈S(ai,bh)

wj ≥ λ and [Not[bhVjai], ∀j ∈ F ] (4)

with S(ai, bh) = {j ∈ F : aiSjbh}.

Note that we do not assume that the decision maker has a
preference relation on the whole set of alternatives that could
be represented by a majority rule. It is well known, since Con-
dorcet, that such a rule may lead to relations that lack the
transitivity property and may have cycles. We only assume
that the decision maker sorts the alternatives in ordered cate-
gories as if he or she would compare alternatives to the profiles
limiting the categories using a rule like 5. Since the profiles
are supposed to dominate each other, there can be no conflict
related to intransitivity like aSbh but not aSbh−1.

With ELECTRE TRI, there are two ways to determine to
which category an alternative should be assigned: they are
called the pessimistic and the optimistic approach. We only
describe the pessimistic approach (the only one that was char-
acterized in [2, 3]) since it is the one used in the algorithm de-
scribed below. The pessimistic procedure consists in compar-
ing ai to the profiles bk for k = p−1, p−2, . . . , 1 successively;
if bh is the first profile such that aiSbh, the alternative ai is
assigned to the category Ch+1. If the alternative ai doesn’t
outrank any profile, then it is assigned to the worst category,
C1.

In this paper, we consider models without vetoes. Hence
the conditions for an alternative ai to be assigned to category
Ch can be expressed as follows:∑

j∈S(ai,bh−1)

wj ≥ λ and
∑

j∈S(ai,bh)

wj < λ (5)

As in [8], we call a model assigning alternatives to a category
using such a rule, a Majority Rule Sorting Model (MR-Sort).

2.2 Elicitation of ELECTRE TRI
parameters

Several published articles deal with learning the parameters
of a traditional ELECTRE TRI model. In [10], it is proposed
to infer the whole set of parameters of an ELECTRE TRI
model from assignment examples by using a nonlinear pro-
gramming formulation. In [9], the authors describe a way to
learn the weights of an ELECTRE TRI model with a linear
program. Article [12] deals with the inference of the profiles
from assignment examples. Once again a linear program is
used. In [7], a genetic algorithm is developed in order to learn
the whole set of parameters of a traditional ELECTRE TRI
model.

Recently, in [8], a mixed integer linear program has been
proposed to infer all the parameters of an MR-Sort model.
The linear program has been tested with 10 to 100 exam-
ples of assignments, 3 to 5 criteria and 2 to 3 categories. The
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experiments made show that a large number of assignment
examples is needed to retrieve a model that represents the
preferences of the decision maker with a reasonable accuracy.
However, with the mixed integer linear program proposed in
[8], the computing time quickly grows with the number of
assignments. For instance, learning a 2 categories/3 criteria
model (involving 7 parameters) takes less than one second
on average, while it takes 7 seconds for 3 categories/4 crite-
ria models (13 parameters) and 23 seconds for 3 categories/5
criteria (16 parameters). These computing times have been
obtained when learning the models on the basis of 100 assign-
ment examples (without assignment errors). For learning sets
up to 100 examples, without assignment errors, the comput-
ing time grows roughly linearly with the number of examples.
However, when the learning sets involves assignment errors,
i.e. when some of the examples have not been assigned ac-
cording to a presupposed MR-Sort model, computing times
increase quite significantly with the percentage of errors. For
a 2 categories/3 criteria models, the time needed to learn a
model correctly reproducing the assignments of as many al-
ternatives as possible from a set of 100 examples goes from
an average of 4 seconds, for learning sets involving a 5% er-
ror rate, to 20 seconds, for a 15% error rate (see the detailed
experimental results in [8]).

In [4], three mixed linear programs are used to find a set
of weights or profiles which reflect as much as possible the
preferences of multiple decision makers.

Using the linear programs developed in [8] and [4] is not an
option in our case because we want to deal with large num-
bers of assignment examples and models having more than 5
criteria and 2 categories. The new approach proposed below
aims at dealing with such models.

3 Inferring the parameters of a MR-Sort
model

In this section we detail a new algorithm that aims to learn the
whole set of parameters of an MR-Sort model. Initially, a set
of random profiles dominating one another is generated. The
proposed algorithm is an instance of alternating optimization
[1]. The algorithm performs alternatively the following two
main steps:

1. Using the current profiles, find a set of weights and a ma-
jority threshold maximizing the number of assignment ex-
amples compatible with the model;

2. Adjust the profiles in order to maximize the number of
assignment examples compatible with the model.

The goal of the algorithm is to obtain the parameters of
a model reflecting as much as possible the preferences of the
decision maker, i.e. a model that restores as much as possible
the assignments of the examples given as input. To measure
the performance of the algorithm, we compute the classifi-
cation accuracy CA of the final model, which is defined as:

CA =
Number of examples correctly restored

Total number of examples
(6)

In this section, we first describe the linear program used to
learn the weights. Then we describe the metaheuristicused to
improve the position of the profiles. Finally, the coupling of
the linear program and the metaheuristicis explained.

3.1 Inferring the weights and the majority
threshold

Finding the weights and the majority threshold of an MR-Sort
model with fixed profiles doesn’t require mixed integer pro-
gramming. The problem can be easily formulated as a simple
linear program.

We denote by Ah the set of alternatives assigned by the DM
to the category Ch. As the profiles dominate each other, the
constraints for an alternative ai to be assigned to the category
Ch can be expressed as follows:∑
∀j|aiSjbh−1

wj − xi + x′i = λ ∀ai ∈ Ah,

h = {2, ..., p− 1} (7)∑
∀j|aiSjbh

wj + yi − y′i = λ− δ ∀ai ∈ Ah,

h = {1, ..., p− 2} (8)

with:

n∑
j=1

wj = 1 (9)

λ ∈ [0.5; 1] (10)
wj ∈ [0; 1] ∀j ∈ F (11)

xi ∈ <+
0 ∀ai (12)

yi ∈ <+
0 ∀ai (13)

x′i ∈ <+
0 ∀ai (14)

y′i ∈ <+
0 ∀ai (15)

The value xi − x′i (resp. yi − y′i) represents the difference
between the sum of the weights of the criteria belonging to
coalition in favor of ai ∈ Ah w.r.t. bh−1 (resp. bh) and the
majority threshold. If both xi−x′i and yi−y′i are positive, then
the alternative ai is assigned to the right category. In order to
try to get a maximum number of compatible alternatives, the
objective function of the linear program minimizes the sum
of x′i and y′i:

min
∑
ai∈A

(x′i + y′i) (16)

However this objective function does not guarantee to return
a set of weights and a majority threshold which maximize the
number of alternatives assigned to the category indicated by
the DM. This is due to the fact that the objective function
allows for compensatory effects between constraints.
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3.2 Inferring the profiles

Trying to learn the profiles using an exact method is not easy
because conditions (5) cannot be formulated as linear con-
straints. Exact methods have been proposed and studied in
[8]. They require mixed integer programming solvers. As we
want to deal with models having more than 5 criteria and 2
categories, the use of a linear program with binary variables
is not an option due to quickly exploding computing times.
Therefore we opted for developing a metaheuristic, which is
described below.

3.2.1 Idea of the metaheuristic

Consider a model with 5 criteria, 2 categories, C1 and C2 (with
C2 � C1). We assume that the criteria weights are known.
Let a1 and a2 be 2 misclassified alternatives, (see figure 1).
The profile delimiting the two categories is denoted by b1;
b0 and b2 correspond respectively to the worst and the best
possible (fictive) alternative on the five criteria. Imagine that
a1 is wrongly assigned by the procedure to the category C2

instead of C1. This means that the profile has too low levels on
one or several criteria. In contrast, an alternative a2 wrongly
assigned to category C1 instead of C2 means that the profile
level is too high on one or several criteria (we recall that
the weights are considered as known). On figure 1, an arrow
shows the direction in which moving the profile in order to
potentially assign the two alternatives to the right category.

C1

C2

g1 g2 g3 g4 g5

b0

b1

b2

a1

a2

δb1,1,1
δb1,1,2

δb1,1,3 δb1,1,4

δb1,2,4
δb1,2,5

Figure 1. Alternative wrongly assigned because of the profile too
low or too high

We denote by A2
1 (resp. A1

2) the set of alternatives wrongly
classified in C2 (C1, respectively) by the inferred model while
the DM assigns them to category C1 (resp. C2). The sets
of alternatives correctly classified in C1 and C2 are denoted
respectively by A1

1 and A2
2. With a two categories model, each

alternative belongs to one of the four sets, A1
1, A1

2, A2
1 or A2

2.
An alternative belonging to A1

2 (resp. A2
1) indicates that the

profile level is too high (resp. too low) on one or several criteria
(assuming that we do not change the weights).

Regarding the relative position of the evaluation ai,j of al-
ternative ai on criterion j and the profile evaluation b1,j and
considering the assignment of the alternative, we can distin-
guish 8 cases (see figure 2); δ1,i,j represents the distance be-
tween the profile level and the alternative evaluation on cri-
terion j.

(a) gj
b0,j b1,j b2,jai,j

δ1,i,j

ai ∈ A2
1

(b) gj
b0,j b1,j b2,jai,j

δ1,i,j

(c) gj
b0,j b1,j b2,jai,j

δ1,i,j

ai ∈ A1
2

(d) gj
b0,j b1,j b2,jai,j

δ1,i,j

(e) gj
b0,j b1,j b2,jai,j

δ1,i,j

ai ∈ A1
1

(f) gj
b0,j b1,j b2,jai,j

δ1,i,j

(g) gj
b0,j b1,j b2,jai,j

δ1,i,j

ai ∈ A2
2

(h) gj
b0,j b1,j b2,jai,j

δ1,i,j

Figure 2. Given the evaluation of an alternative and of the profile
on a criterion j, 8 possible cases regarding the alternative assign-
ment

In the 8 cases represented in figure 2, we see that the differ-
ence between the value of the profile b1,j and the performance
of the alternative ai,j can have a positive (cases a, d, e, h) or
a negative (cases b, c, f, g) influence on the classification. We
denote byW1,j the set of alternatives wrongly assigned by the
model and for which the criterion j is not in favor of the cor-
rect assignment due to the current profile level. The set R1,j

contains the alternatives for which evaluation of b1 favors the
assignment to the right class.

W1,j =
{
ai ∈ A2

1 : ai,j ≥ b1,j
}

∪
{
ai ∈ A1

2 : ai,j < b1,j
}

(17)

R1,j =
{
ai ∈ A2

1 : ai,j < b1,j
}

∪
{
ai ∈ A1

1 : ai,j < b1,j
}

∪
{
ai ∈ A1

2 : ai,j ≥ b1,j
}

∪
{
ai ∈ A2

2 : ai,j ≥ b1,j
}

(18)

The alternatives contained in the sets W1,j and R1,j give
an indication about how the profile should be moved on crite-
rion j to potentially increase the classification accuracy of the
model. In order to assess the advantage of the different pos-
sible moves of the profile level, the space between the profiles
levels b1,j and b0,j on criterion j is split into k sub-intervals by
means of k subdivision points denoted by b−l

1,j for l = 1, . . . , k.
The same is done between b1,j and b2,j by means of k subdivi-
sion points denoted by b+l

1,j for l = 1, . . . , k. We consider these
2k subdivision points scattered on both sides of b1,j as the
candidate moves for the profile level b1,j . Then, histograms
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similar to those shown in figure 3 are constructed for each
criterion j.
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Figure 3. Histogram of the evaluations of misclassified alterna-
tives on criterion j

The bars lengths in the first (resp. second) histogram rep-
resent the number of alternatives in the set W±l

1,j (resp. R±l
1,j)

whereW±l
1,j (resp. R

±l
1,j) denotes the set of alternatives belong-

ing to W1,j (resp. R1,j) the evaluation of which, on criterion
j, is located between the current value of the profile, b1,j , and
the potential new value, b±l

1,j . In the last histogram, the bars
lengths represent what is formally a probability P defined by:

P (b±l
1,j) =

|W±l
1,j |

|W±l
1,j |+ |R

±l
1,j

| (19)

If we move the profile level b1,j to b±l
1,j , the number |W±l

1,j |
will decrease by |W±l

1,j | − |R
±l
1,j | and the number |R±l

1,j | will in-
crease by the same quantity. If the quantity |W±l

1,j | − |R
±l
1,j | is

positive, the number of correctly assigned alternatives with
their evaluation on the right side of the profile will tend to
increase while the profile level is moved to b±l

1,j . Of course,
the number of correctly assigned alternatives will not me-
chanically increase by |W±l

1,j | − |R
±l
1,j | since the corresponding

change in the profile level only concerns criterion j. We use
the probabilities P (b±l

1,j) as indicators of the potential gain
in correct classification that can be expected from a move of
the profile level on some criterion. The probabilities associ-
ated with profile b1 on criterion j are computed and the value
L ∈ {−k, . . . ,−1, 1, . . . , k} for which the probability of bL1,j is
maximal is recorded. Then a random number r is drawn from
the uniform distribution on [0, 1]. If the value of r is smaller
than P (b±L

1,j ), then the profile is moved to b±L
1,j , otherwise the

profile is not moved at all. The same operation is performed
for each criterion.

One loop of the metaheuristicin the case of a model
with 2 categories can be summarized by the following algo-
rithm:
for all j ∈ {1, ..., n} do
Compute P (gj(b

±l
1 )), ∀l

Find L such that P (gj(b
L
1 )) = maxl(P (gj(b

±l
1 )))

Draw a random number r from the uniform distribution
[0, 1]
if r < (P (bL1,j)) then
b1,j = bL1,j

end if
end for
When there are more than two categories, a similar algo-

rithm is applied to each profile with a slightly adapted defi-
nition of W and R:

Wh,j =
{
ai ∈ Ah+1

h : bh+1,j > ai,j ≥ bh,j
}

∪
{
ai ∈ Ah

h+1 : bh−1,j < ai,j < bh,j
}

(20)

Rh,j =
{
ai ∈ Ah+1

h : bh−1,j ≤ ai,j < bh,j
}

∪
{
ai ∈ Ah

h : bh−1,j ≤ ai,j < bh,j
}

∪
{
ai ∈ Ah

h+1 : bh+1,j > ai,j ≥ bh,j
}

∪
{
ai ∈ Ah+1

h+1 : bh+1,j > ai,j ≥ bh,j
}

(21)

for h = 1, ..., p − 1. In these definitions, Al
h denotes the sub-

set of misclassified alternatives that are assigned to category
Cl by the model while the DM assigns them to category Ck.
Note that the definitions of Wh,j and Rh,j only take into ac-
count the alternatives for which the class assigned by the DM
and the model either coincide or are nearest neighbor. Defi-
nitions which take into account all misclassified alternatives
have been experimented and have led to inferior results in
terms of convergence of the algorithm.

3.2.2 Parameters setting and tactical details

In the metaheuristicoutlined above, several parameters and
implementation details influence the convergence. The follow-
ing options have been chosen.

Objective function and stopping criterion In the pro-
posed algorithm, the objective function aims at maximizing
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the classification accuracy of the model. The stopping cri-
terion is met once the classification accuracy is equal to 1
or when the algorithm has run for Nit loops.

Number and position of the subdivision points b±l
i,j

The interval in which the value of the profile bh can vary
is subdivided 2k subintervals. The number k and the way
of subdividing the interval (equal vs. unequal subintervals)
must be specified.

Probability function In the present version, the probabil-
ity (19) only takes into account the number of alternatives
rightly or wrongly assigned to one of the two categories
neighboring the profile.

Treatment order of the profiles When there are more
than two categories, we have to specify the order in which
the algorithm handles the profiles. In this paper, they are
treated in ascending order of their labels, i.e. b1, b2, ...,
bp−1.

3.3 Inferring all the parameters

To infer all the parameters of the MR-Sort procedure, the lin-
ear program and the metaheuristic, described in the previous
paragraphs, are combined.

First, a set of Nmod MR-Sort models is generated. Each
model is initialized with a set of random profiles. Then, for
each model, the following two operations are repeated at most
No times:

1. Given the current profiles, the weights and a majority
threshold are learned by using the linear program.

2. Given the current values of the weights and the threshold,
the profiles are improved by running the metaheuristicNit

times. The classification accuracy CA, is computed after
each loop. After the Nit loops, the profiles giving the best
CA are kept.

After the 2 steps learning procedure has been applied to the
Nm models, the algorithm keeps only the Nm/2 models giving
the best CA and Nm/2 new models are randomly generated.
The algorithm is stopped once a model has a CA equal to 1
or when the algorithm has run No times.

4 Experimentations

In this section, we address the validation issues presented in
the introduction, i.e. model retrieval, algorithm efficiency and
tolerance for errors. We successively test the linear program
used to infer the weights and the majority threshold, the
metaheuristic used to infer the profiles and the metaheuristic
allowing to infer the whole set of parameters.

To test the algorithm partially and globally, we use a com-
mon testing procedure:

1. A random MR-Sort modelM is generated. It is determined
by a set of weights, normalized to 1, a set of profiles ordered
by the dominance relation with evaluations on the n criteria
between 0 and 1 and a majority threshold whose value is
picked in the interval [0.5, 1]. All values are drawn from

uniform distributions. The p − 1 profiles are generated by
drawing p− 1 numbers at random on each criterion. These
numbers are reordered in increasing order. The number of
rank h on criterion j is the jth component bh,j of profile bh.
Using model M as described by (5), each alternative can
be assigned to a category. The resulting assignment rule is
referred to as sM .

2. A set of m alternatives with random performances on the
n criteria is generated. The performance values are drawn
uniformly and independently from the [0, 1] interval. The
set of generated alternatives is denoted by A. The alter-
natives in A are assigned using the rule sM . The resulting
assignments and the performances of the alternatives in the
set A are given as input to the algorithm. They constitute
the learning set.

3. In case we only infer part of the parameters of the rule, the
other parameters are given as input to the algorithm, e.g.
for the inference of the profiles, the weights and the major-
ity threshold are given as input. Then the algorithm runs
and tries to maximize the number of assignments compat-
ible with the output resulting from step 2. The resulting
model is denoted by M ′. The alternatives in the set A are
assigned to a category by the model M ′. Formally, the as-
signment rule is denoted by sM′ . We compute the classifi-
cation accuracy CA(sM , sM′) according to equation 6, i.e.

CA(sM , sM′) =
|{a∈A:sM (a)=sM′ (a)}|

|A| .

The last step allows to study the efficiency of the algorithm
either by examining the computing time needed to learn the
parameters or by observing the algorithm convergence behav-
ior. In order to answer to the two other questions posed in the
introduction, additional steps are required:

4. After learning the parameters, a set of 10000 alternatives
with random performances (drawn independently from the
uniform distribution in the [0, 1] interval) is generated. It is
denoted by B. This set is used in the generalization phase.

5. The alternatives contained in the set B are assigned using
rules sM and s′M and the classification accuracy of model
M ′ is computed.

These two steps allow us to address the model retrieval is-
sue. To see how the algorithm behaves when the learning set
contains errors, an additional step is needed:

2’ A proportion of error is added in the assignment resulting
from rule sM . We denote by s̃M the rule producing the
assignments with errors.

After learning the parameters of the MR-Sort model, two val-
ues of classification accuracy can be computed to analyze the
algorithm behavior in the presence of errors. On the one hand,
the value CA(sM , sM′) gives an indication on the ability of
the algorithm to correct the errors in assignment examples.
On the other hand, the value CA(s̃M , sM′) gives an indication
on the ability of the algorithm at finding a model fitting the
learning set given as input.

The experimentations presented are made on an Intel Core
2 P8700 PC running Gentoo Linux, CPLEX version 12 and
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Python 2.7.2. All experiments are repeated on 10 random in-
stances and the values displayed in the graphics below are
averages over these 10 instances.

4.1 Inference of the weights and majority
threshold

4.1.1 Computing time

To see how much time is needed to learn the weights and the
majority threshold, the linear program, described in subsec-
tion 3.1 is tested for models with 3 categories and 5, 7, 10
or 20 criteria with 1000 to 10000 assignment examples. The
profiles that are used are the correct ones, i.e. those used in
the rule sM that assigns the alternatives in the learning set.

Solving large continuous variables linear programs using a
solver like CPLEX can be done very efficiently. However, a
pre-treatment of the linear constraints is required in order to
reduce the computing time needed to encode the constraints
into the solver. The pre-processing consists in consists in fil-
tering the constraints 7 in view of eliminating the redundant
ones

The experimental results are displayed in Figure 4. It shows
that less than 1 second is needed to learn the parameters of
a model having 3 categories and 10 criteria, even when the
learning set is as large as 10000 alternatives. However we see
that the computing time increases with the number of crite-
ria. This is due to the fact that the number of non-redundant
constraints quickly grows when the number of criteria is in-
creased.
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Figure 4. Computing time for learning the weights and the ma-
jority threshold of a model with 3 categories and 5, 7, 10 or 20
criteria

4.1.2 Model retrieval

What is the number of alternatives needed to obtain a good
set of weights and majority threshold for a model with a given
number of categories and criteria (assuming that we start with
the right profiles)?

The algorithm is tested on 3 categories and 10 criteria mod-
els with learning sets involving 100 to 1000 assignment exam-
ples. The inferred model (sM′) is used “in generalization” to

assign 10000 randomly generated alternatives. These assign-
ments are compared with those made by the original rule
(sM ), yielding an assessment of the classification accuracy.
The evolution of the classification accuracy is shown on fig-
ure 5.
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Figure 5. Evolution of the classification accuracy of models hav-
ing 3 categories and 10 criteria when the learning set contains 100
to 1000 alternatives

As we can see from the plot, the linear program returns
weights and a threshold that allow to assign the alternatives
in a similar way as the original model even for relatively small
learning sets. The classification accuracy is above 95 % for 200
assignment examples; it quickly reaches a classification accu-
racy close to 100 % when the number of alternatives increases.

4.1.3 Tolerance for error

Starting with learning sets in which the alternatives have been
assigned according to rule sM , we introduce random assign-
ment errors. More precisely, a certain proportion of the alter-
natives are reassigned to another category chosen uniformly
at random among all the other categories. We investigate how
the algorithm reacts.

The algorithm for learning the weights and a threshold is
tested on 3 categories and 10 criteria models when a pro-
portion of 5 to 40 % of assignment errors are introduced in
learning sets composed of 1000 assignment examples. Once
the parameters have been learned, we compare the original
model and the learned one on the manner they assign the
alternatives in the learning set.

Figure 6 displays the average, minimal and maximal values
of the classification accuracy obtained in the generalization set
(10000 alternatives) on the basis of learning sets containing
5 to 40 % of erroneous assignments. Since the number of as-
signment errors made by the learned model usually is smaller
than the number of assignment errors introduced in the learn-
ing set, we conclude that the algorithm selects weights and a
threshold in such a way that some of the errors introduced
in the learning set are corrected, thus obtaining a classifica-
tion accuracy CA(sM , sM′) that is generally better than 100
% minus the assignment error rate in the learning set. When
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using the learned model to assign alternatives in a general-
ization set, the error rate usually is smaller than that in the
learning set.
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Figure 6. Evolution of the number of assignment errors made
by the learned model for the alternatives in the generalization set
(10000 alternatives). The original model has 3 categories and 10
criteria and the learning set contains 5 to 40 % of erroneous assign-
ments

A further issue is the following. Are the alternatives in the
learning set wrongly assigned by the learned model mostly
alternatives that have been erroneously reassigned to intro-
duce errors in the learning set? Or, on the opposite, does
the learned model create many new assignment errors? In the
set of alternatives wrongly assigned with the learned weights
and majority threshold, what is the percentage of alternatives
that were degraded in this set? By looking at the set of al-
ternatives incorrectly assigned by the function sM′ , we see
that these alternatives are mainly ones that were not errors.
For instance, in a case in which the learning set is composed
of 1000 alternatives, erroneously assigned for 10% of them,
among the 5% of errors obtained by assigning the alternatives
of the learning set by means of M ′, only 0.5% correspond to
errors introduced in the learning set. We conclude that the
algorithm is able to correct introduced assignment errors, but
will in general create other errors.

4.2 Inference of the profiles
4.2.1 Strategy for moving the profiles

As emphasized in section 3.2.2, the convergence of the algo-
rithm is influenced by several parameters. Among these, we
now focus on the size of the intervals and the number of in-
tervals determining the possible moves for the profiles. We
present the evolution of the classification accuracy in con-
nection with 3 different strategies for defining the potential
profiles moves.

1. Equally spaced subdivisions between the profiles.

b+l
h,j = bh,j +

l

k
· (bh+1,j − bh,j) (22)

b−l
h,j = bh,j −

l

k
· (bh,j − bh−1,j) (23)

with k the number of sub-intervals and l ∈ {1, ...k}.
2. Spacing between two subdivisions increasing as a function

of the distance to the profile.

b+l
h,j = bh,j +

el∑k
i=1 e

i
· (bh+1,j − bh,j) (24)

b−l
h,j = bh,j −

el∑k
i=1 e

i
· (bh,j − bh−1,j) (25)

3. Spacing between subdivisions increasing as a function of
the distance to the profile; Number of intervals increasing
as a function of the classification accuracy of the model.

We see on figure 7 that the third strategy guarantees a
faster convergence. It is the one that is used in the rest of the
experimentations.
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Figure 7. Evolution of the classification accuracy for 3 categories
and 10 criteria models, depending on the strategy adopted for mov-
ing the profiles

4.2.2 Model retrieval

The experiments are made on models having 3 categories and
10 criteria. Using the right weights and threshold (those of
model M), the profiles are learned on the basis of learning
sets involving from 100 up to 1000 assignment examples. The
resulting model M ′ is then used to assign 10000 randomly
generated alternatives. Their assignment by M ′ is then com-
pared with their assignment using M . The average, minimal
and maximal values of the classification accuracy for the 10
instances are plotted on figure 8.

With 1000 alternatives in the learning set, the classification
accuracy of the alternatives contained in the generalization set
is on average close to 100 %. Unlike the linear program used to
find the weights and the majority threshold, the metaheuristic
requires more examples to return an appropriate set of pro-
files. This can be explained on the one hand by the number of
parameters to be determined is larger (when there are more
than two categories) and on the other hand by the fact that
the metaheuristic can remain stuck in a local minimum.
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Figure 8. Evolution of the classification accuracy in generaliza-
tion (10000 alternatives) for models having 3 categories and 10
criteria; size of learning set: 100 up to 1000 alternatives

4.2.3 Tolerance for error

Experiments are made on models having 3 categories and 10
criteria; the learning set involves 1000 alternatives. A pro-
portion of random erroneous reassignments is applied to the
learning set. ModelM ′ is learned on the basis of this corrupted
learning set and then, the assignments of the alternatives in
the learning set by modelM ′ are compared to those produced
by the corrupted rule s̃M . Figure 9 indicates that the classifi-
cation accuracy of the learning set with errors, CA(s̃M , sM′),
tends to be higher than the percentage of errors introduced in
the learning set. signification ????

0 50 100 150 200 250 300 350 400 450 500

50

60

70

80

Number of loops

C
A

of
th
e
le
ar
ni
ng

se
t
(i
n
%
)

10 % of errors
20 % of errors
30 % of errors

Figure 9. Evolution of the classification accuracy w.r.t. the er-
roneous learning set (CA(s̃M , sM′ )) used to learn the profiles of
models having 3 categories and 10 criteria with 1000 learning al-
ternatives containing 10 to 30 % of incompatible assignments

In the case of learning sets with 10% of introduced errors,
the classification accuracy CA(s̃M , sM′) is more or less equal
to 85% after 50 loops of the algorithm. Looking at the 15%
of alternatives erroneously assigned, we observe that 9.5% are
alternatives that have been reassigned (i.e. belong to the as-
signment errors introduced in the learning set). This indicates
that the algorithm has the ability to identify wrong assign-
ments and adjust the parameters on the basis of the learning
examples which are not corrupted. However, the algorithm

also introduces some additional errors while assigning the al-
ternatives in the learning set.

The observations just made let us expect good results in
generalization, as the learned model M ′ seems to be close to
the original–uncorrupted–model M . To challenge this feeling,
we compare the assignments obtained by the learned model
M ′ and the original model M on a set of 10000 randomly
generated alternatives.

Figure 10 shows that the metaheuristic has a good capacity
to retrieve assignment examples even in the presence of errors
in the learning set. For instance, with 10 % of errors in the
learning set, the model learned by means of the algorithm cor-
rectly assigns 97.5 % of the alternatives in the generalization
set.
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Figure 10. Evolution of the classification errors in the general-
ization set (10000 alternatives) after learning the profiles of models
having 3 categories and 10 criteria on the basis of a set of 1000
assignment examples containing 5 to 40 % assignment errors

4.3 Inference of all parameters

For the inference of the whole set of parameters, the same
experiments as for the partial inferences have been performed.

4.3.1 Convergence of the algorithm

Our first concern is to study the convergence behavior of the
combined algorithm. The program described for the inference
of all parameters of a MR-Sort model is tested for models
having 3 categories and 10 criteria. The algorithm is run 100
times (No = 100) on a population of 10 models (Nmod =
10). For each loop, the linear program is run once and the
metaheuristic 20 times (Nit).

Figure 11 displays the average classification accuracy of the
alternatives in the learning set after each loop. We observe
that the strongest improvement in the classification accuracy
is obtained during the first iteration. It is then not needed
to run the algorithm for too long because the gain in clas-
sification accuracy will not be substantial. In the example
presented, 10 iterations of the combined algorithm appears to
be sufficient.
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Figure 11. Evolution of the classification accuracy of the alter-
natives in the learning set used to learn the profiles of a model
having 3 categories and 10 criteria with 1000 assignment examples
(Nmod = 10;No = 100;Nit = 20)

4.3.2 Model retrieval

How many examples should we consider in the learning set in
order to be able to infer a model that gives a fair represen-
tation of the decision maker’s preferences? The experimenta-
tion is performed for 3 categories and 10 criteria models. The
learning sets involve from 100 up to 1000 assignment exam-
ples. We study the classification accuracy of the learned model
M ′ by comparing the assignments of 10000 randomly gener-
ated alternatives. Figure 12 shows the classification accuracy
CA(sM , sM′) in generalization.
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Figure 12. Evolution of the classification accuracy on the gener-
alization set. A 3 categories and 10 criteria model has been learned
on the basis of learning sets containing from 100 up to 1000 assign-
ment examples (Nmod = 10;No = 100;Nit = 20)

The plot shows us that the learned model is tuned precisely
enough to produce a classification accuracy superior to 90 %
on average when at least 300 assignment examples are used.
As expected, the larger the number of assignment examples
used as input, the more precise the model.

4.3.3 Tolerance for error

We also want to know the capacity of the algorithm to return
appropriate values for the parameters when the learning set
contains erroneous assignments. The experimental setting is
the same as before.

Using the learned model M ′ to assign the examples in the
learning set yields the results displayed on figure 13.
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Figure 13. Evolution of the classification accuracy
(CA(s̃M , sM′ )) for the alternatives in the learning set. A 3
categories and 10 criteria model is inferred on the basis of
1000 assignment examples containing 10 to 30 % of errors
(Nmod = 10;No = 100;Nit = 20)

We see that the classification accuracy reflects the percent-
age of errors in the learning set. For 10 % of errors in the
learning set given in input, the classification accuracy of the
learning set after learning the model stays between 85 % and
90 %.

To assess the ability of the algorithm to identify incorrectly
assigned alternatives, we study its behavior in generalization
by randomly generating 10000 alternatives and comparing
their assignment by the original model M and the learned
model M ′. The results are shown on figure 14.
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Figure 14. Evolution of the classification errors on the general-
ization set (10000 alternatives) after learning the whole set of pa-
rameters on the basis 1000 assignment examples (Nmod = 10;No =

100;Nit = 20)
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The percentage of errors in the learning set is on average
attenuated by the metaheuristic. For instance with 20 % of
errors in the learning set, the average error is around 8 % in
the generalization set with the learned model. However, the
metaheuristic sometimes returns models producing a percent-
age of assignment errors superior to the error rate imposed on
the learning set. For instance, with 5 % of errors in the learn-
ing set, the metaheuristic returned once 10 % of errors in the
generalization set. This demonstrates that there is still room
for improving the algorithm, which may currently fail to con-
verge to a learned model sufficiently close to the original one.

5 Conclusion and further research issues
In this article we presented a new metaheuristic to learn the
whole set of parameters of an MR-Sort procedure. Several
experiments have been performed for testing the behavior of
the metaheuristic when large learning sets are used as input.

In the experimentations, we observed that we can obtain
good results for reasonably complex models i.e. typically those
involving 3 categories and 10 criteria. The metaheuristic can
retrieve the parameters of such models from 500 assignment
examples with a classification accuracy close to 95 %. When
the assignment of the examples in the learning set is not fully
compatible with a MR-Sort model, the metaheuristic is still
able to return a reasonable approximation of the “true” model
by an adequate MR-Sort model. In generalization, we saw
that the percentage of assignment errors made by the learned
model is smaller than the percentage of assignment errors
introduced the learning set.

However, the experiments have also shown that additional
work is needed to improve the algorithm behavior in some
cases. When there are no assignment errors in the learning
set there are assignment errors ????? , it happens that the
metaheuristic used for learning the profiles does not converge
towards a classification accuracy of 100 % even after more
than 500 loops. Several tactical options for implementing the
metaheuristic have been presented in section 3.2.2 but only
two of them have been studied. Other parameters like the
probability function used for choosing the profiles moves de-
serve to be studied in the perspective of improving the algo-
rithm performance.

This paper does not cover the case of a MR-Sort model with
vetoes as described in section 2.1. Learning the parameters of
such model is another challenge.
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A piecewise linear approximation
of PROMETHEE II’s net flow scores

Stefan Eppe1 and Yves De Smet

Abstract. Promethee II is a prominent outranking
method that builds a complete ranking on a set of ac-
tions by means of pairwise action comparisons. How-
ever, the number of comparisons increases quadrati-
cally with the number of actions, leading to computa-
tion times that may become prohibitive for large deci-
sion problems. Practitioners generally seem to alleviate
this issue by down-sizing the problem, a solution that
may not always be acceptable though. Therefore, as an
alternative, we propose a piecewise linear model that
approximates Promethee II’s net flow scores without
requiring costly pairwise comparisons: our model re-
duces the computational complexity (with respect to
the number of actions) from quadratic to linear, at the
cost of some mis-ranked actions. Experimental results
on artificial problem instances show a decreasing pro-
portion of those mis-ranked actions as the problem size
increases. This observation leads us to provide empir-
ical bounds above which the Promethee II-ranking
of an action set is satisfyingly approximated by our
piecewise linear model.

1 Introduction

Outranking methods represent one of the main fami-
lies of multi-criteria decision aiding (MCDA) methods
that are based on the pairwise comparison of poten-
tial actions [10]. However, despite the many applica-
tions reported in the literature [1, 5], outranking meth-
ods do suffer from a certain lack of scalability that is
due mainly to computational limitations rather than
to intrinsic flaws. This scalability issue arises in situa-
tions where large data sets must be handled, e.g., for
geographical information analysis [8]; or where mod-
erately large preference queries [9] have to be pro-
cessed in parallel and quickly (for Internet product
configuration interfaces). Indeed, providing the deci-
sion maker with an outranking-based evaluation on n
actions comes at a cost of O(n2) pairwise action com-
parisons.

In this paper, we choose to focus on the
Promethee II method [2]. It is a representative and
widely used outranking method [1] that builds a com-
plete ranking on a set of actions by associating a so-
called net flow score to each of them (Section 2). As al-
ready stated, evaluating these scores for larger decision
problems becomes increasingly demanding in terms of
execution time and memory usage. Although this dif-
ficulty tends to decrease as computational power of
machines increases, the required time for a complete

1 Computer & Decision Engineering (CoDE) department,
Polytechnic School of Brussels, Université Libre de Brux-
elles, Belgium, email: stefan.eppe@ulb.ac.be

0
∆fh(a, b)

1

Ph(a, b)

qh ph 1

Figure 1. Promethee’s “V-shaped” preference function
for criterion h, a, b ∈ A, where ∆fh(a, b) = fh(a)− fh(b)
in the case of a maximization problem. For each criterion,
an indifference threshold qh and a preference threshold ph

have to be provided by the decision maker.

Promethee II evaluation may still remain prohibitive
for some particularly demanding applications.

Therefore, we propose an ex ante piecewise linear
approximation of each action’s net flow score (Sec-
tion 2). After describing our experimental setup (Sec-
tion 3), we empirically validate our model and show
that even for relatively small action sets, our model is
able to satisfyingly approximate the unicriterion net
flow (Section 4). Along other observations, we also
experimentally determine as from what instance size
the ranking induced by a piecewise linear approxima-
tion is sufficiently close to the original Promethee II-
ranking.

2 A unicriterion piecewise linear
approximation model

In this section, we first provide a brief description of
the Promethee II method. We then extend the orig-
inal, discrete formulation to a continuous one, which
will allow us to build a piecewise linear approxima-
tion of each action’s net flow score. This second part
represents the core of our contribution.

Let A = {a1, . . . , an} be a set of n actions. Each
action ai, with i ∈ I = {1, . . . , n}, is characterized by
means of m evaluations fh(ai), ∀h ∈ H = {1, . . . ,m}.
To compare any pair of actions a, b ∈ A, we take,
for each criterion, the “V-shaped” preference function,
with indifference and preference thresholds that are
respectively denoted qh and ph (Figure 1):

Ph(a, b) =


0 , if ∆fh(a, b) ≤ qh
∆fh(a,b)−qh

ph−qh
, if qh < ∆fh(a, b) ≤ ph

1 , if ph < ∆fh(a, b)

The pairwise action comparisons are aggregated for
each action and provide the unicriterion net flow score
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φh(a) on criterion h:

φh(a) =
1

n− 1

∑
b∈A

[ Ph(a, b)− Ph(b, a) ] .

Finally, the unicriterion scores are aggregated over all
criteria through a weighted sum to yield that action’s
net flow score:

φ(a) =
∑
h∈H

whφh(a), (1)

where w = {w1, . . . , wm} is a vector of each crite-
rion’s relative importance, with wh > 0,∀h ∈ H, and∑
h∈H wh = 1. The interested reader may refer to [2]

for a more detailed introduction to the Promethee
methods. Without loss of generality, we will consider
a maximization problem and assume that evaluations
lie in the interval fh(ai) ∈ [0, 1], ∀(i, h) ∈ I ×H.

Our goal, in this paper, is to determine an approx-
imation of an action’s net flow score φ(a) that only
depends on its evaluations fh(a), ∀h ∈ H, and on the
preference parameters. It should not require any pair-
wise action comparison.

With this aim in mind, and given the mathematical
form of (1), we start by focusing on the unicriterion
terms of the weighted sum. Indeed, if we manage to de-
termine an ex ante approximation of each unicriterion
score φh(a), the global approximation would immedi-
ately be determined by (1).

For the sake of simplicity, we will assume that the ac-
tions are sorted in increasing order of their evaluation
for the considered criterion: fh(ai) ≤ fh(aj), ∀i < j.
We can thus rewrite the unicriterion net flow score of
action ai as

φh(ai) =
1

n− 1

[
i−1∑
j=1

P (ai, aj) −
n∑

j=i+1

P (aj , ai)

]

In this form, however, it is not easy to deduce any
particular functional form. Therefore, we extend the
formulation above to the case of an infinite set A of
actions. Exploring the possible meanings of this contin-
uous extension lays beyond the scope of this work. We
will only consider it as a mathematical mean that could
provide us some insight into the asymptotic behavior
of unicriterion net flow scores. Still assuming that the
actions are sorted in ascending order of their evalua-
tions, we introduce the variable x ∈ [0, 1] which value
identifies a considered action. We assume that the con-
tinuous distribution of actions along x is given by the
density function ρ(x), chosen such that

∫ 1

0
ρ(ξ)dξ = 1.

The unicriterion net flow can thus be rewritten as fol-
lows in the continuous case:

φ∞h (a) =

∫ a

0

Ph(a, ξ)ρ(ξ)dξ −
∫ 1

a

Ph(ξ, a)ρ(ξ)dξ

Let us consider this formulation for the particular case
of a uniform distribution of actions: ρ(ξ) = 1, with,
hence, fh(ξ) = ξ. Introducing the following help vari-
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(a) Integration domains of φh(a)

1
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A B C D E fh(a)
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(b) Shape of the unicriterion net flow score

Figure 2. (a) The function
∆Ph(a, x) = Ph(a, x)− Ph(x, a) has to be integrated over
the interval x ∈ [0, 1] in order to compute the unicriterion

net flow’s value φh(a) =
∫ 1
0 ∆Ph(a, x)dx. The shaded

regions represent the positive and negative contributions
to the unicriterion net flow’s value φh(a), here for a

coordinate a = 0.4. (b) Shape of the unicriterion net flow
φh(a).

ables (that depend on a):
y−q = max { 0 ; a− qh }
y−p = max { 0 ; a− ph }

y+
q = min { 1 ; a+ qh }
y+
p = min { 1 ; a+ ph }

the integration range of (2) can be sliced into five
segments, denoted a ,. . ., e (Figure 2(a)). Once inte-
grated, we obtain the following formulation:

φ∞h (a) = y−p

a

+
(y−q − y−p )2

2(ph − qh)

b

+ 0

c

(2)

−
(y+
p − y+

q )2

2(ph − qh)

d

−
(
1− y+

p

)
e

The unicriterion net flow φ∞h (a) is composed of three
terms: a , c , and e , of linearly increasing values,
separated by two intervals: b and d , with quadratic
terms. The extent and contribution of each of them to
the unicriterion net flow depends on both thresholds
qh and ph, and also on action’s a evaluation fh(a).
In the general case, five different ranges can again be
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distinguished in φ∞h ’s domain (Figure 2(b)):

0 = a

A 0 < a < qh

B qh ≤ a < ph

C ph ≤ a < 1− ph
D 1− ph ≤ a < 1− qh
E 1− qh ≤ a < 1

1 = a

This general interpretation yields for the case where
ph < 1

2
. For higher values of ph, the shape changes

slightly, but can be determined analytically in a similar
way.

Depending on the values of qh and ph, some ranges
may be reduced to an empty range. For instance, if
qh = ph, there are no quadratic terms and φ∞h (a) re-
duces to a piecewise linear function. This form is par-
ticularly appealing for its simplicity and, as a further
simplification, we approximate (2) by a piecewise lin-
ear function φPL

h (a) composed of three segments (what-
ever the threshold values) and defined by one unique
parameter λh = 1

2
(qh + ph):

φPL
h (a) =


a+ λh − 1 if a < λh

2a− 1 if λh ≤ a < 1− λh
a− λh if a > 1− λh

(3)

The arbitrary choice for this particular piecewise linear
(PL) model is based on the following reasoning: As has
been shown, the linear segments of (2) have character-

istic slopes of
dφ∞

h
da

= 1 for both “outer segments” ( a

and e ) and
dφ∞

h
da

= 2 for the central segment ( c ). We
want the PL-model to reflect this. Of course, we also
want to keep the central symmetry around the coordi-
nate ( 1

2
, 0). Finally, we impose that the extreme values

−φ∞h (0) = φ∞h (1) = 1−λh. As a resulting feature, the
linear segments of our model intersect at symmetric
coordinates (λh, 2λh − 1) and (1− λh, 1− 2λh).

Beyond its formal simplicity, it is noticeable that
this function only has one single parameter, λh, that
is the mean value of qh and ph. This remarkable prop-
erty questions (at least for bigger problem instances)
the practical advantage of requiring two parameters to
determine a preference function. It also tends to show
that the effects of indifference and preference parame-
ters on an action’s ranking do compensate each other
in some way. This could shed a new light on the dif-
ficulty of eliciting these parameters [3]. Experiments
that would only try to elicit the relative weight and
parameter λh for each criterion could be run to verify
this conjecture.

Finally, we aggregate the set of unicriterion approxi-
mations through a weighted sum, just like for the orig-
inal mehtod, and we obtain an approximation of each
action’s net flow

φPL(a) =

m∑
h=1

whφ
PL
h (a), (4)

Algorithm 1: Standard experimental process that
outputs a result vector κ of Ntrials runs.

Input: n, m, Ntrials

for i = 1 . . . Ntrials do
A = randEvals(n,m);
(w, q, p) = randPrefParams(m);
R = computeNetFlowRanking(A,w, q, p);

RPL = computePLApproxRanking(A,w, q, p);

κi = computeCRatio(R,RPL);

which induces a ranking over A. We denote RPL(a) the
rank of action a based on our approximated model, and
hope it to be as close as possible to action a’s reference
rank R(a) obtained with the classical Promethee II
method.

3 Experimental setup

From an artificial continuous formulation, we have de-
duced a piecewise linear (PL) approximation that we
hope to be applicable to finite action sets. We are now
going to put our model to the test, comparing the rank-
ings it generates with the reference ranking produced
by the original Promethee II method. Beyond the
mere validation of our model, our main aim is to pro-
vide an empirical bound on the instance size above
which Promethee II’s net flow scores are reasonably
well approximated by our ex ante parametrized PL-
function.

The experimental approach proposed in this paper
consists (Algorithm 1) in generating a random instance
of n actions over m criteria, as well as preference pa-
rameters (weights and thresholds) for each criterion.
Therefrom, the rankings of the generated action set
following respectively Promethee II’s original model
(R) and our piecewise linear model (RPL) are com-
puted and their similarity compared. We use the re-
sulting similarity measure to

1. validate the approach by showing that for reason-
ably sized instances, our PL-model satisfyingly ap-
proximates the Promethee II ranking;

2. produce a table that provides an experimental nu-
merical bound for the instance size, as from which
the approximation quality reaches a required level.

To make things more concrete, we now provide some
practical details about different aspects of the experi-
mental setup:

Quality measure We define a rank concordance ra-
tio κ, which is the ratio of the number of concordant
action pairs, i.e., pairs that have the same relative
rank order in both rankings, over the total number
of pairwise action comparisons:

κ = 1
n(n−1)

∑
a,b∈A

c(a, b),
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where

c(a, b) =


1 , if

[
φ(a) ≥ φ(b) ∧ φPL(a) > φPL(b)

]
∨
[
φ(a) > φ(b) ∧ φPL(a) ≥ φPL(b)

]
0 , otherwise

indicates whether or not a rank difference between a
pair of actions following respectively rankings R and
RPL is concordant. Although this measure is closely
related to Kendall’s τ rank correlation coefficient
[6], we prefer the former because it allows taking
possible ties into account.

Randomly generated instances We generate in-
stances of n actions, evaluated on m criteria. For
each generated instance, one type of distribution
(Figure 3) is uniform randomly associated to each
criterion.2 The evaluations on each criterion are
then randomly generated for all actions following
that distribution. By doing so, we aim at produc-
ing results that are not (too strongly) biased by the
features of one specific distribution. With this way
of generating random instances, we implicitly as-
sume that the evaluations are uncorrelated, which
is an arguable hypothesis. Further tests with corre-
lated criteria evaluations should be carried out in
the future. Note also that the PL-model expressed
by (2) assumes a uniform distribution. We will have
to verify that mixed distributions do not affect the
approximation’s quality too much.

4 Results & discussion

Before delving into the empirical exploration of our
model, we start this section by providing a first analy-
sis of the statement (Section 2) that P2-rankings may
depend on only one threshold-like parameter λh per
criterion. When then proceed with several qualitative
and quantitative investigations to validate the PL-
model. Finally, we provide the results that we initially
aimed for and that answer the following question: “As
from what instance size is it possible to satisfyingly ap-
proximate an action’s net flow score by our piecewise
linear model?”.

The compensating effect of
Promethee II’s threshold values

The piecewise linear approximation proposed in Sec-
tion 2 only depends on one parameter, λh = 1

2
(qh+ph).

As already noted, this could suggest some sort of com-
pensating effect between indifference and preference
thresholds qh and ph in the Promethee II preference
model. To verify this, we observe how the ranking of an
action set A changes when the threshold values are al-
tered (the weights remain unchanged). Practically, we
take the ranking Rλ, induced by the threshold values
qh = ph = λ, as a reference and compare it with the

2 The attribution of a distribution function is independent
for each criterion. Hence, the same distribution may be
related to several criteria of the same instance.

ranking R′ induced by another pair of threshold val-
ues (q′h, p

′
h). The comparison is done through the rank

concordance ratio κ(Rλ, R
′). In particular, we inves-

tigate the case where λh = 0.25. At each run: 1) a
random set of actions is generated as described in Sec-
tion 3, as well as a random weight vector; 2) the concor-
dance κ is computed between Rλ=0.25 and R′, the lat-
ter being induced by threshold values qh and ph, where
ph ∈ {0, 0.005, . . . , 0.500} and qh ∈ {0, 0.005, . . . , ph}.
We finally compute κ(Rλ, R

′)’s 5% quantile for a series
of 1000 runs, i.e., an approximation of the minimum
concordance ratio reached with a probability of 95%.

The results (Figure 4) show, for all tested instance
sizes, a symmetry with respect to the bisecting line
qh+ph = 2λh. This tends to confirm the compensating
role of qh and ph: the influence of their average value
λh on Promethee II’s ranking is higher than their
individual values. As the instance size increases, the
isolines become more and more parallel to this bisect-
ing line. On the other hand, the similarity of induced
rankings with the reference ranking Rλ decreases when
the threshold pair tends to (qh, ph) → (0, 0.5). It is
obviously the highest, i.e., κ = 1, for qh = ph = λ.
The latter observation is particularly visible on smaller
instances. The underlying reasons for this decrease
should be investigated in a future paper.

Empirical validation of our model

Table 1. Parameters used for the experimental
investigation. Values in bold represent the most often used

combinations provided in the results section.

Parameter Value(s)

Number of actions n 5,10,50,500,1000
Number of criteria m 2,3,5,7,10

Ex post approximation models LiR, P3R
Ex ante approximation models PLA, PPA

Runs per instance config. Ntrials 1000

As a first validation, we visually compare both plots
of Figure 5. It shows that, although the experimen-
tal results displayed in (b) are based on a relatively
small instance of n = 20 randomly generated evalua-
tions (with a uniform distribution), these results are
close to the “theoretical” continuous results (a). This
suggests that general features deduced from the theo-
retical model could also satisfyingly yield for practical
instances. In a further step, we will investigate how the
differences between the model and the practical results
can be quantified.

As a validation for our piecewise linear model, we
compare the approximation quality, measured by the
rank concordance ratio κ, with three other models: 1)
ex post linear regression of P2-ranking; 2) ex post 3rd
degree polynomial regression of P2-ranking (motivated
by the shape of the net flow score); and 3) ex ante
piecewise polynomial approximation model. The com-
parison (Figure 6) shows that:
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Figure 4. Isolines of 5%-quantile of rank concordance κ measured between the reference ranking Rλ corresponding to
threshold values qh = ph = λh and the ranking R′ induced threshold given by the coordinate (qh, ph), with ph ∈ [0, 0.5]

and qh ∈ [0, ph]. The statistics are computed on 1000 randomly generated instances (with “mixed distributions”) of
respectively 5, 10, and 50 actions, evaluated on 3 criteria. The threshold values are the same for all criteria.

1. the ex post 3rd degree polynomial regression offers
the best approximation;

2. the PL-model and the piecewise polynomial approx-
imation model give similar results that come close
to the ex post results.

Empirical bounds for the use of our
model

Figure 7 shows, for different instance sizes, the com-
plement to 1 of the cumulated density function (CDF)
of κ, for a series of 1000 runs. Concretely, the plots
give the approximated probability of reaching at least
a given similarity, measured by the rank concordance
ratio κ. In the following, we will often refer to this ra-
tio as a measure of quality: the higher κ, the better the
approximation of Promethee II’s rankings (abbrevi-
ated by “P2-ranking” in the sequel) by our piecewise
linear model. Several observations can be done on the
basis of these plots:

1. While a higher number of actions increases the ap-
proximation’s quality, changing the number of cri-
teria has the opposite effect.

2. The quality curve converges to an “extreme curve”
(approximated by the plots for n = 1000), which
indicates that there exists an upper bound for the
approximation quality. In other words, whatever

the instance size, it will not in general be possi-
ble for our PL-model to induce the same ranking
as Promethee II.

3. Taking the opposite point of view, the results also
show that a satisfying approximation (depending on
a chosen quality level) can be reached, even for rel-
atively small instance sizes that are frequently en-
countered in actual MCDA problems. Example: For
instances of n = 10 actions and m = 7 criteria, a
concordance of 90% can be reached with a probabil-
ity of 87%. More numerical results are presented in
Table 2.

Figure 8 shows the same results from another per-
spective. For a given probability P that measures some
sort of required accuracy level of the approximation
quality, the plots represent the minimum quality κ that
is reached as a function of the number n of actions.

The question that naturally arises when using an
approximation model, is to locate, if possible, regions
where it is relatively better or worse. For our con-
cern, we search for the actions that are not ranked
appropriately with respect to the original P2-ranking.
Figure 9(a) represents the distribution of mis-ranked
actions with respect to the original rank. The result
can be quantitatively explained by the shape of the
plot that represents the average net flow score (over
1000 runs) for each rank position (Figure 9(b)). The
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Figure 5. The visual comparison of the theoretical continuous model (assuming n→∞) with a discrete instance of
n = 20 actions tends to confirm the validity of the continuous approximation model. Indeed, the “theoretical” continuous
functions (a) are very similar to the results obtained for a randomly generated discrete set of n = 20 actions (b). The pair
of values attached to each plot of (a) are respectively the corresponding indifference and preference thresholds: “qh; ph”.

The same parameter values are used and appear in the same order for (b).
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Figure 6. The box plots compare four types of net flow score approximation models: ex post linear regression (LiR); ex
post 3-rd degree polynomial regression (P3R); ex ante piecewise linear approximation (PLA); and ex ante piecewise

polynomial approximation (PPA). The results are shown for 1000 runs over mixed-distribution randomly generated action
sets of 10 (resp. 50) actions and 7 criteria.

results show that the approximation should be even
more satisfying than the rank concordance ratio in-
dicates, since the actions ranked among the first or
the last are often considered with more attention. We
could think of an additional metric that takes this into
consideration, by taking rank concordance of well and
badly ranked actions more into consideration as the
middle-ranked ones. This could, for instance be done
by adapting the generalized Kendall’s rank correlation
τ [7] to our needs.

5 Conclusion

The Promethee II method uses pairwise action com-
parisons to build a complete ranking over the set of
considered alternatives. However, building this rank-
ing is computationally demanding.This represents a
significant drawback for Promethee II when tack-
ling MCDA ranking problems that are very large

and/or have to be computed very often. Being able to
“switch” to an approximated model with linear com-
plexity when a compromise between ranking accuracy
and computation speed is affordable would therefore
be of great practical interest.

In this paper, we propose such an approximated
model. It is based on a piecewise linear approxima-
tion of the Promethee II net flow. Taking the usual
Promethee preference parameters, i.e., weights and
indifference/preference thresholds, an approximation
of an action’s net flow is provided by a function that
only depends on its evaluations. The approximated net
flows are then used to determine a complete ranking
over the set of considered actions.

Under the assumption of criteria independence, an
experimental study has provided us with quantitative
evaluations of the approximation’s quality, yielding the
minimum quality level that can be reached with a given
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Table 2. Probability P (κ > x) to reach a rank concordance ratio κ that is at least as high than x for mixed-distribution
randomly generated instances of different sizes.

n = 5 n = 10 n = 50

x \ m 2 3 5 7 10 2 3 5 7 10 2 3 5 7 10

0.70 0.98 0.97 0.97 0.97 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.80 0.93 0.89 0.89 0.87 0.89 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
0.90 0.93 0.89 0.89 0.87 0.89 0.92 0.90 0.88 0.87 0.86 0.99 1.00 1.00 1.00 1.00
0.95 0.67 0.60 0.59 0.55 0.55 0.75 0.69 0.61 0.60 0.58 0.89 0.88 0.73 0.75 0.69
0.99 0.67 0.60 0.60 0.55 0.55 0.24 0.20 0.13 0.12 0.13 0.07 0.04 0.00 0.00 0.00
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Figure 7. The probability P (κ > x) to reach a rank concordance ratio κ that is at least as high than x for
mixed-distribution randomly generated instances evolves as the number n of actions and m of criteria increases.

probability. This has been done for a variety of in-
stance sizes (from 5 to 1000 actions and from 2 to 7
criteria). Practically, these results provide indicative
bounds on the instance size as from which the rank-
ing may be approximated by our model, showing that
already moderately large instances (10 to 20 actions)
could be approximated with an “acceptable” loss of
ranking accuracy. At this stage, the presented results
should be considered as first results that have to be
deepened on a wider range of random instances, in
particular integrating correlated multivariate evalua-
tions.

On a more theoretical level, the piecewise linear for-
mulation of our model only depends on the threshold’s
average value, λh = 1

2
(qh+ph), for each criterion. This

suggests that the ranking may, to a certain extent, only
depend on that unique parameter, instead of a set of
two threshold parameters. This feature, that has been
partially confirmed by a set of experiments, provides
a deeper insight into the Promethee II preference
model internal structure. Both the theoretical relation
between threshold parameters as well as its practical
implications (e.g. for preference eliciting procedures)
should be studied in more depth in the future.
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Using Choquet integral in Machine Learning:
what can MCDA bring?

D. Bouyssou1 M. Couceiro1 C. Labreuche2 J.-L. Marichal3 B. Mayag1

Abstract. In this paper we discuss the Choquet integral
model in the realm of Preference Learning, and point out ad-
vantages of learning simultaneously partial utility functions
and capacities rather than sequentially, i.e., first utility func-
tions and then capacities or vice-versa. Moreover, we present
possible interpretations of the Choquet integral model in Pref-
erence Learning based on Shapley values and interaction in-
dices.

1 Introduction

The first application of the Choquet integral in computer sci-
ence appeared in the late 80’s in the field of decision under
uncertainty [21], and early 90’s in the fields of multi-criteria
decision making (MCDM) [7] and data mining [6, 25]. Re-
cently, it has also been used in machine learning (ML) [24])
and preference learning (PL) [4]. The use of the Choquet inte-
gral in MCDM and data mining for almost 20 years has lead
to a wide literature dealing with both theoretical (axioma-
tizations) and practical (methodologies, algorithms) aspects
[10]. The new fields of ML and PL can benefit from this huge
literature. We focus on two aspects in this paper.

The first aspect concerns partial utility functions. As an ag-
gregation function of n input variables, the Choquet integral
requires that these variables are commensurate. By commen-
surate, we mean that a same value (say 0.5) taken by two dif-
ferent input variables must have the same meaning. In MCDA,
this meaning refers to the degree of satisfaction to criteria. For
instance, value 0.5 corresponds to half-satisfaction. The reason
why the Choquet requires commensability is that it compares
the values taken by the n variables. This commensurability
property is obtained by introducing partial utility functions
over the attributes. The use of partial utility functions is well-
established in MCDA. They are much less used in ML and
PL. Sometimes, the attributes are aggregated without having
being normalized. When attributes are normalized, the partial
utility functions are fixed a priori and not learnt. The main
point of the paper is to show that, fixing utility functions a
priori significantly reduces the expressivity of the model. For
instance, if we only consider three criteria, when the utility
functions are fixed, it is not difficult to find two comparisons
that cannot be represented by a Choquet integral model: in
fact 2 comparisons are sufficient (see Section 3.1). Now, when
utility functions are not fixed, the simplest example we came
up with that is not representable by a Choquet integral and
partial utility functions is composed of 6 comparisons (see Sec-
tion 4.1) with only two attributes. Using conditional relative

1 LAMSADE, University Paris Dauphine, Place du Maréchal de
Lattre de Tassigny, 75116 Paris, France. Email: {denis.bouyssou,
miguel.couceiro, brice.mayag}@dauphine.fr

2 Thales Research & Technology, 1 avenue Augustin
Fresnel, 91767 Palaiseau Cedex- France. Email:
christophe.labreuche@thalesgroup.com

3 Faculté des Sciences, de la Technologie et de la Communication,
6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg. Email:
jean-luc.marichal@uni.lu

importance, we also give a non-representable example com-
posed of 11 comparisons with three attributes (see Section
4.2). Back to the case of two attributes, we show in Section
4.3, some sufficient conditions under which the preference re-
lation can be represented by a Choquet integral and partial
utility functions.

The second aspect is on the interpretation of the model.
Murofushi proposed to use the Shapley value as an impor-
tance index [18], and later introduced an interaction index
[19]. These two concepts are often used to interpret a capac-
ity. The use of these indices might be debatable as one may
argue that the user is interested in the interpretation of the
Choquet integral and not the capacity. We recall some results
– apparently not known from the community in ML and PL
– showning that the Choquet integral can be interpreted in
terms of Shapley and interaction indices. These results show
that the Shapley value is actually equal to the mean value of
the discrete derivative of the Choquet integral over all possible
vectors in [0, 1]n. This assumes that the set of possible alter-
natives is uniformly distributed in [0, 1]n. We show in Section
5 how to extend these results to non uniform distributions
which arises often in ML or even in MCDA. Some connections
with the definition of the Shapley value and interaction indices
on non-Boolean lattices are given.

2 Preliminaries

2.1 The Choquet integral

Let us denote by N = {1, . . . , n} a finite set of n criteria and
X = X1 × · · · × Xn the set of actions (also called alternatives
or options), where for each i ∈ N , Xi represents the set of
possible levels on criterion i. We refer to function ui : Xi → R,
i = 1, . . . , n, as utility function.

The Choquet integral [9, 10, 17, 16] is based on a capacity
µ defined as a set function from the powerset of criteria 2N to
[0, 1] such that:

1. µ(∅) = 0
2. µ(N) = 1
3. ∀A, B ∈ 2N , [A ⊆ B ⇒ µ(A) ≤ µ(B)] (monotonicity).

For an alternative x := (x1, ..., xn) ∈ X, the expression of
the Choquet integral w.r.t. a capacity µ is given by:

Cµ((u1(x1), . . . , un(xn))) :=

n
∑

i=1

(uτ(i)(xτ(i)) −

uτ(i−1)(xτ(i−1))) µ({τ (i), . . . , τ (n)})
where τ is a permutation on N such that uτ(1)(xτ(1)) ≤

uτ(2)(xτ(2)) ≤ · · · ≤ uτ(n−1)(xτ(n−1)) ≤ uτ(n)(xτ(n)), and
uτ(0)(xτ(0)) := 0.

The preferential information of the decision maker is repre-
sented by a binary relation % over X where ≻ is the asym-
metric part of %.

Let Π(2N ) be the set of permutations on N , and Zτ = {z ∈
[0, 1]n : zτ(1) ≥ · · · ≥ zτ(n)}, for τ ∈ Π(2N ). The Choquet in-
tegral Cµ(x) is clearly a weighted sum in each domain Zτ . The
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weights of criteria change from a domain Zτ to another one
Zτ ′ , for τ, τ ′ ∈ Π(2N ). Two alternatives are called comono-
tone if they belong to a same set Zτ . The Choquet integral is
additive for all comonotone alternatives [20].

2.2 Interpretation of a capacity

A capacity is a complex object (it contains 2n parameters),
hence it is useful to provide an interpretation of µ.

The Shapley value [22] is often used in MCDA as a tool to
interpret a capacity [19, 7, 8]. Actually, the concept of Shap-
ley value comes from cooperative game theory and has been
axiomatized in this framework [26]. The Shapley value de-
scribes how the worth obtained by all players shall be fairly
redistributed among themselves [27].

Let us give a construction of the Shapley value in the spirit
of cost allocation (cooperative game theory). N is interpreted
here as the set of players and µ(S) is the cost of the cheapest
way to serve all agents in S, ignoring the players in N \ S

altogether. All players of N agree to participate in the col-
lective use of the common technology or public goods. Con-
sider an ordering τ ∈ Π(2N ) of the players. Assume that
the players are served in the order given by this permuta-
tion. Once the k first players have been served, the marginal
cost of serving the next player according to the permutation
is µ({τ (1), . . . , τ (k + 1)}) − µ({τ (1), . . . , τ (k)}) =: hτ

τ(k+1)(µ).
The Shapley value allocates to agent i her expected marginal
cost over all possible orderings of agents [22]:

φi(µ) :=
1

n!

∑

τ∈Π(2N )

h
τ
i (µ)

=
∑

S⊆N\{i}

|S|!(n − |S| − 1)!

n!
∆iµ(S)

where ∆iµ(S) := µ(S ∪ {i}) − µ(S). Coefficient |S|!(n−|S|−1)!
n!

is the probability that coalition S corresponds precisely to the
set of players preceding player i in a giving ordering.

The interaction index [19] between criteria i and j is defined
by

Iij(µ) :=
∑

A⊂N\{i,j}

|A|!(n − |A| − 2)!

(n − 1)!
∆i,jµ(A)

where ∆i,jµ(A) := µ(A∪{i, j})−µ(A∪{i})−µ(A∪{j})+µ(A).
A positive (resp. negative) interaction depicts a positive (resp.
negative) synergy between criteria – both criteria need to be
satisfied (resp. it is sufficient that only one criterion is met).

This interaction index was extended to any coalition A of
criteria [5]:

IA(µ) =
∑

B⊆N\A

(n − |B| − |A|)!|B|!

(n − |A| + 1)!
∆Aµ(B),

where ∆Aµ(B) =
∑

K⊆A
(−1)|A\K|µ(B ∪K). In particular we

have

I{i}(µ) = φi(µ) and I{i,j}(µ) = Ii,j(µ).

3 Choquet integral: the importance of
learning utility functions and capacities
simultaneously

3.1 The limitation of Choquet integral: a
classical example

A classical example that shows the limitation of the Choquet
integral model is [9]:

The students of a faculty are evaluated on three subjects
Mathematics (M), Statistics (S) and Language skills (L). All
marks are taken from the same scale from 0 to 20. The eval-
uations of eight students are given by the table below:

1 : Mathematics (M) 2 : Statistics (S) 3 : Language (L)
A 16 13 7
B 16 11 9
C 6 13 7
D 6 11 9
E 14 16 7
F 14 15 8
G 9 16 7
H 9 15 8

To select the best students, the dean of the faculty expresses
his preferences:

• for a student good in Mathematics, Language is more im-
portant than Statistics

=⇒ A ≺ B and E ≺ F,

• for a student bad in Mathematics, Statistics is more impor-
tant than Language

=⇒ D ≺ C and H ≺ G.

The two preferences A ≺ B and D ≺ C lead to a contradiction
with the arithmetic mean model because

{

A ≺ B ⇒ 16 wM + 13 wS + 7 wL < 16 wM + 11 wS + 9 wL

D ≺ C ⇒ 6 wM + 11 wS + 9 wL < 6 wM + 13 wS + 7 wL.

Furthermore it is not difficult to see that the other two prefer-
ences, E ≺ F and H ≺ G, are not representable by a Choquet
integral Cµ since

{

E ≺ F ⇒ 7 + 7µ({M, S}) + 2µ({S}) < 8 + 6µ({M, S}) + µ({S})

H ≺ G ⇒ 8 + µ({M, S}) + 6µ({S}) < 7 + 2µ({M, S}) + 7µ({S})

i.e.

{

E ≺ F ⇒ µ({M, S}) + µ({S}) < 1

H ≺ G ⇒ µ({M, S}) + µ({S}) > 1

An important remark in this example is that we try to find a
capacity by assuming that the utility functions are fixed. If the
latter are not fixed, then E ≺ F and H ≺ G can be modeled
by Cµ, for instance, using these following utility functions:

1 : Mathematics (M) 2 : Statistics (S) 3 : Language (L)
E uM (14) = 16 uS(16) = 16 uL(7) = 7
F uM (14) = 16 uS(15) = 15 uL(8) = 8
G uM (9) = 9 uS(16) = 16 uL(7) = 7
H uM (9) = 9 uS(15) = 15 uL(8) = 8
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Indeed these utility functions lead to the system

{

E ≺ F ⇒ 2µ({M, S}) − µ({M}) < 1

H ≺ G ⇒ µ({M, S}) + µ({S}) > 1

Hence a capacity µ such that µ({M, S}) = µ({M}) =
µ({S}) = 0.6 can be found. The utility function given above
show that for the DM, the interpretation of “a good mark” in
mathematics and “a good mark” in statistics is different. Such
an interpretation is not in contradiction with the definition of
commensurate scales: for xi ∈ Xi and xj ∈ Xj ,

ui(xi) ≥ uj(xj) iff the DM considers xi at least as good as
xj .

Of course, if we assume that uM (a) = uS(a) = uL(a), for
all a ∈ [0, 20], then E ≺ F and H ≺ G remain not repre-
sentable by Cµ. This is not surprising because such situations
can be viewed as the representation of preferences in deci-
sion under uncertainty where the Choquet integral model is
well characterized [20, 21]. The four alternatives E, F, G, H

are comonotone and thus the preferences E ≺ F and H ≺ G

violate comonotone additivity.

To show the limitation of the Choquet integral in MCDA,
we look for an example where the utility functions are not
fixed a priori. This is the purpose of the next section.

4 Example non representable by a Choquet
integral

We wish to known under which condition % is representable
by a Choquet integral, i.e. there exists n utility functions ui :
Xi → R and a capacity µ such that for all x, y ∈ X

x % y =⇒ Cµ(u1(x1), . . . , un(xn)) ≥ Cµ(u1(y1), . . . , un(yn)).
(1)

4.1 A counter-example with 2 criteria

Let % be a weak order on the set X = X1 × X2. We are
interested in conditions that would guarantee that % can be
represented using a Choquet integral model, i.e., that there is
a real valued function u1 on X1 a real valued function u2 on
X2 and positive real numbers λ1, ω1, such that:

x % y ⇐⇒ V (x) ≥ V (y),

where V is a real valued function on X such that:

V (x) =

{

λ1u1(x1) + (1 − λ1)u2(x2) if u1(x1) ≥ u2(x2),

ω1u1(x1) + (1 − ω1)u2(x2) otherwise.

Such a model is clearly a particular case of the model stud-
ied in [2] in which

V (x) = F (u1(x1), u2(x2)), (2)

F being nondecreasing in its two arguments. We suppose that
the conditions underlying the latter model hold. They are
given in [2]. We now give an example of a weak order on X

that cannot be represented using a Choquet integral model
whatever the capacity and the functions u1 and u2.

Example 1 Let X1 = {a1, b1, c1, d1, e1, f1} and X2 =
{a2, b2, c2, d2, e2, f2}.

Suppose that the relation % is such that:

(a1, e2) ∼ (b1, d2)

(c1, d2) ∼ (a1, f2)

(c1, e2) 6∼ (b1, f2)

(3)

and

(d1, b2) ∼ (e1, a2)

(f1, a2) ∼ (d1, c2)

(f1, b2) 6∼ (e1, c2)

(4)

It is easy to find a weak order on X that satisfies the conditions
in [2] and that includes the relations (3) and (4). Moreover,
it is not difficult to choose this weak order in such a way as
to satisfy (2) together with:

u1(a1) ≤ u1(b1) ≤ u1(c1) ≤ u1(d1) ≤ u1(e1) ≤ u1(f1)

u2(a2) ≤ u2(b2) ≤ u2(c2) ≤ u2(d2) ≤ u2(e2) ≤ u2(f2)
(5)

Since each of triple of relations (3) and (4) violates the
Thomsen condition [13], they cannot be represented using an
additive model.

Considering the first triple, this implies that it is impossible
that we have

u1(a1) ≥ u2(f2),

or

u2(d2) ≥ u1(c1).

Indeed, if it were the case the representation for the elements
in the triple would be additive, so that the Thomsen condition
would be satisfied.

Similarly, considering the second triple, it is impossible that
we have

u1(d1) ≥ u2(c2)

or

u2(a2) ≥ u1(f1).

Hence, we must have:

u1(a1) < u2(f2),

and

u2(d2) < u1(c1),

and

u1(d1) < u2(c2)

and

u2(a2) < u1(f1).

It is not difficult to see that, together with (5) this leads to
contradiction.

Hence any weak order on X that has a representation in
model (2) satisfying (5) and that contains the relations in
(3) and (4) cannot be represented using the Choquet integral
model.
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4.2 A counter-example with 3 criteria

Let n = 3. We assume that there is an order on attribute 1.
For instance, X1 is a real interval and the utility function is
increasing (e.g. X1 represents the elements of a revenue). An-
other example: X1 = { “very bad”, “bad”, “medium”, “good”,
“very good”, }, where “very bad” is worse than “ bad”, etc.
The ordering on X1 is denoted by ≤ and the strict ordering
by <.

We choose two elements on attributes 2 and 3:

y2, z2 ∈ X2 and y3, z3 ∈ X3.

We choose now eleven elements on attribute 1:

x
1
1, x

2
1, . . . , x

11
1 ∈ X1 with x

1
1 < x

2
1 < · · · < x

11
1 .

We assume that the decision maker provides the following
preferential information:

(x1
1, y2, y3) ≻ (x1

1, z2, z3)

(x2
1, y2, y3) ≺ (x2

1, z2, z3)

(x3
1, y2, y3) ≻ (x3

1, z2, z3)

(x4
1, y2, y3) ≺ (x4

1, z2, z3)

(x5
1, y2, y3) ≻ (x5

1, z2, z3)

(x6
1, y2, y3) ≺ (x6

1, z2, z3)

(x7
1, y2, y3) ≻ (x7

1, z2, z3)

(x8
1, y2, y3) ≺ (x8

1, z2, z3)

(x9
1, y2, y3) ≻ (x9

1, z2, z3)

(x10
1 , y2, y3) ≺ (x10

1 , z2, z3)

(x11
1 , y2, y3) ≻ (x11

1 , z2, z3)

This idea of this example is to introduce sufficiently many
comparisons such that there necessarily exist three compar-
isons of comonotonic alternatives leading to a contradiction.

Lemma 1 The previous example is not representable by (1).

Proof: Assume for a contradiction that there exist utility
functions u1, u2, u3 and a capacity µ representing the previous
example. Note that u1(x1

1) < u1(x2
1) < · · · < u1(x11

1 ). Let
V = {u2(y2), u2(z2), u3(y3), u3(z3)}. These four elements split
the real line R into at most five intervals (−∞, v1], [v1, v2],
[v2, v3], [v3, v4] and [v4, +∞), where v1 ≤ v2 ≤ v3 ≤ v4 and
V = {v1, v2, v2, v4}.

It is not difficult to see that among
u1(x1

1), u1(x2
1), . . . , u1(x11

1 ), at least three of them nec-
essarily belong to the same interval. These three values
necessarily correspond to three successive elements, denoted
by xk

1 , xk+1
1 and xk+2

1 . Hence, in the preferential information,
the comparison obtained from xk

1 and xk+2
1 are the same and

are opposite to the comparison obtained with xk+1
1 . More

precisely, we have two cases:

• In the first case, we have

(xk
1 , y2, y3) ≻ (xk

1 , z2, z3) ,

(xk+1
1 , y2, y3) ≺ (xk+1

1 , z2, z3)

and

(xk+2
1 , y2, y3) ≻ (xk+2

1 , z2, z3). (6)

As u1(xk
1), u1(xk+1

1 ) and u1(xk+2
1 ) belong to the

same interval, the vectors (u1(xk
1), u2(y2), u3(y3)),

(u1(xk+1
1 ), u2(y2), u3(y3)) and (u1(xk+2

1 ), u2(y2), u3(y3))
are comonotone, and (u1(xk

1), u2(z2), u3(z3)),
(u1(xk+1

1 ), u2(z2), u3(z3)) and (u1(xk+2
1 ), u2(z2), u3(z3))

are comonotone. The Choquet integral is a weighted sum
for all comonotone vectors. We denote by (wy

1 , w
y
2 , w

y
3 )

the weights of criteria (obtained from the capacity µ)
for the comonotone vectors (u1(xk

1), u2(y2), u3(y3)),
(u1(xk+1

1 ), u2(y2), u3(y3)) and (u1(xk+2
1 ), u2(y2), u3(y3)).

We denote by (wz
1 , wz

2 , wz
3) the weights of criteria (ob-

tained from the capacity µ) for the comonotone vectors
(u1(xk

1), u2(z2), u3(z3)), (u1(xk+1
1 ), u2(z2), u3(z3)) and

(u1(xk+2
1 ), u2(z2), u3(z3)). Hence (6) gives

u1(xk
1) w

y
1 + u2(y2) w

y
2 + u3(y3) w

y
3

> u1(xk
1) w

z
1 + u2(z2) w

z
2 + u3(z3) w

z
3 (7)

u1(xk+1
1 ) w

y
1 + u2(y2) w

y
2 + u3(y3) w

y
3

< u1(xk+1
1 ) w

z
1 + u2(z2) w

z
2 + u3(z3) w

z
3 (8)

u1(xk+2
1 ) w

y
1 + u2(y2) w

y
2 + u3(y3) w

y
3

> u1(xk+2
1 ) w

z
1 + u2(z2) w

z
2 + u3(z3) w

z
3 (9)

Combining (7) with (8) gives

(u1(xk
1) − u1(xk+1

1 )) (wy
1 − w

z
1) > 0

As u1(xk
1) < u1(xk+1

1 ), we obtain w
y
1 < wz

1 . Combining (9)
with (8) gives

(u1(xk+2
1 ) − u1(xk+1

1 )) (wy
1 − w

z
1) > 0

As u1(xk+2
1 ) > u1(xk+1

1 ), we obtain the opposite inequality
w

y
1 > wz

1 . Hence a contradiction is attained.
• In the second case, we have

(xk
1 , y2, y3) ≺ (xk

1 , z2, z3) ,

(xk+1
1 , y2, y3) ≻ (xk+1

1 , z2, z3) and

(xk+2
1 , y2, y3) ≺ (xk+2

1 , z2, z3). (10)

We proceed similarly and a contradiction is also raised.

From the two counter-examples presented above, we can de-
duce some necessary conditions to represent a preference by
the Choquet integral model when utility functions and capac-
ity are unknown a priori. Therefore we hope to entirely char-
acterized this model in the future works. The search of this
characterization led us to obtain a first sufficient condition in
the case of two criteria.

4.3 Sufficient conditions for
representability by Choquet integrals
with 2 criteria

Let X1, X2 be two arbitrary chains (linearly ordered sets), and
let % be a partial relation on X1 × X2, extendable to a (total)

44



preference relation on X1 × X2 (i.e., which does not violate
reflexivity, transitivity and the Pareto condition), and let ≻
be its nonsymmetric part ... Denote by D(%) the universe of
R, i.e., the set of elements x ∈ X1 × X2 that appear in some
couple in %.

Proposition 1 Every partial relation % on X1×X2 for which
D(%) is a finite antichain (w.r.t. the componentwise ordering
of X1 × X2) can be extended to a (total) preference relation
on X1 × X2 that is representable by a Choquet integral.

Proof: Suppose that D(%) = {x1, . . . , xn}, xi = (xi1, xi2),
is an antichain. Without loss of generality, we assume that
x11 < . . . < xn1 and x12 > . . . > xn2; the other possible case
can be dealt with similarly. We shall construct utility functions
ut : Xt → R, t = 1, 2, and a capacity µ : 2N → [0, 1] such that
xi % xj implies Cµ(u1(xi1), u2(xi2)) ≤ Cµ(u1(xj1), u2(xj2)).

Since % is extendable to a (total) preference relation on
X1 × X2, we can partition D(%) into (indifference) classes
C0, C1, . . . that are defined recursively as follows:

1. C0 contains all maximal elements for %, i.e., elements y ∈
D(%) such that there is no z ∈ D(%) for which y ≻ z;

2. if C0, C1, . . . , CK have been defined, then CK+1 contains all
y ∈ D(%) such that y ≻ z for some z ∈ CK , and there is no
z′ ∈ D(%) \

⋃

0≤t≤K
Ct such that y ≻ z′.

Let C0, C1, . . . , CT be the thus defined classes.
Consider the capacity µ : 2N → [0, 1] given by

µ({1}) = µ({2}) = 1
3

and µ({1, 2}) = 1. Hence,
Cµ(u1(a1), u2(a2)) = 2

3
u1(a1) + 1

3
u2(a2) if u1(a1) ≤ u2(a2);

otherwise, Cµ(u1(a1), u2(a2)) = 2
3
u2(a2) + 1

3
u1(a1).

We construct ut : Xt → R on {x1t, . . . , xnt}, t = 1, 2, as
follows. Let s := min{k : xk ∈ C0}. Set u1(xs1) = u2(xs2) =
n. Hence Cµ(u1(xj1), u2(xj2)) = n.

Also, note that u1(xk1) ≤ u2(xk2) if k < s, and u1(xk1) ≥
u2(xk2) if k > s.

Now, take a sufficiently small ǫ > 0, say ǫ = 1
n

. For each
1 ≤ i ≤ n such that xi ∈ CK , define

1. u1(xi1) =
(

n−( |j−i|
2

)−Kǫ
)

and u2(xi2) =
(

n+|j−i|+Kǫ
)

if k < s, and
2. u1(xi1) =

(

n+|j−i|+Kǫ
)

and u2(xi2) =
(

n−( |j−i|
4

)−Kǫ
)

,
otherwise.

It is not difficult to verify that for every 0 ≤ S ≤ T and
y = (y1, y2) ∈ CS, we have Cµ(u1(y1), u2(y2)) = n − Sǫ

3
, and

the proof is now complete.

5 Interpretation of the Choquet integral
model

5.1 The [0, 1]n case

In the context of MCDA, the Shapley value can be seen as the
mean importance of criteria and is thus a useful tool to inter-
pret a capacity [7, 8]. The interpretation of Section 2.2 of the
Shapley value is not satisfactory in MCDA since it completely
ignores the use of the Choquet integral.

The interpretation of the Shapley value (and the Shapley
interaction indices) for the Choquet integral is basically due

to J.L. Marichal who noticed that (see [15, proposition 5.3.3
page 141] and also [11, Definition 10.41 and Proposition 10.43
page 369])

IS(µ) =

∫

[0,1]n

∆SCµ(z)dz

where, for any function f , ∆Sf is defined recursively by

∆Sf(z) = ∆i(∆S\{i}f)(x) for any i ∈ S

∆if(z) = f(z|zi = 1) − f(z|zi = 0)

The Shapley value appears as the mean of relative amplitude
of the range of Cµ w.r.t. criterion i, when the remaining vari-
ables take random values. What is true with Shapley value is
also true for interaction indices.

The following lemma is not difficult to prove:

Lemma 2 We have

IS(µ) =

∫

[0,1]n

∂|S|Cµ

∂zS

(z) dz

where the partial derivative is piecewise continuous.

Here the partial derivative is the local importance of Cµ at
point z.

5.2 The case of a subset of [0, 1]n

The set of options that the decision maker finds feasible is
often far from covering the whole space X. The following ex-
ample shows that only a subset denoted by Ω of X may be
realistic.

Example 2 (Situation awareness) Consider a surveil-
lance system that generates alerts from the information
provided by several sensors such as cameras and radars. The
system provides a situation awareness of the environment,
gathering the identification of the intruder and its accurate
localization [23].

We are interested in assessing the quality of information
provided by the system. To this end, we access the difference
between what the system displays to the user and the real sit-
uation. Three criteria are considered.

• Relevance of identity information: this is the difference be-
tween the identity that is obtained by the system and the real
identity of the intruder. The determination of a wrong iden-
tity has strong consequences on the level of threat associated
to the intruder.

• Rough localization: There are several particular assets that
must be protected in the area that is covered by the surveil-
lance system. Three areas of interest are defined around the
assets: the alert zone which is the area at close range of the
assets, the warning zone which is the area at medium range
of the assets, and the rest of the area. There is a procedure
which indicates the action that must be performed by an op-
erator when an intruder is in one of these three zones. The
system identifies the area to which intruders belong. Clearly,
the identification of a wrong area has a critical consequence
on the safety (if an intruder at close range is not seen as
being in that area) or the relevance (false alarms) of the
system.
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• Fine localization: This is the accuracy of the intruders lo-
calization made by the system, i.e., the distance between the
localization given by the system and the real one. The deci-
sion maker needs to know the accurate location of intruders,
especially, in the alert area in order to perform a dissuasive
action on the intruders.

The last two criteria quantify the consequence with respect to
two different points of view attached to localization. These two
criteria are statistically correlated. Indeed, when the second
criteria is not met, which entails a crude error, then it is not
possible that the last criteria is well-satisfied. This implies that
the satisfaction of last criterion cannot be better than that of
the second criterion. Hence x ∈ X such that x3 > x2 is not
feasible.

In MCDA, our starting point is the subset Ω of real-
istic options in [0, 1]n. One can assume that Ω is convex
and has a non-zero measure, as it is the case in Exam-
ple 2. For τ ∈ Π(2N ) and z ∈ Zτ , those coalitions used
in the computation of the Choquet integral w.r.t. z are
∅, {τ (1)}, {τ (1), τ (2)}, . . . , {τ (1), . . . , τ (n)}. The following set

T := {τ ∈ Π(2N ) , Int(Xτ ) ∩ Ω 6= ∅}

contains those permutations that are reached when computing
the Choquet integral of the elements of Ω. The set of coalitions
that are used in the previous computations is then

F = D(T ) :=
⋃

τ∈T

{∅, {τ (1)}, {τ (1), τ (2)},

. . . , {τ (1), . . . , τ (n)}}.

A convex geometry on N is a family F of subsets of N

satisfying the following properties [3, 12]

(i) ∅ ∈ F , N ∈ F ,
(ii) S ∈ F and T ∈ F implies that S ∩ T ∈ F ,
(iii) ∀S ∈ F \ {N}, ∃i ∈ N \ S such that S ∪ {i} ∈ F .

Note that properties (i) and (ii) allow to define a closure
operator S =

⋂

{T ∈ F : S ⊆ T } for every S ⊆ N .
The set of extreme points of a subset S ∈ F is defined as
ext(S) = {i ∈ S : S \ {i} ∈ F}. From this set, one can de-
fine a shelling process. Starting with the whole set N , one may
successively eliminate extreme points until the empty set is ob-
tained. This process defines maximal chains of F . A chain in F
from S ∈ F to T ∈ F , with S ⊂ T , is a set of nested elements
of F of the form S = Ki1 ⊂ Ki2 ⊂ · · · ⊂ Kim−1 ⊂ Kim

= T

with |Kil
| = il for l = 1, . . . , m, and i1 < i2 < · · · < im. A

maximal chain of F from S ∈ F to T ∈ F , with S ⊂ T , is a
chain of F from S to T for which m = t−s+1 (i.e. il = s+l−1
for all l) with the previous notation. A maximal chain of F is
a maximal chain of F from ∅ to N .

Another interesting case is when the points x are not uni-
formly spread over [0, 1]n. A particular case is when there are
some values in [0, 1]n that are infeasible. Then, when comput-
ing the Choquet integral, some permutations may never occur,
and thus some terms µ(S) (for some coalitions S) may never
be used. The Shapley value has been defined for the situation
of “forbidden” coalitions.

Let F be a convex geometry defined on N . A capacity on
F is a function µ : F → R satisfying the boundary and mono-
tonicity conditions. Bilbao [1] defined the Shapley value of µ

as follows

φ
F
i (µ) =

∑

S⊆N\{i} : S,S∪{i}∈F

CF (S, S ∪ {i})

CF
[µ(S ∪ {i}) − µ(S)] ,

(11)
where CF is the total number of maximal chains of F and
CF (S, S ∪ {i}) is the number of maximal chains of F going
through S and S ∪ {i}.

A reduced game describes the situation where the players in
a coalition P never play separately. As a consequence, they can
be identified to a unique player denoted by [P ]. Let N[P ] :=
(N\P )∪{[P ]}. Let ηP : PP (N) → 2N[P ] be defined by ηP (S) =
S if P 6⊆ S and ηP (S) = (S \ P ) ∪ {[P ]} otherwise. Given F ,
the definition of the set of allowed coalitions FN[P ] on N[P ] is
as follows [14]

FN[P ] = ηP (TP ) = {ηP (S) : S ∈ TP } ,

where TP is the set of the elements of all chains ∅ = S0 ⊂
· · · ⊂ Sk ⊂ Sk+p ⊂ · · · ⊂ Sn = N of elements of F with
|Si| = i, Sk+p = Sk ∪ P and Sk ∈ MP , and where MP :=
{S ⊆ N \ P : ∀T ⊆ P , S ∪ T ∈ F}. The interaction index
IF

P (µ) of coalition P w.r.t. a capacity µ has the expression [14]

I
F
P (µ) =

∑

S∈MP

C
F

N[P ] (S, S ∪ {[P ]}})

C
F

N[P ]

∆P µ(S). (12)

Lemma 2 can be extended to the current setting in the
following way:

Lemma 3 We have

I
F
S (µ) =

∫

∪τ∈T Zτ

∂|S|Cµ

∂zS

(z) dz

where the partial derivative is piecewise continuous.

This formula clearly shows that IF
S (µ) is interpreted as the

interaction among criteria S for the Choquet integral. Ex-
pression (12) provides a combinatorial formulae to compute
IF

S (µ).
Note that ∪τ∈T Zτ appears as an approximation of the fea-

sibility domain Ω. When this approximation is not so good, it
is possible to compute the interaction index by the following
expression

∫

Ω

∂|S|Cµ

∂zS

(z) dz.

This computation might be complex when Ω is itself complex.

6 Conclusion

We have shown the gain in terms of expressivity that is ob-
tained when the partial utility functions are constructed at
the same time as the Choquet integral. With only two at-
tributes, an example of non representativity is constructed.
It is very special in the sense that the alternatives take spe-
cial values on a grid. Moreover, again with two attributes,
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when the learning examples use only alternatives that belong
to an antichain, then we have shown that any weak order over
these alternatives, that does not violates Pareto condition and
transitivity, is representable by a Choquet integral and par-
tial utility functions. Clearly this result is wrong when the
partial utility functions are a priori fixed. With three criteria,
using the idea of conditional relative importance, we need 11
learning examples to contradicts the Choquet integral model.
We believe that these examples are important to construct
axiomatic characterizations of the Choquet integral and its
utility functions.

Next, the Shapley index and interaction indices often used
to interpret a capacity can also be used to interpret a Choquet
integral. Actually the interaction index among criteria S is the
integral over [0, 1]n of the partial derivative of the Choquet
integral w.r.t. criteria in S. This can be easily extended to the
cases when the set of feasible alternatives is not [0, 1]n but a
subset. The corresponding Shapley and interaction indices are
then extension of the original indices on convex geometries.

We hope we have convinced the community working on ML
and PL on the importance of learning not only the capacity
but also partial utility functions.
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Abstract

Recent - and less recent - work has been devoted to learning additive value functions or a Choquet capacity
to represent the preference of a decision maker on a set of alternatives described by their performance on
the relevant attributes. In this work we compare the ability of related models to represent rankings of such
alternatives. Our experiments are designed as follows. We generate a number of alternatives by drawing at
random a vector of evaluations for each of them. We then draw a random order on these alternatives and we
examine whether this order is representable by a simple weighted sum, a Choquet integral with respect to a
2- or 3-additive capacity, an additive value function in general or a piecewise-linear additive value function
with 2 or 3 pieces. We also generate non preferentially independent data in order to test to which extent 2-
or 3-additive Choquet integrals allow to represent the given orders. The results explore how representability
depends on varying the numbers of alternatives and criteria.

Key words : Preference representation, additive value function, Choquet integral, weighted sum

1 Introduction

Additive value functions occupy a dominant position in the models used for representing the preferences of a
decision maker (DM) on alternatives described by their performance on several attributes [7], [1]. This model
implies preferential independence [7, page 32], which however does not mean that it can be used for representing
any preference relation that satis�es this condition.

A simple example to show that this independence condition can easily be violated is that of a shopkeeper
who wishes to rent a new showroom. The showrooms are evaluated according to their surface, their price and
the city area in which they are located. The shopkeeper considers that in a commercially attractive area he
prefers the showroom which is expensive and large over the cheap and small one, whereas in a commercially
unattractive area he prefers the cheap and small showroom over the expensive and large one. This situation
does not satisfy the preference independence condition and cannot be represented by an additive value function.

In the late 1980’s another model for representing preferences in the multi-attribute context has emerged.
The use of the Choquet integral – which is better known in the context of decision under risk [10] - is advocated
in the multi-attribute case when a form o� nteraction between criteria is presumed [2].

A simple example is that of the selection process of students applying for graduate studies in management
(Grabisch and Labreuche, 2004). Students are evaluated by their past performance in mathematics, statistics
and language skills. Since skills in mathematics and statistics are correlated (mathematics and statistics are,
to some extent, redundant attributes), for students good at mathematics, the jury responsible for the selection
prefers a student with good linguistic skills to one who is good at statistics. Things will go the other way around
for students that have a weakness in mathematics. In such a situation, there is a (negative) interaction between
the criteria mathematics and statistics and a violation of preference independence.

Note however that interaction between criteria is a property that should not be identi�ed with the fact
that the preference independence hypothesis is violated: preferences that can be represented by a Choquet
integral do not necessarily satisfy the preference independence condition, but they do satisfy weaker forms
o� ndependence such as comonotonic independence [11, page 111] and weak separability [1]. Note that the
property of comonotonic independence not easy to de�ne in this context as it presupposes commensurability of
the attributes’ scales.

The goal of the present work is to study the “expressiveness” of these aggregation models, i.e. their ability
to represent preferences. In particular, we wish to give answers to the following questions:

1. What is the expressiveness of the Choquet integral models compared to that of the general additive value
and the weighted sum models ?
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2. What is the expressiveness of the general additive value model compared to that of piecewise linear additive
value ones ?

3. How do the Choquet integral models behave when confronted to non preferentially independent data ?

In this study, we assume that the Choquet integral is computed directly on the vector of performances of
the alternatives, without any recoding of these performances by marginal value functions. The additive value
function model, on the contrary, takes the preferences of the DM on each attribute into account by modelling
them using possibly non linear functions de�ned on the range of values that is relevant for each attribute. In
this setting, there obviously are examples in which the preference can be represented by means of an additive
value function but not using a Choquet integral. One may also imagine a model in which the Choquet integral
is applied to a vector of marginal value functions. Such a model would be more expressive since it would
encompass the additive value function model. We brie�y explain in the conclusion how it is possible to get
an indication on how much more expressive such a model is as compared to the simple additive value function
model involving the same marginal value functions.

In order to assess the relative expressiveness of these models, series of computational experiments are per-
formed which are described in Section 2. We then analyze the results, draw some conclusions and suggest
further investigations that seem interesting. Note �nally that this article extends our work from [8] by more
exhaustive experiments and by answering further questions on the expressiveness of these models.

2 Experimental setting

We denote by (a1 , . . . , a m ) the performance vector associated with an alternative a. Without loss of generality,
we suppose here that the alternatives performances are assessed by values in the [0, 1] interval. Let us present
the various models which are tested in this work:

1. The weighted sumfor which the score of alternative a is computed as
m�

i=1
wi ai , where wi are weights that

need to be determined.

2. The additive value function for which the score of alternative a is computed as
m�

i=1
ui (ai ) where ui are

(marginal value) functions from the [0, 1] interval into itself that need be determined. Two special cases
of the general model are also considered, in which ui is a piecewise linear marginal value function. In
the �rst variant, ui has two linear pieces corresponding to a division of the [0, 1] interval into two equal
parts. In the second variant there are three linear pieces, the [0, 1] interval being divided in three equal
sub-intervals.

3. A Choquet integral in which the score of alternative a is computed using 2-additive and 3-additive capac-
ities. In the case of a 2-additive capacity, the score of a is computed by means of the following formula:
m�

i=1
mi ai +

�

i,j,i<j
mij (ai � aj ) wheremi (resp. mij ) are weights associated with the criteria (resp. the pairs

of criteria) and ai � aj denotes the minimum of ai and aj . There are some constraints on the weights
which we do not explicitly state here (see e.g. [3]). The formula for 3-additive capacities is similar; it
involves an additional term with weights mijk associated with triplets of criteria.

To study the questions mentioned in the introduction, the following two experimental settings are brought
up. First, to check the expressiveness of the various models, for a given number n of alternatives and m of
criteria (or attributes), we randomly generate n alternatives, i.e. n vectors having m components. The values
of the m components can be seen as the performances of the corresponding alternative on them criteria (or
attributes). These are randomly drawn from the uniform distribution on the [0, 1] interval. Furthermore, we
assume w.l.o.g. that the DM prefers larger values to smaller ones on all attributes. A strict total order on the
n alternatives is then drawn randomly from a uniform distribution on all orders. We use linear programming
for checking whether this random order on the alternatives can be represented in the various models. In each
of the considered models, a score is computed for each alternative, aggregating the performances on the various
attributes. Alternative a is judged to be preferred to b if the score of a is greater than the score of b.

Second, to check the behaviour of the Choquet integral models when confronted to non independent pref-
erences, appropriate data and orders are generated according to the same setting as above. To do so, we �rst
randomly generate the performances of two alternatives a and b. Then we draw randomly one attribute index
q in { 1, . . . , m } and randomly generate two evaluations xq and yq. We then construct the four performance
vectors (xq, a− q) , (xq, b− q) , (yq, a− q) and (yq, b− q) , where the notation (xq, a− q) stands for the pro�le of alter-
native a where that evaluation aq has been replaced by evaluation xq. We then generate the remaining n − 4
alternatives as in the previous setting. The orders are generated such that (xq, a− q) is ranked before (xq, b− q)
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and (yq, a− q) is ranked after (yq, b− q) , which guarantees that the trials violate the preference independence
condition. In practice, we generate a random order on the n alternatives and keep it for the experiment if the
previous condition on the 4 pro�les is respected; if not, it is rejected.

All the experiments, including the generation of the alternatives and the orders, are performed using R, a
free software environment for statistical computing and graphics [9]. The parameters of the �rst two models
are searched for using a linear programming software that can be called from R (lpSolve). The linear program
involving the constraints expressing the order on the alternatives that has been randomly generated is submitted
to the solver. The structure of the constraints for piecewise linear marginal value functions are inspired by the
aggregation-disaggregation approach UTA [6], while the formulation for checking the existence of an additive
value function without any restriction on the type of marginal value functions allowed (except that they are
non-decreasing) is taken from [5]. For checking the representability by means of a Choquet integral and a 2-
or 3-additive capacity, we use the Kappalab R package [3] and, speci�cally, its “lin.prog.capa.ident” function.
In all models, the optimization routine seeks to maximize variable δ, the minimal di�erence in score of two
alternatives that are ranked consecutively in the random order.

We systematically explore the cases of a number of alternatives n = 4 , 5, 6, 8, 10 and, for each value of n, a
number of criteria m = 3 , 4, 5, 6, 8. For small values of n (4 to 6), we generate between 50 and 100 instances of
n alternatives and we systematically try to represent all orders on the alternatives (for the second setting, we
consider only the orders which generate non preferentially independent situations). For n = 8 and n = 10 , we
generate 50 instances and consider only a random sample of 3000 orders.

3 Results

3.1 Expressiveness of the various models

Table 1 displays the percentage of the orders that can be represented by the various models.
“Add” stands for “additive value function”, “Add-3seg” (resp. “Add-2seg”) for the particular additive value

function model with piecewise linear value functions with 2 segments (resp. 3 segments), “3-cap” for “3-additive
capacity”, “2-cap” for “2-additive capacity” and “WSum” for “weighted sum”. The column “TotNb” shows the
total number of trials, “Inst” indicates the number o� nstances (or performance tables) generated, and “Orders”
gives the number of orders generated for each instance. The values between parentheses indicate the percentage
of trials which have been prematurely interrupted because they exceeded 3 minutes of calculation time. As an
example, for n = 4 and m = 8 , we would expect that the 3-additive capacity model is able to represent a larger
number of orders than the 2-additive one. Yet, the lower percentage (80.75) for “3-cap” than for “2-cap” (97.42)
is due to the fact that 17.08% of the trials have been prematurely interrupted to avoid too long calculation
times. Several timeout values have been tested (from 1 to 15 minutes), however above 3 minutes no signi�cant
decrease of the number o� nterrupted trials could be observed.

The following observations can be made on the data shown in Table 1:

1. For all the models, the proportion o� nstances that can be represented increases with the number of
criteria and decreases with the number of alternatives;

2. The additive value function model is more expressive than the Choquet integral model with a 3-additive
capacity; the latter is slightly more expressive than the Choquet integral model with a 2-additive capacity;
�nally, this method is more expressive than the weighted sum. These di�erences are more marked when
n is large;

3. The di�erence in expressiveness between the general additive value function model and its derivatives with
piecewise linear value functions increases with n. For values of n up to 6 this di�erence is quite small. For
a given value of n, this di�erence increases with the number of criteria.

One may now wonder how much more expressive a model is when compared to the other ones. Table 2
compares this expressiveness by displaying the percentage of orders that can be represented by a given model
while they cannot be by another one. For instance, column “Add/3cap” yields the percentage of orders that
can be represented by an additive value function but cannot be represented using a Choquet integral with
3-additive capacities. Let us detail one row of this table. Among all possible orders which were generated for
n = 4 alternatives and m = 6 criteria, 3.88% (resp. 4.38%) can be represented by an additive function but not
a Choquet model with a 3-additive (resp. 2-additive) capacity (Add/3cap) (resp. Add/2cap). 13.75% of the
orders which are not representable by a weighted sum can be by an additive value function model (Add/Wsum).
The 3-additive capacity allows to represent a few more orders than the 2-additive capacity model (0.63%)
(3cap/2cap). 9.38% of the orders which cannot be represented by a weighted sum model can be by a 2-additive
Choquet integral (2cap/WSum). And none of the orders which cannot be represented by an additive value
function can be with a Choquet integral model (3cap/Add and 2cap/Add). Note that the same remark as for
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Table 1: Percentage of orders representable in the various tested models.

n m TotNb Inst Orders Add (%) Add- Add- 3-cap (%) 2-cap (%) WSum (%)
3seg (%) 2seg (%)

4 3 2400 100 24 54.54 51.83 48.04 47.00 46.13 35.04
4 4 2400 100 24 73.17 71.04 66.67 68.21 66.29 50.33
4 5 2400 100 24 85.79 83.75 80.92 80.29 78.54 66.38
4 6 2400 100 24 90.58 89.42 87.00 86.71 86.21 76.83
4 8 2400 100 24 98.17 98.17 96.88 80.75 (17.08) 97.42 89.54

5 3 12000 100 120 41.58 36.57 28.97 29.38 27.74 15.00
5 4 12000 100 120 62.58 57.53 50.43 47.46 45.58 28.78
5 5 12000 100 120 78.34 74.09 68.08 68.85 65.78 42.34
5 6 12000 100 120 85.71 81.88 75.73 77.76 75.84 53.33
5 8 12000 100 120 98.00 97.36 94.89 74.92 (21.43) 95.73 79.50

6 3 36000 50 720 25.44 17.66 13.29 11.54 10.66 4.37
6 4 36000 50 720 43.82 34.67 28.18 29.38 26.09 10.82
6 5 36000 50 720 65.63 57.72 48.93 52.88 49.17 22.25
6 6 36000 50 720 80.92 72.54 65.12 68.65 63.39 33.92
6 8 36000 50 720 91.50 89.41 84.32 61.87 (24.70) 84.05 58.04

8 3 150000 50 3000 8.85 3.22 1.60 1.54 1.20 0.23
8 4 150000 50 3000 29.27 16.20 8.34 11.16 7.80 1.05
8 5 150000 50 3000 49.69 31.23 19.70 27.46 20.60 3.38
8 6 150000 50 3000 69.44 50.79 31.25 48.82 34.33 6.71
8 8 150000 50 3000 90.20 80.28 65.20 52.03 (31.71) 71.90 22.04

10 3 150000 50 3000 4.33 0.67 0.18 0.20 0.13 0.01
10 4 150000 50 3000 13.31 3.08 1.01 2.05 1.18 0.04
10 5 150000 50 3000 38.83 12.84 4.37 11.94 5.62 0.21
10 6 150000 50 3000 56.93 24.92 10.69 26.84 15.11 0.72
10 8 150000 50 3000 79.72 55.98 31.19 37.81 (24.70) 42.86 3.86

Table 1 applies here concerning the timeout situations during the search for 3-additive Choquet integral models
(�gures marked by an asterisk).

The following observations can be made on the data shown in Table 2:

1. There are only very few cases (less than 1%) in which 2- or 3-additive capacity models can represent an
order that additive value functions cannot;

2. The advantage of using a 3- instead of a 2-additive capacity is not striking up to n = 8 and above.

3. The Choquet integral model can represent signi�cantly more orders than the weighted sum. This di�erence
becomes quite large when the number of criteria is high.

The observations made on basis of Tables 1 and 2 can be con�rmed in the following way. Recall that when
searching for an additive value model or a capacity, the objective of the linear programs is to maximize the
minimal score di�erence δ between two consecutive alternatives in the ranking. Thus the larger this di�erence,
the easier the model �ts the data. Figures 1 and 2 represent histograms of the values of δ obtained by the
di�erent models, for n = 6 and m = 8 (the histograms for other values of n and m are very similar).

In Figure 1 we can see that large values of δ occur more often for the additive value functions than for Choquet
integral models. Furthermore, Figure 2 shows that for two segments and three segments value functions there
is already a tendency to obtain larger values for δ than with the Choquet integral models (if we consider that
the weighted sum is the reference model).

3.2 Choquet integral vs. non preferentially independent data

In Table 2 we observe that there are only very few cases in which 2- or 3-additive capacity models can represent
an order that additive value functions cannot. It is well-known (see e.g. [11]) that the Choquet integral allows
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Table 2: Comparing expressiveness

n m Add/ Add/ Add/ 3cap/ 2cap/ 3cap/ 2cap/
3cap 2cap WSum 2cap WSum Add Add

4 3 7.54 8.42 19.50 0.88 11.08 0.00 0.00
4 4 4.96 6.88 22.83 1.92 15.96 0.00 0.00
4 5 5.50 7.25 19.42 1.75 12.17 0.00 0.00
4 6 3.88 4.38 13.75 0.63 9.38 0.00 0.00
4 8 0.33* 0.75 8.63 0.38* 7.96 0.00* 0.00

5 3 12.20 13.84 26.58 1.64 12.74 0.00 0.00
5 4 15.13 17.01 33.80 1.88 16.79 0.00 0.00
5 5 9.49 12.57 36.00 3.08 23.43 0.00 0.00
5 6 7.95 9.87 32.38 2.02 22.51 0.00 0.00
5 8 1.65* 2.28 18.50 0.51* 16.28 0.00* 0.00

6 3 13.90 14.78 21.08 0.88 6.29 0.00 0.00
6 4 14.56 17.76 33.00 3.29 15.27 0.11 0.03
6 5 12.76 16.47 43.37 3.72 26.91 0.01 0.01
6 6 12.32 17.53 47.00 5.32 29.47 0.05 0.00
6 8 4.94* 7.45 33.46 2.24* 26.05 0.00* 0.00

8 3 7.31 7.65 8.62 0.34 0.97 0.00 0.00
8 4 18.15 21.48 28.22 3.36 6.75 0.04 0.01
8 5 22.26 29.09 46.31 6.86 17.22 0.03 0.01
8 6 20.65 35.12 62.73 14.51 27.62 0.03 0.00
8 8 6.86* 19.93 68.76 8.70* 48.83 0.00* 0.00

10 3 4.13 4.19 4.32 0.06 0.12 0.00 0.00
10 4 11.27 12.13 13.27 0.87 1.14 0.01 0.00
10 5 27.08 33.21 38.62 6.32 5.41 0.19 0.01
10 6 30.17 41.83 56.21 11.73 14.39 0.08 0.01
10 8 16.04* 36.28 76.54 13.39* 40.26 0.00* 0.00

to represent (some) preferences that do not satisfy the preference independence condition, but that satisfy a
weaker condition called weak separability. The empirical question that we want to explore is: which proportion
of the preferences that do not verify preference independence can be represented by means of a Choquet integral.
To test this speci�cally, we generate data which violate the preference independence condition as mentioned in
Section 2 and try to represent these rankings using 2- or 3-additive capacity models. The results are shown in
Table 3. For n = 4 , 5, 6 the number of possible orders is lower than for the �rst experiment, because of the
constraints linked to the generation of non preferentially independent data. Note that the same remark as for
Table 1 applies here concerning the timeout situations during the search for 3-additive Choquet integral models

The following observations can be made on basis of the data in Table 3:

1. The percentage of trials representable by a 2- or 3-additive Choquet integral is higher than could be
expected from the results in the last two columns of Table 2;

2. The proportion of preference relations that can be represented increases with the number of criteria and
decreases with the number of alternatives;

3. Allowing for 3-additive capacities instead of 2-additive capacities results in tiny improvements of the model
expressivity.

The �rst observation above should be both emphasized and commented. Emphasized, because the results in
Table 2 seem to indicate that 2-additive and 3-additive capacity models are almost never capable of representing
preferences that an additive value function cannot. Actually, these results only show that the way in which
the instances are randomly generated seldom yield preferences that are representable by a Choquet integral
but not by an additive utility function. In order to speci�cally sample the set of preferences which cannot be
represented by an additive value function, we have introduced two pairs of alternatives specially designed to
violate the preference independence condition. In the most favorable experimental conditions we have tested,
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Figure 1: Values of δ: Choquet vs. additive value
functions.
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Figure 2: Values of δ: Variants of the additive
value functions model.

around 15% of the generated preferences can be represented using 2- or 3- additive capacity models. This �gure
should however be considered with caution. Indeed the way in which the instances have been generated does
not guarantee a uniform sampling of the preferences that cannot be represented in the additive value function
model. A precise de�nition of “uniform sampling” or “fair sampling” is a question that certainly deserves further
investigation. We retain as a provisional conclusion that the Choquet integral does have a certain capability of
representing preferences that cannot be represented by an additive value function but this capability has still
to be precisely assessed.

3.3 Some descriptive information on the data

One might wonder to what extent the violation of the Pareto dominance has an in�uence on the results presented
in Tables 1 and 2. In Table 4 we highlight the dominance situations which occurred during the experiments.
First, column “AvgDomPairs” contains the average number of pairs of alternatives which were in a Pareto
dominance situation for the generated performance tables. Then, “DomProbsSits” indicates the percentage
of trials (performance tables associated with their order) for which a violation of the Pareto dominance has
occurred. As a complement, in Figures 3 and 4 we show the relative frequencies of the number of pairs in the
Pareto dominance relation for n = 4 and n = 6 and m = 3 , 4, 6, 8.

We observe the following points from from Table 4 and Figures 3 and 4:

1. As one would expect, the average number of pairs of alternatives which are in a dominance situation
decreases with increasing number of criteria (for n �xed), and increases with the number of alternatives
(for m �xed);

2. The percentage of trials violating the Pareto dominance decreases with increasing number of criteria (for
n �xed), and increases with the number of alternatives (for m �xed);

3. For high numbers of alternatives and low numbers of criteria, this percentage becomes very large (for
example, for n = 10 and m = 3 , we have around 95% of trials which violate the Pareto dominance).

One may also be interested in the trials which are not representable by an additive value function. Their
number is given in column “NotAdd” of Table 4 and can easily be obtained by removing from the total number of
trials the number of trials which cannot be represented by an additive value function and those which contained
at least one violation of the Pareto dominance. As one would expect, the average number of these trials (on
the set of possible values for m) seems to increase with n.

4 Conclusion

The additive value function model appears to be de�nitely more expressive than the Choquet integral (using
tractable 2- or 3-additive capacities) at least for the ranges of numbers of alternatives and criteria that we have
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Table 3: Non preferentially independent data : percentages of orders representable by the various tested models

n m TotNb Inst Orders 3-cap (%) 2-cap (%)
4 3 600 100 6 6.83 6.83
4 4 600 100 6 11.00 11.00
4 5 600 100 6 14.33 14.33
4 6 600 100 6 14.83 14.83
4 8 600 100 6 14.67 (1.83) 16.50

5 3 3000 100 30 4.60 4.50
5 4 3000 100 30 9.60 9.57
5 5 3000 100 30 12.40 12.40
5 6 3000 100 30 14.40 14.40
5 8 3000 100 30 12.87 (2.73) 15.53

6 3 9000 50 180 2.90 2.77
6 4 9000 50 180 8.29 7.82
6 5 9000 50 180 11.37 10.99
6 6 9000 50 180 13.03 12.97
6 8 9000 50 180 11.63 (4.10) 15.12

8 3 150000 50 3000 0.79 0.55
8 4 150000 50 3000 2.84 2.17
8 5 150000 50 3000 5.67 4.72
8 6 150000 50 3000 8.27 7.20
8 8 150000 50 3000 9.24 (5.06) 13.43

10 3 150000 50 3000 0.02 0.02
10 4 150000 50 3000 0.63 0.23
10 5 150000 50 3000 2.71 1.54
10 6 150000 50 3000 5.75 3.54
10 8 150000 50 3000 7.07 (4.76) 9.46

explored. These ranges are rather typical in the applications of methods for learning preferences such as UTA
[6] or UTA-GMS [5]. It cannot be excluded that our conclusions could be challenged in applications with larger
learning sets. However, we have made exploratory trials with 20 alternatives and 8 criteria (using additive value
functions, Choquet with 2-additive capacities and weighted sum) resulting in outcomes that are in line with our
previous conclusions.

If we now compare the Choquet integral with the weighted sum, we see that using Choquet with 2- or 3-
additive capacities may increase the percentage of representable orders (around 15% on average, for 2-additive
capacities). The gain of expressiveness w.r.t. the weighted sum seems to be maximal when n is approximately
equal to m.

The Choquet integral is sometimes used instead of a sum in the additive value function model [4], obviously
increasing the expressiveness of the latter. An indication on how much more expressive such a model is as
compared with the simple additive value function model can be obtained by comparing the expressiveness of
the Choquet integral with respect to the weighted sum. Indeed, assuming that the distribution of the values
of marginal value functions is uniform, we may interpret our randomly generated vectors as representing the
marginal values of the alternatives instead o� ust performances. Under this hypothesis, a weighted sum of these
marginal values can be interpreted as an additive value function. Hence, the results of the previous paragraph
may be considered as an estimate of what can be gained in terms of expressiveness by considering a Choquet
integral instead of a sum in the additive value function model.

In view of these results, one might be tempted to recommend to restrict the use of a Choquet integral to the
cases in which marginal value functions have already been elicited and there is strong evidence o� nteraction
between criteria (since the notion o� nteraction is far from being clear when evaluations have not been recoded
into marginal values or at least when the scales of the various criteria have not been made commensurate;
see [4], on the notion of commensurateness). We might be less restrictive however if we consider that the
most expressive models are not necessarily the best choice in learning models, since they generally involve the
speci�cation of many parameters. Indeed, i� nformation about the DM’s preferences is scarce, using a less
expressive model, such as a 2-additive Choquet integral, may be advocated since it will generally lead to a lower
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Table 4: Pareto dominance related information and trials which are not representable by an additive value
function model

n m TotNb Inst Orders AvgDomPairs DomProbsSits (%) NotAdd
4 3 2400 100 24 1.39 45.46 0
4 4 2400 100 24 0.72 26.83 0
4 5 2400 100 24 0.33 14.17 1
4 6 2400 100 24 0.23 9.08 8
4 8 2400 100 24 0.05 1.83 0

5 3 12000 100 120 2.14 58.23 22
5 4 12000 100 120 1.16 37.04 45
5 5 12000 100 120 0.55 21.66 0
5 6 12000 100 120 0.34 14.25 5
5 8 12000 100 120 0.04 2.00 0

6 3 36000 50 720 3.9 74.21 124
6 4 36000 50 720 1.8 54.81 496
6 5 36000 50 720 1.04 33.64 265
6 6 36000 50 720 0.5 19.00 30
6 8 36000 50 720 0.18 8.50 0

8 3 150000 50 3000 7.84 90.95 294
8 4 150000 50 3000 3.74 69.56 1760
8 5 150000 50 3000 1.78 49.79 772
8 6 150000 50 3000 0.82 29.92 949
8 8

10 3 150000 50 3000 10.6 95.41 402
10 4 150000 50 3000 6.18 85.17 2294
10 5 150000 50 3000 2.48 58.65 3782
10 6 150000 50 3000 1.48 41.87 1813
10 8 150000 50 3000 0.46 19.02 1883

degree o� ndetermination of the parameters than with an additive utility function. This is all the more true
when the DM or the analyst has the intuition that the criteria do interact (although, again, such an “intuition”
should be considered with a dose of critical sense). Note that an alternative to general additive value functions
is using piecewise linear additive value functions as is done in UTA for instance [6]; such models require the
elicitation o� ewer parameters than the general additive value function model while their expressiveness is good
(Table 1).
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Abstract. In machine learning, the multiple classifiers aggregation
problems consist in using multiple classifiers to enhance the qual-
ity of a single classifier. Simple classifiers as mean or majority rules
are already used, but the aggregation methods used in voting theory
or multi-criteria decision making should increase the quality of the
obtained results. Meanwhile, these methods should lead to better in-
terpretable results for a human decision-maker. We present here the
results of a first experiment based on the use of Choquet integral, de-
cisive sets and rough sets based methods on four different datasets.

1 Introduction

A classification problem consists in affecting an individual to a pre-
defined category (or class) from its description via some variables.
A classifier or model is a mapping function giving a unique class
to each individual. In supervised classification, this function is built
from a set of examples thanks to learning method. A large amount
of different supervised learning algorithms are used, as indicated for
example in [1]. It is then common to have, for a given situation, sev-
eral results given by several classifiers. These classifiers can be based
on the use of very different methods, or can use the same method
with variations on leaning set. Using these information to enhance
the quality of the classification is the purpose of the multiple classi-
fier aggregation problem. Several methods already exist to solve the
multiple classifier aggregation problem (see [11] and [12] for a sur-
vey). We propose here new aggregation procedures inspired by some
aggregation methods developed in the framework of multi-criteria
decision making and social choice theory. In section 2, we present
the multiple classifier aggregation problem and stand the needed no-
tations. In section 3 we briefly present some aggregation procedures
based on the use of set functions and their applications in our frame-
work; then in section 4 we present the implementations and tests of
these methods and propose an analysis of the results.

2 Multiple classifier aggregation

2.1 Multiple classifier

It is well known that there exists no perfect classifier neither univer-
sal classifier : each classifier makes mistakes, and each classification
algorithm is really performing only on specific situations. So in or-
der to reduce the errors number, it should be interesting to mix the
results of several classifiers. Given a specific classifier, we can in-
crease its performances by adding one or several other classifiers.
These new classifiers should be as independent as possible from the

first one to be able to ‘correct” its errors. It is the case for example in
the boosting method where classifiers are built to obtain a maximum
diversity [15]. But the new classifiers should also be intrinsicaly per-
formant, although they will degrade the general performance. On the
other hand, if the first classifier is still good, many other good clas-
sifiers will be strongly related to the first one : it should be difficult
to find another good classifier independent from the first one. There-
fore, adding a new classifier will not give much more information to
the decision maker. So two mains properties have to be considered
for selecting and aggregating classifiers: the quality of each classifier
and the diversity into the set of classifiers. Mean rules and major-
ity rules are very dependent of the quality of the added classifier for
one hand, and of the independence between classifiers on the other
hand (see [14] for a theoretical study). We investigate in this paper
some other aggregation procedures which should manage less quality
and/or dependent classifiers.

2.2 Aggregation procedures
There already exist several aggregation procedures for the multi-
classifier problem [11]. Two of them are considered as reference
procedures, due to their use facility, and the fact that they are eas-
ily understandable :

• the majority rule : the allocated class for an individual is the class
chosen by a majority of classifiers.

• the mean rule : the allocated class for an individual is obtained by
a cutting level applied on the mean of the different labels given by
each classifiers.

In this paper, we present new aggregation procedures which aim
at enhancing the quality of these two procedures. The general idea
is that a multiple classifiers aggregation procedure can be seen as a
particular case of either a voting procedure, or a multi-criteria aggre-
gation rule, as seen below :

• suppose that each classifier is a voter, who can vote for or against
allocating x in class a. Then the aggregation of classifiers problem
can be seen as a voting procedure.

• suppose that each classifier is giving a score related to the strength
of its conviction that individual x should be affected to class 1.
This score can be seen as a value taken by a criterion related to
the considered classifier. Then the multiple classifiers aggregation
can be seen as a multi-criteria aggregation problem.

The field of multi-criteria aggregation procedure or voting pro-
cedure has been well studied in the past decades, and several ap-
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proaches and methods are available solve these aggregation prob-
lems in social choice theory or multi-criteria decision aiding theory
( see [2] for a review). We will focus here on a few a them, based on
the same basic tool which is the use of set functions to represent the
importance of each coalition of voters (resp. criteria).

2.3 Notations
We first establish the needed notations to have a formal representa-
tion of our framework. We define formally a classifier aggregation
problem as a problem which consists in aggregating the informa-
tion given by m classifiers on a individual ω in order to sort him
into a pre-defined class. We note here Ω the set of n individuals
{ω1, . . . , ωn} to be classified. Each individual ωi is described by
a set of q predictor variables Xj ∈ R, j = 1, . . . , q and a class of
membership Y ∈ {0, 1}. By convention for the ith individual ωi we
denote Yi its class andXi = (X1

i , . . . , X
q
i ) ∈ Rq its representation.

A single classifier φ is a mapping :

φ : Rq → [0, 1]
X 7→ φ(X) = p

The result φ(X) is said to be a label according to X by the clas-
sifier φ. It can be seen as a score (probability, possibility...) for indi-
vidual ω represented by X to belong to class 1.

According to this classifier, the chosen class should be obtained
by a cutting level α :

c(X) = 1 if φ(X) > α

Let P = {φ1, . . . , φm} be a set of m classifiers. An individual X
can then be described by a vector of labels given by each classifiers
px = (p1, . . . , pj , . . . , pm), or by a vector of chosen class affected
by each classifier cx = (c1, . . . , cj , . . . , cm).

The multiple classifier aggregation problem consists in aggregat-
ing the m outputs of the m classifiers to get a unique chosen class
C.

An multi-classifier aggregation function Φ is a mapping :

Φ : [0, 1]m → {0, 1}
{φi(X)} 7→ Φ(X) = C

As cj(X) ∈ {0, 1} ∀φ ∈ P also, the multi-classifier aggregation
function Φ can also takes a vector cx as argument.

2.4 General framework
We focus here on aggregation problems with a few number of dif-
ferent classifiers (typically less than 10 classifiers). The input of the
aggregation procedure is a vector px = (p1, . . . , pm) ∈ [0, 1]m of
labels or a vector cx = (c1, . . . , cm) ∈ {0, 1}m of classes. The
result is a unique chosen class CX .

A classifier gives for each individual a class which can be wrong
or right, as soon as the real class Y of the individual is known. Let us
recall that four situations can happen with a classifier. The following
table stands the different sets cardinals for each possibility :

real class
obtained class a b
a naa nab
b nba nbb

The quality of a classifier can be measured by several indicts.

• success ratio, denoted su.

su =
naa + nbb

n

The success ratio is the ratio of the number of well-affected indi-
viduals divided by the total number of individuals. It measures the
ability of the classifier to well classify the individuals, whatever
their class should be.

• precision ratio for the class a, denoted pra.

pra =
naa

naa + nab

The precision ratio is the number of well-affected individuals
of class a on the total number of individuals affected by the
procedure to the class a. It measures the ability of the classifier
to well reject the individuals which are not supposed to belong to
the class a.

• callback ratio for the class a, denoted cra :

cra =
naa

(naa + nba)

The callback ratio is the ratio of the number of well-affected indi-
viduals of class a divided the total number of individuals of class
a. It measures the ability of the classifier to well detect the indi-
viduals of class a : it is an asymmetric ratio, which is rather used
in the field of statistic tests, or disease detection.

3 Set functions approaches
As mentioned in section 2.2, the multi-classifier aggregation problem
has strong formal links with the preference aggregation problem in
social choice theory or multi-criteria decision making. Considering
each classifier as a voter, we wonder if there exist some coalitions
(sets of classifiers) such that if all the classifiers of a coalition agree
on class a for individual ω then the aggregation result of Φ(X) is
class a. We would like to represent the existence of such coalitions
through set functions, roughly giving to each subset of P a weight
corresponding to its power as a coalition. We present in this paper
three methods based on a decisive sets concept.

3.1 Capacity and Choquet Integral
3.1.1 Definition

One of the limits of the use of the weighted mean as an aggregation
function is that it is unable to take into account synergy possibly
happening between criteria to aggregate. A Choquet integral (see [5],
[13] for a complete presentation) can then be seen as a non-additive
generalization of the weighted mean. It is based on the use of a non-
additive set function named capacity :

Definition 1. Let N be a set of objects and µ = card(N). A ca-
pacity v : 2N → R+ is a set function such that v(∅) = 0, and
A ⊆ B ⊆ N implies that v(A) ≤ v(B). A capacity is said to be
normalized iff v(N) = 1.

Formally, a Choquet integral is a function C from [0, 1]µ into [0, 1]
such that, ∀x = (x1, . . . , xµ) ∈ [0, 1]µ:

C(x) =

µ∑
i=1

xσ(i)(v(Aσ(i))− v(Aσ(i−1)))

where
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• σ is a permutation on {1, . . . , µ} such that σ(1) ≤ σ(2) ≤ . . . ≤
σ(µ)

• v is a capacity on the set {1, . . . , µ}.
• Aσ(i) = {σ(i), σ(i+ 1), . . . , σ(µ)}

The Choquet integral has been very used in the fields of decision
under uncertainty and multi-criteria decision aiding along the past
decade, as mentioned in [7].

Choquet integral based aggregation rule
Input a set of individuals App

pX = (φ1(X), . . . , φm(X) ∀ω ∈ App
or cX = (c1(X), . . . , cm(X)) ∀ω ∈ App
Yω ∀ω ∈ App

Output a capacity v on the set {1, . . . ,m}
Aggregation C(X) = 1 ⇐⇒ α < Φ(X)

Φ(X) =
∑m
i=1 φσ(i)(X)(v(Aσ(i))− v(Aσ(i−1)))

Table 1. Summary of Choquet integral model

3.1.2 Analogy with the multi-classifier aggregation problem

Each classification function φi is giving a label in [0, 1] to the indi-
vidual ω. Formally, each classifier can then be seen as a criterion and
the function Φ as an aggregation function on these criteria. If a ca-
pacity function is defined on the set of classifiers, we can then use a
Choquet integral as an aggregation function to obtain a global score
for individual ω described by predictor variables X . We obtain, with
the above notations,

Φ′(X) =

m∑
i=1

φσ(i)(X)(v(Aσ(i))− v(Aσ(i−1)))

where

• σ is a permutation on {1, . . . ,m} such that σ(1) ≤ σ(2) ≤ . . . ≤
σ(m)

• v is a capacity on the set {1, . . . ,m}.
• Aσ(i) = {σ(i), σ(i+ 1), . . . , σ(m)}

The chosen class should then be obtained from Φ′ by a cutting
level α.

3.1.3 Using Choquet integral in multi-classifier
aggregation framework

The aim of the use of a Choquet integral in a multi-classifier aggre-
gation problem is to exhibit interactions which can appear between
classifiers. In order to do so, we will use identification procedures
based on a least square approach as proposed in [6]. These proce-
dures use a learning set of individuals as input. The label vector pX
for each individual given by all the classifiers is known, such as the
real class of each individual, and the identification procedure is an
optimization program that compute the parameters of the Choquet
integral that better fit the learning set. We then use the calculated
parameters to infer the category of new individuals.

We implemented two procedures:

• Choquet ls uses least-square based approach to infer the parame-
ters of the whole set of capacity values.

• Choquet 3-add uses least-square approach also but is limited to
a 3-additive capacity, i.e. a capacity with no interactions between
sets of more than 3 criteria (see [4] for details on k-additivity).
This limit has been chosen as a compromise, in order to facilitate
the computation as it divides by two the number of parameters,
but keeping a relevant amount of interaction between criteria.

The first experiments show that between 50 and 85% of the Mbius
coefficients are almost null. For example, we can have v({1}) = 0,
v({2}) = 0 and v({1, 2}) = 1. It means in that case that if a alterna-
tive is classified in class 1 for both classifiers 1 and 2, then it should
be classified in class 1 by the Choquet Integral operator. Note that it
is not always easy to obtain such a simple semantic interpretation of
the capacity parameters.

It is not always easy to obtain such a simple semantic interpreta-
tion of the capacity parameters and we have not study thoroughly
the results. However, the first experiments show that between 50
and 85% of the Mbius coefficients are almost null. For example,
we can have as typical parameters v({1}) = 0, v({2}) = 0 and
v({1, 2}) = 1. It means in that case that if a alternative is classified
in class 1 for both classifiers 1 and 2, then it is classified in class 1
by the Choquet Integral operator. This may be compared to the de-
cisive set method described below, noting that the Choquet integral
method can take into account both positive and negative examples in
learning.

3.2 Decisive sets
3.2.1 Definition

In social choice theory, voters v1, . . . , vn are supposed to be able to
give a preference relation between two candidates (or individuals) x
and y. The fact that voter v1 prefers candidate x to candidate y is
denoted by x �v1 y. Following Fishburn [3], a voter vi is said to
be decisive for the pair (x, y) if the fact that x �vi y implies that
x is preferred to y in the aggregated order, denoted x � y. A voter
who is decisive for all pair x, y is said to be totally decisive, or just
decisive. Inspired by Weymark [17], we can also define a decisive set
of voters V = {vi, . . . , vj} for the pair (x, y) if the fact that x �vi y
∀vi ∈ V implies that x � y.

Decisive sets based aggregation rule
Input a set of individuals App

cX = (c1(X), . . . , cm(X)) ∀ω ∈ App
Yω ∀ω ∈ App

Output D, a set of K decisive subsets
Dk ⊆ P, k = 1, . . . ,K for the class a

Aggregation C(X) = a ⇐⇒ ∃D ∈ D
such that {i ∈ 1, . . . ,M | Ci(X) = a} ⊆ Dk

Table 2. Summary of Decisive sets model

3.2.2 Analogy with the multi-classifier aggregation problem

Analogously, we can settle the following definitions in our frame-
work:

Definition 2. A classifier φi ∈ P is said to be decisive for X for the
class a if ci(X) = a⇒ C(X) = a. If φi is decisive for all X , φi is
said to be totally decisive, or simply decisive.

Definition 3. a set of classifiers P ⊆ P is said to be decisive for
X for the class a if ∀φi ∈ P, ci(X) = a ⇒ C(X) = a. If P is
decisive for allX , P is said to be totally decisive, or simply decisive.
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3.2.3 Using decisive sets in multi-classifier aggregation
framework

Practically, the aim of the identification process is to discover a set of
decisive sets as small as possible for a given class a. In order to iden-
tify these decisive sets, we study a learning set of known individuals
and we first catch all the existing decisive sets for each individual.
Then we select the smallest (for the inclusion) decisive sets of clas-
sifiers that optimize the chosen ratio. We then use this set of decisive
sets to infer the category of new individuals. The choice of a = 0
or a = 1 and the choice of the good ratio as an indicator of the fit
quality have an importance on the detected decisive sets. We present
below results obtained by considering successively a = 0 (method
Decisive sets 0) or a = 1 (method Decisive sets 1) both focusing on
the success ratio.

3.3 Rough sets dominance-based approximation
3.3.1 Definition

Another approach consists in using rough sets through the
dominance-based rough set approach (see Greco, Matarazzo and
Slowinski [9], [10]). In multi-criteria decision aiding, this approach
uses decision rules to assign the alternatives to the different cate-
gories, with respect to some reference levels on each criterion. The
axiomatic foundations of the rough set approach have been well stud-
ied by Greco, Mattarazo and Slowinski, including characterization
of the sorting problem using a utility function or an outranking re-
lation [8] or a Sugeno integral [16]. The dominance-based rough set
approach for classification consists first in obtaining for each alterna-
tive the set of all the classes compatible with the dominance relation
on the alternatives. It then produces a set of decision rules which
characterize the allocation of each alternative to the possible classes.
Decision rules present themselves as “if the value of the alternative
on criteria i is at least . . . and the value of the alternative on criteria
j is at least . . ., then the category of the alternative is at least . . ..”

dominance-based rough sets based aggregation rule
Input a set of individuals App

cX = (c1(X), . . . , cm(X)) ∀ω ∈ App
Yω ∀ω ∈ App

Output D, a set of K decisive subsets
Dk ⊆ P, k = 1, . . . ,K for the class a

Aggregation C(X) = a ⇐⇒ ∃DD
such that {i ∈ 1, . . . ,M | Ci(X) = a} ⊆ Dk

Table 3. Summary of dominance-based rough sets model

3.3.2 Analogy with the multi-classifier aggregation problem

Each classification function φi is giving a score on [0, 1] for the indi-
vidual ω. Formally, each classifier can then be seen as a criterion and
each individual as an alternative. Each alternative can then be clas-
sified only in one out of two classes. A dominance-based rough sets
approach will then consist in sorting each individual into one out of
three classes : individuals which are certainly in class a, individuals
which are certainly not in class a, and ambiguous individuals, based
on the dominance relation between individuals on values φi(X). We
have then to produce a decision rules set to characterize the allocation
of each individual to class 0 or 1. We can also directly use the classi-
fication vector cX in the dominance-based rough sets approach. All

the variables are then binary variables, and then decision rules can be
interpreted as decisive sets of classifiers. We will then focus on this
case.

3.3.3 Using dominance-based rough set approach in
multi-classifier aggregation framework

Following the analogy developed in the decisive sets frameworks, we
decide to aggregate the results cX of the classifiers to obtain the fi-
nal class for individual X . The inputs of the procedure are then only
binary vectors cX = (c1(X), . . . , cm(X)) with ci(X) ∈ {0, 1}.
The use of a dominance-based rough set approach in multi-classifier
aggregation consists simply in finding a set of decision rules that bet-
ter fits the learning set of individuals. Decision rules present them-
selves as “if ci(X) = a and . . . and cj(X) = a then c(X) = a”.
These rules can also be interpreted as decisive sets of classifiers : “if
ci(X) = a and . . . and cj(X) = a then c(X) = a” means that
{φi, . . . , φj} is a decisive set for class a. The used algorithm con-
sists in building decisive sets from an empty set of classifiers, adding
new classifiers in the set while the chosen ratio keeps on being opti-
mized. The choice of a = 0 or a = 1 and the choice of the good ratio
as an indicator of the fit quality have an importance on the detected
decision rules. We present below results obtained by considering suc-
cessively a = 0 (method Rough sets 0) or a = 1 (method Rough sets
1) both focusing on the success ratio.

4 Results
4.1 Data sets
We have compared those aggregation methods versus majority and
mean rules for the following four datasets:

• UCI’s dataset Letter: recognition of letter “R” versus “B”.
• UCI’s dataset Musk (v2): prediction if a molecule is (or not) a

musk.
• Leo Breiman’s Ringnorm and Threenorm: recognition of two

normal distribution with different mean and covariance.

Those datasets have medium size (detailed in table Tab:datasets)
from 1500 to 6600 individuals), which gives sufficient individuals
for the two learning steps (training simple classifiers and training ag-
gregating methods). They have 2 classes and two of them are real
examples (Letter and Musk) while the others (Threenorm and Ring-
norm) are constructed data.

nb indiv. nb var. prop of 1
Letter 1524 16 49.7%
Musk 6599 166 84%

Ringnorm 2128 20 50%
Threenorm 2128 20 50%

Table 4. List of the considered datasets.

4.2 Compared methods
We have compared the error, precision and call-back ratios through
the three different methods for the four datasets. In order to do so, we
split each dataset into a learning set L and a test set T . The learning
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set has been used to train the classifier and the test one to compare the
computed class with the true one. More, our method used two levels
of training, one for the simple classifiers to build m models and one
for the aggregation model. So for our algorithm, the learning set L is
itself split in two equal parts Ltrain and Lagg .

• Ltrain is used for training 7 simple well-known classifiers:

– Breiman’s random forest from the randomForest R library;

– ada boost from the ada R library;

– support vector machine using C classification and Gaussian
kernel (ksvm function from kernlab R package);

– linear Discriminant Analysis from MASS R package;

– logistic regression using glm from stats R package;

– single decision tree C4.5 using J48 function provided by
RWeka R package;

– k nearest neighbours using IBk function from RWeka R pack-
age by default (k=1).

Then we obtain p : Ω → [0, 1]m

x 7→ px = (p1, . . . , pm)
• The responses of the obtained classifiers are computed on Lagg

and T , to obtain respectively the p(Lagg) and p(T ) results.
• The aggregation operator is trained using classifiers responses
p(Lagg) and true classes Y (Lagg) in order to obtain the multi-
classifier aggregation function Φ.

• The aggregated response for test set Φ(p(T )) is computed and
compared to the true class Y (T ) to compute the different ratios.

For mean and majority aggregation, the two levels learning is not
necessary, so the classifier’s training process is done one more time
using the entire learning set L.

We also use Wilcoxon signed rank test to detect if the differences
are significant or not. Our several learning sets and test sets are com-
puted using 10 cross-validations. This means that the dataset is di-
vided into 10 disjoint parts. We repeat the same test 10 times, each
time, one part is used as test set and one is used for learning algo-
rithm. The presented ratios are the means of the 10 corresponding
results and the significance of the differences is computed thanks to
Wilcoxon test.

4.3 Results
We present in tables 5 to 8 the results of our experiment on the dif-
ferent datasets. For each dataset, we present success ratio for each
aggregation method, precision and callback ratio for class 1. For
each aggregation method we indicate the significance degree (with
α = 5%) compared first to the mean rule and second to the majority
one.

• “+” denotes that the proposed aggregation method is significantly
better than mean (respect. majority) rule,

• “-” denotes that it is significantly worse than mean (respect. ma-
jority) rule,

• “=” denotes that the difference is not significant.

For example in table 8, the success ratio of rough set oriented for
0 class is 87.1%, which is significantly better than majority rule but
not than mean rule.

We can see that aggregation methods are often better than majority
or mean rule, rarely worst (and never for success ratio). These results
are promising as they are obtained with non optimized algorithm. For

example we haven’t study the effect of the size of Ltrain and Lagg ,
choosing same size for the both. This means that simpler classifiers
(majority and mean rule) are trained on 2 times bigger sets. Our first
intuition was that the orientation of decision or rough sets research
should have an effect on precision and callback ration, but this is not
obvious in our experiments. However, further studies in this direction
certainly need to be lead.

Agg. method Success ratio Precision ratio Call-back ratio
Mean 98.7 98.8 98.5
Majority 98.8 99.1 98.5
Decisive sets 1 98.6 =/= 99.0 =/= 98.2 =/=
Decisive sets 0 98.7 =/= 98.8 =/= 98.5 =/=
Rough sets 1 98.6 =/= 99.5 =/= 97.7 =/=
Rough sets 0 98.5 =/= 98.4 =/= 98.5 =/=
Choquet ls 98.8 =/= 99.2 =/= 98.4 =/=
Choquet 3-add 98.8 =/= 99.1 =/= 98.5 =/=

Table 5. Comparison of several methods for the Letter R/B data set

Agg. method Success ratio Precision ratio Call-back ratio
Mean 97.6 97.7 99.5
Majority 97.7 97.8 99.6
Decisive sets 1 97.9 =/= 98.0 =/= 99.6 =/=
Decisive sets 0 98.1 +/+ 98.6 +/+ 99.2 -/-
Rough sets 1 98.2 +/+ 98.5 +/+ 99.3 -/=
Rough sets 0 98.2 +/+ 98.4 +/+ 99.5 =/=
Choquet ls 98.2 +/+ 98.7 +/+ 99.2 -/-
Choquet 3-add 98.2 +/+ 98.7 +/+ 99.1 +/+

Table 6. Comparison of several methods for the Musk data set

Agg. method Success ratio Precision ratio Call-back ratio
Mean 95.9 94 98.3
Majority 94.2 92.5 96.2
Decisive sets 1 98.4 +/+ 98.1 +/+ 98.7 =/+
Decisive sets 0 97.2 =/= 98.3 +/+ 96.0 =/=
Rough sets 1 98.5 +/+ 98.2 +/+ 99.0 =/+
Rough sets 0 92.8 =/= 90.1 =/= 99.4 +/+
Choquet ls 98.4 +/+ 98.2 +/+ 98.7 =/+
Choquet 3-add 98.4 +/+ 98.2 +/+ 98.7 =/+

Table 7. Comparison of several methods for the Ringnorm data set

5 Conclusion
In this paper, we obtained promising results which need further in-
vestigations. Among others, we propose two issues which are in our
opinion relevant to be study:

• Does this approach can be applied to a larger number of clas-
sifiers ? This will be interesting to use it in ensemble methods
framework, where several tens (or hundreds) of classifiers are ag-
gregated. This leads to computation problems, because the com-
plexity of some methods grows exponentially with the number of
simple classifiers.
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Agg. method Success ratio Precision ratio Call-back ratio
Mean 85.8 86.1 85.4
Majority 86. 85.9 86.3
Decisive sets 1 86. =/= 83.7 =/- 89.9 +/+
Decisive sets 0 86.5 =/= 87.1 =/+ 85.7 =/=
Rough sets 1 86.6 =/= 88.1 +/+ 84.7 =/-
Rough sets 0 87.1 =/+ 85.6 =/= 89.3 +/+
Choquet ls 87.5 +/+ 87.4 =/+ 87.7 =/=
Choquet 3-add 87.6 +/+ 87.5 +/= 87.8 =/=

Table 8. Comparison of several methods for the Threenorm data set

• May these methods be used for selecting classifiers ? Indeed,
rough set methods give generally a small number of rules. This
may be seen as a simplification of the original set of classifiers.
One drawback of aggregating different classifiers is that the pro-
cess disintegrate the decision in multiple classifier, making it im-
possible to understand. So a human decision maker may need such
a simplification.
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The topic of "preferences" has recently attracted considerable attention in artificial intelligence
in general and machine learning in particular, where the topic of preference learning has emer-
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operations research, social choice and decision theory. Roughly speaking, preference learning
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lexicographic orders, over “learning to rank” for information retrieval to collaborative filtering
techniques for recommender systems. The primary goal of this tutorial is to survey the field of
preference learning in its current stage of development. The presentation will focus on a syste-
matic overview of different types of preference learning problems, methods and algorithms to
tackle these problems, and metrics for evaluating the performance of preference models induced
from data.

63
63

guillemain
Zone de texte 



Eyke Hüllermeier, Department of Mathematics and Computer Science, Philipps-Universität
Marburg, Germany
"Preference Learning : an Introduction",

The topic of "preferences" has recently attracted considerable attention in artificial intelligence
in general and machine learning in particular, where the topic of preference learning has emer-
ged as a new, interdisciplinary research field with close connections to related areas such as
operations research, social choice and decision theory. Roughly speaking, preference learning
is about methods for learning preference models from explicit or implicit preference informa-
tion, typically used for predicting the preferences of an individual or a group of individuals.
Approaches relevant to this area range from learning special types of preference models, such as
lexicographic orders, over “learning to rank” for information retrieval to collaborative filtering
techniques for recommender systems. The primary goal of this tutorial is to survey the field of
preference learning in its current stage of development. The presentation will focus on a syste-
matic overview of different types of preference learning problems, methods and algorithms to
tackle these problems, and metrics for evaluating the performance of preference models induced
from data.

63
64

guillemain
Zone de texte 



Poster session

– "Preference Learning to Rank : An Experimental Case Study", M. Abbas, USTHB, Alger, Al-
gerie

– "From preferences elicitation to values, opinions and verisimilitudes elicitation", I. Crevits, M.
Labour, Université de Valenciennes,

– "Group Decision Making for selection of an Information System in a Business Context", T.
Pereira, D.B.M.M Fontes, Porto, Portugal

– "Ontology-based management of uncertain preferences in user profiles", J. Borras, A. Valls, A.
Moreno, D. Isern, Universitat Rovira i Virgili, Tarragona

– "Optimizing on the efficient set. New results", D. Chaabane, USTHB, Alger, Algerie

65
65

guillemain
Zone de texte 



From preferences elicitation to values, opinions and verisimilitudes elicitation 
Igor Crévits (a), Michel Labour (b) 

Université de Valenciennes et du Hainaut-Cambrésis 
(a) Laboratoire d’Automatique de Mécanique et d’Informatique industrielles et Humaines 

(b) Design VISuel et Urbain 
59313 valenciennes Cedex 9 

Igor.Crevits@univ-valenciennes.fr, mlabour@gmail.com 
 

 
Introduction 
 
Methodological reflections are rare in the 
decision aiding domain. The most striking 
works on the subject show the basic 
features of the decision analyst’s craft. The 
development from Multicriteria 
Methodology for Decision Aiding 
(MCMDA)  [Roy1985] to Decision Aiding 
Process (DAP) [Tsoukiàs2007] is done by 
including a representation of a designated 
problem. This representation initiates a 
request for a decision aid, ascribed as the 
Problem situation. Such decision aiding is 
facilitated by a mathematical model, called 
Evaluation model. Several possible 
decisional choices are gathered in the 
Problem formulation. This is numerically 
evaluated by the Evaluation model in order 
to reduce the amount of possible choices 
and to generate a Final recommendation. 
However, the passage from the 
identification of a Problem situation to 
establishing a Problem formulation is not 
evaluated. 
Given this, we argue for the insertion of a 
Problem-based evaluation model (denoted 
by MP) in DAP. The constituting elements 
of MP are based on the definition of a 
decision problem, seen as an aggregation 
of values, opinions and likelihoods 
[Colorni2012]. This leads us to advance a 
matrix-like representation for MP, called 
Decision grid. The construction of the Grid 
is linked to preferences elicitation that 
conjointly extends to a definition of 
potential actions and criteria development. 
The Grid produces building blocks useful 
in the construction of the Evaluation 
model. This done, we then illustrate our 

approach in the domain of air traffic 
control. 
 
Methodological frameworks of decision 
aiding 
 
The founding father of Multicriteria 
Decision Aiding Methodology, Bernard 
Roy writes: 
“Decision aiding is the activity of the 
person who, through the use of explicit but 
not necessarily completely formalized 
models, helps obtain elements of responses 
to the questions posed by a stakeholder of 
a decision process. These elements work 
towards clarifying the decision and usually 
towards recommending, or simply 
favouring, a behaviour that will increase 
the consistency between the evolution of 
the process and the stakeholder’s 
objectives and value system” [Roy1985].  
 
Roy’s definition also applies for the 
definition of the idea of “decision”. In 
using a constructive approach, decision 
aiding can this be seen as a decision linked 
to a mathematical model. To build this 
model, [Roy1985] advances MCMAD led 
by the analyst that develops a decision 
aiding framework. 
The grassroots participants, concerned by 
the decision process, are involved in the 
framework development at levels I and II 
in the construction of potential actions and 
criteria. These two levels converge towards 
a numerical representation of a common 
decision for the participant and the analyst. 
Level III is concerned, essentially, with the 
work of the decision aiding analyst. Level 
IV requires that the participants in the 
decision aiding process are directly 
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involved, so that they can verbalise key 
elements of their preferences within the 
ambit of choices in Level III. 
Even if to and fro movements are possible, 
the order of the construction of a decision 
aid corresponds to the development of the 
four levels. The development starts with 
potential actions. The designated problem 
is considered by its solutions then by the 
grassroots participants’ declared criteria 
and preferences. No formal and 
independent representation of the problem 
supports MCMDA. 
 
DAP methodology (figure 1) structures the 
development of a decision aiding 
framework according to the phases of 
procedural rationality, viz. Intelligence, 
Design, Choice, Review [Simon1977]. 
 

 
Figure 1 – Artifacts of a Decision Aiding 

Process approach 
 
This is based on the following hypothesis: 
1. The client and the decision-maker are 
indistinguishable, 
2. The client’s problem is sufficiently valid 
and meaningful for the decision aiding 
analyst and that the client believes in the 
usefulness of a decision aid. 
3. The aid represents a new object that 
does not seek to change the client’s 
existing situation. 
4. The decision process crystallizes the 
client’s problem. The decision aid is 
considered as a problem resolution. In this 
sense, decision aiding can be seen as a 
decision based on a mathematical model. 
5. The entry point into DAP occurs via an 
identified problem situation that leads to 
the development of a final 

recommendation. This entry point is based 
on the verbalisations of grassroots 
participants. 
6. Decision aiding is based on models 
taken from decision theories. The 
Analyst’s role is to prepare the 
development of these models. 
The problem situation seeks to clarify key 
elements that lead to the problem. It seeks 
to crystallize the implications for the client 
and the participants involved in a decision, 
as response to a problem. This 
crystallisation also clarifies for the Analyst 
on which points to focus a decision aid. 
Formally speaking, the problem situation P 
is a triplet (A, O, S) where: 
- A is a set of participants in the decision 
process. 
- O is a set of stakes of participants that 
brought them to the decision process. 
- S is a set of engagements taken by 
participants about their priorities and those 
of others. 
The formulation of the problem aims at 
developing a response to a problem that is 
clarified within the scope of a designated 
problem situation. The formulating of a 
problem is centered on choices based on 
the client’s rationality in response to an 
identified problem. It is the task of the 
Analyst to explicate these choices into a 
formal representation. These choices are 
indispensable elements prior to the 
application of a decision aiding 
framework. The problem formulation Γ is 
a triplet [A, V, Π) where: 
- A is the set of potential actions within the 
framework of problem situation P. 
- V is the set of viewpoints that observes, 
analyses, evaluates and compares potential 
actions. 
- Π is the decision problem statement – the 
application typology that considers A in 
anticipation of what the client expects. 
Based on a numerical representation, that 
has mathematical properties, the 
Evaluation model assesses in detail the 
impact of a projected solution in the 
formulation of the problem. The 
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Evaluation model M is an nth (A, D, E, H, 
U, R) where: 
- A is the set of alternatives concerning the 
evaluation model. 
- D is the set of dimensions, having 
possible structural properties, with which 
potential actions A are taken into account 
by the model. 
- E is the set of scales associated with each 
element D. 
- H is the set of criteria with which the 
elements of A are evaluated in terms of the 
client’s preferences and the limits of each 
criteria. 
- U is the set of incertitude distributions 
associated with D and/or H. 
- R is the set of information synthesis 
operators of elements from A or of A×A, 
namely aggregative operators. 
The final recommendation (denoted by Φ) 
is focussed on the constraints of grassroots 
reality by a coherence-focussed 
interrelation of the results of the 
Evaluation model in terms of a language 
that makes sense to the client. This 
involves three basic issues: 
1. technically soundness: The capacity of 
the final recommendation to generating an 
appropriate response to the client’s 
preoccupation. 
2. Operational completeness: The capacity 
of the recommendation to be put into 
practice in a given concrete reality. 
3. Legitimacy: There is a clear coherence 
between the recommendation and the 
context of the decision that may not be 
(totally) taken into account in the 
mathematical Evaluation model. 
 
Evaluation models 
 
DAP approach is constructive. Its major 
strength is that it includes a representation 
of a problem independent from its 
solutions. In this context Figure 1 (see 
above) highlights: 
- Based on the model of recommendations, 
the definition of R is not directly linked to 
grassroots participants’ preoccupations. 

- Π and U are introduced without reference 
to the designated problem. 
The validation of the process only 
concerns the M and thus, the coherence 
between Γ and Φ. The target reality 
situation is taken into account in an overall 
way in creating the Final recommendation. 
 
The introduction of a problem-based 
evaluation model as an intermediary 
representation between P and Γ can 
reinforce the development possibilities and 
the capacity of decision aiding (figure 2) 
by: 
- establishing a balance in the shared 
representations between the client and the 
analyst in order to better structure their 
exchanges, 
- anticipating the search for preferential-
based information linked to the client’s 
preoccupation by interrelating relational 
artefacts S, Π and R, 
- increasing possible definitions of choices 
to the decision aid and an advanced 
validation, 
- constructing initial argued 
recommendations concerning the structure 
of the problem, 
- creating an adapted model M, (called 
now the Recommendation Model and 
denoted by MΦ), 
- a better validation obtained by 
duplication of links between P and Γ as 
well as between P and MΦ. 
 

P ΦΦΦΦ

ΓΓΓΓ

M
P

MΦΦΦΦ

 
Figure 2 – Problem-based evaluation 

model 
 
In re-equilibrating the relationship between 
the client and the analyst, MP delimits the 
decision aid. In presenting a representation 
of the reality situation as the origin of the 
aid, MP interrelates decision and aid as 
well as prepares the elaboration of 
recommendations. The model MP also 
offers distinguishes between a client and a 
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decision-maker, even if they represent the 
same person in order to question the 
client’s beliefs. From a descriptive 
approach, MP facilitates a vision of 
decision aiding as an improvement of 
existing decisions. 
 
Problem evaluation model artefacts 
 
The question of definitions that is 
independent of notions about decision and 
decision aiding are found in [Colorni2012]. 
A decision problem is exanimate trough 
three key concepts: values, opinions and 
likelihoods. Values are considered as 
collective factors, opinions as seen as 
individual factors, and likelihoods are 
defined as future preferences conditions 
that affect a decision. In this context, a 
decision problem is seen as a sequence of 
aggregative preferences that is combined 
arbitrarily to hierarchies of values, 
opinions and likelihoods. A decision 
problem constitutes a common element to 
evaluate P and build Γ. However note that 
values and opinions refer to individual and 
collective factors taken into account by 
participants to judge the reality. 
Likelihoods refer to reality as different 
situations independent of any decision. To 
express this explicit reference to reality, we 
prefer use the term verisimilitude. MP can 
thus be represented as a set of values, 
opinions, verisimilitudes and aggregations 
that allow to analyze or create coherences 
into P, as an intention, and Γ, as a future 
action, or between P and Γ (figure 3). 
As scenarios of future preferences, 
verisimilitudes make up the imagined 
structures of participants A. These 
participants are at the basis of the scenarios 
that lead to potential actions A, 
constituting future projects. The common 
element here is the projective and temporal 
features of the elements under question. 
This projection is within the exclusive 
range of the participants. The ensuing 
verisimilitudes are designated as Λ. 
As mentioned above, the values and 
opinions represent collective or individual 

attributes of reality concerned in the 
decision. The stakes O are at the basis of 
these values and opinions. The overall 
values and opinions lead to viewpoints V. 
The set bringing together the values Οc and 
opinions Οi is denoted by Ο. 
The aggregative sequence and the 
hierarchies represent relations that link 
values, opinions and verisimilitudes. The 
engagements S involve a set of relations 
between participants and stakes. The 
problem statement Π interrelates subsets of 
potential actions. Then aggregative 
sequence, engagements and problem 
statement are structures interrelating other 
artifacts into each triplet MP, P and Γ. The 
overall set of aggregative elements and 
hierarchies are noted as α. 
The definition of a decision problem 
provides a larger framework to express 
more than declared preferences. For this 
reason, we choose to call the building of 
MP as decision problem elicitation. 
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Figure 3 – Links between P, Γ and MP 

 
The problem evaluation model MP, 
comprises the following triplet (Λ, Ο, α): 
- Λ is the set of verisimilitudes 
- Ο = Οc ∪ Οi is the set of values Οc and 
opinions Οi, 
- α is the set of aggregations and 
hierarchies of values, opinions and 
verisimilitudes. 
There is some likeness with the Beliefs-
Desires-Intentions concept from the 
context of multi-agent systems 
[Wooldridge2002]. Beliefs can be viewed 
as values and opinions Ο, desires as 
verisimilitudes Λ and intentions as 
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engagement S. This framework is useful in 
group decision support systems. Decision 
aiding is distinguishable through two 
central concepts: evaluation and 
preferences. The set α represents 
preferences from the decision problem as 
relations between values, opinions and 
verisimilitudes. Then the engagements 
considered in decision aiding are a set of 
several relations between couples of 
participants. Intentions consider each agent 
independently of the others. MP aims at 
evaluating the problem situation P to build 
or rebuild the engagements in order to 
increase the coherence with the problem 
formulation Γ. 
 
MP links Π to S in P. S interrelates the 
elements of O and A. However Π links up 
only elements associated to A. Problem 
statements on V would allow taking into 
account hierarchies of values and opinions. 
The model MP enriches the construction of 
MΦ: 
- U in MΦ does not come from the origin 
of the problem. However verisimilitudes Λ 
allow taking into account the participants’ 
decisional behavior, identifying relevant 
robust scenarios, and clarifying ambiguous 
situations by constraints or relaxations of 
values and opinions. 
- The operational meaning R is a delicate 
question. The need for the independence of 
each criterion implies that the coherence 
between the preference model and reality 
is not self-evident. The identification of 
dependencies is possible in analyzing the 
verisimilitudes Λ. The representation of 
dependencies between criteria in the 
problem is a question treated in several 
reflections, as [Marichal2009]. The 
importance of operational meaning, 
however, extends from criteria to sets of 
criteria and this increases the difficulty of 
the task at hand. 
- The control of the combinatorial structure 
of the problem, in which is found the 
hierarchies, can be destabilised by a 
difficult control of the combinatorial 

explosion in MΦ. Several elements of MP 
can provide controlling factors. The values 
Οc can become combinations of 
dimensions that limit the value domains. 
The opinions Οi allow the constructions of 
synthetic, and more satisfying, criteria. 
 
Decision grid 
 
The preference elicitation process brings 
into play a table of performances to 
support interactions between the decision-
maker and the analyst in order to construct 
the relationship between potential actions 
and between criteria [Mousseau2003]. In 
this context, a matrix-like representation 
appears as appropriate for MP (figure 4). 
 

 
Figure 4 – MP as matrix-like decision grid 
 
The creation of the three stages of this 
matrix is based on the analysis of decision 
grids – based on the theory of “personal 
construct” of psychologist George Kelly 
[Kelly1963]: 
1. The grid’s method of triads allows the 
analyst, as an interviewer, to elicit from an 
interviewee what two meaningful elements 
(vertical column of the grid), e.g. elements 
A and B, have in common that a third 
element (Element C) do not have. To this 
end, the interviewee synthesizes his/her 
thoughts in one word after discussing it 
with the decision analyst, for whom the 
precise meaning of the word must be 
perfectly clear. The word is then noted to 
the left of the grid as a similarity attribute, 
one under another in a list form. This 
process is repeated until saturation, i.e. 
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when the interviewee has nothing left to 
say about the elements. The triad of 
elements is then reordered – e.g. what do 
elements A and C have in common that 
element B does not have. This is done until 
all the elements are systematically cross-
analyzed. These elements represent the 
different projects or potential action of 
actual, realistic or dummy scenarios as the 
set of verisimilitudes Λ (figure 4) 
2. For each attribute of similarity, the 
interviewee is asked to state what he/she 
considers as a meaningful contrast to it. 
The analyst ensures that the interviewee’s 
declared contrast is not an unreflected 
antonym. When a satisfactory term is 
found, it is duly noted down to the right of 
the grid. Obtained by the triadic principle 
the attributes of similarity represents the 
collective expression of the elements for 
the interviewee’s. Each attribute of 
contrast refer to a lonely attribute of 
similarity and then express a personal 
expression of the elements. According to a 
process of continued socialisation 
[Elias1991] the attributes of similarity 
represents the values Οc and the attributes 
of contrast the opinions Οi (figure 4). 
3. A five-point numeric weighting 
transforms the interviewee’s vision into an 
aggregation of hierarchies of values, 
opinions and verisimilitudes. The five-
point scale avoids a too wide dispersion for 
the interviewee to handle. The attribution 
of the weightings is done where: 
- “1” applies if the ascribed attribute is 
seen as very close to the similarity pole 
(left side of the grid) and “5” if the 
attribute very close to the contrast pole 
(right side of the grid). 
- “2” applies if the attribute is seen as more 
or less close to the similarity pole, and “4” 
if the attribute is more or less close to the 
contrast pole. 
- “3” applies is the element is not close to 
either poles. 
These weightings allow to represent the 
hierarchies of the decision problem as 
several relations between attributes of 
values and opinions, between scenarios of 

verisimilitudes and between attributes and 
scenarios (figure 4). 
 
In this way the weighting, and its 
accompanying commentaries, establishes a 
meaningful subjective evaluation process 
[Grabisch2009] where the specificities of 
values and opinions can be clarified. This 
numeric representation of the decision 
problem expressed by the decision maker, 
called decision grid, shows the gaps in 
performances and preferences, between 
attributes, between elements, as well as 
between subsets of attributes and subsets 
of elements. The grid is grounded in the 
Dominance-based Rough Set Approach 
[Greco2001]. 
 
Illustration 
 
The decision grid was used in the context 
of air traffic control. To build a decision 
aid, the decision grid allows identify the 
system of value and the preferences 
structures the air traffic controllers use in 
their decisions [Annebicque2012]. In this 
case, six possible resolutions to avoid a 
crash between two aircrafts are depicted as 
six elements (R1 to R6). An interview with 
an air traffic controller produces seven 
similarity (S1 to S7) and contrast attributes 
(C1 to C7) (figure 5). 
 

 
Figure 5 – Conflict resolution decision grid 
 
The system of values is decomposed into 
three groups. The first group concerns 
issues of regularity regarding the 
specificities of a resolution (S1, S2 and S4). 
The other two groups focus on safety 
problems as the airspace available for 
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resolution (S5, S6 and S7) and the general 
traffic around the conflict (S3). 
The weighting system highlights three 
resolutions groups. These are the natural 
(R1, R2, R3 weighted by 1, 2 or 3 only), 
degraded (R4 and R5 weighted by 4 and 5), 
and new (R6 weighted one time by 4 only) 
resolutions. 
 
Due to a lack of space, only the natural 
resolutions are analyzed in detail here. 
When the grid is limited to the sub-group 
of “natural” resolutions, relations between 
attributes shows several ones are not 
differentiable. For example, attributes S4 
and S7 differentiate R1, R2 and R3 in the 
same way and S5 does not differentiate. So 
S1, S3, S4 and S6 appear significant only. In 
a preference structure (I, P, Q, R) with: 

pj,k - pi,k = 0 ⇒ Ri ISk Rj 
pj,k - pi,k = 1 ⇒ Ri QSk Rj 
pj,k - pi,k ≥ 2 ⇒ Ri PSk Rj 

where Rn is an element in the column n, Sm 
is the attribute on the line m and pn,m is the 
weighting at the intersection of the column 
n and the line m, the system of preference 
can thus describe the proximity of values 
in the following way: 

R1 Q R2 
R3 IS1 R1, R3 QC R1 with C = {S4, 

S6} and R1 PS3 R3  ⇒ R1 R R3 
R3 PS4 R2, R3 QC R2 with C = {S1, 

S6} and R2 QS3 R3  ⇒ R2 R R3 
The comparison between R1 and R2 is clear 
for all the declared attributes. We can note 
that: 
- S3 plays a determining role in the 
incomparability of R1 and R2 with R3. 
- S1 and S6 do not play a determining role 
in the comparison of R3 with R1 and R2 as 
they accord a weak preference at R3. 
- S4 accords a strict preference for R3. 
The conflict among criteria is therefore 
focused essentially on S3 and S4 and they 
belong to two groups with different values. 
S3 refers to safety issues as all conflict (air 
crash) resolutions must ensure not to 
generate a conflict that did not exist before. 
A conflict resolution concerning an 
aircraft, distinct from the rest of the traffic, 

thus needs close supervision. S4 concerns 
traffic regularity and becomes relevant 
when a conflict resolution is in progress. 
For these reasons, it is possible to accord to 
S3 a right of veto if it is accorded a strong 
preference. The preference is thus 
accorded to R1 rather than to R3 and to R3 
rather than R2. 
An examination of S4 and S6 brings out 
significant information for the evaluation 
of the order of conflict resolution and the 
model MΦ. The relations: 

R1 QS4 R2 
R1 IS6 R2  

show that the aircraft course heading and 
moment of application are disassociated. 
They can therefore constitute two 
independent criteria. The relations:  

R3 QS4 R1 
R3 PS4 R2 
R3 QS6 R1 
R3 QS6 R2 

show that R3 is a more precise resolution 
and that the cape orders are discrete. This 
information provides the possibility to 
reduce the combinatorial structure coming 
from the value domains. These 
observations underline that the handling of 
an air crash conflict does not seek out the 
optimal solution but rather to satisfy a 
constraint. This is a vital factor in the 
choice of a problem statement and the 
aggregative model. 
 
A similar representation for R4, R5 and R6 
is not analysed here. For R4 and R5, the 
grid highlights the impact of a degradation 
of parameters involved in a natural 
resolution on the system of values. This 
type of resolution can be applied by air 
traffic controllers when the air traffic 
situation is complex or the values 
insufficient and needs to be supplemented 
by a controller’s professional “opinions” as 
weightings 4 and 5 show. Then the 
robustness of a decision aid can be 
obtained by limiting its intervention to 
natural resolutions in accordance to values 
and in leaving a degraded situation in the 
skilled hands of an air traffic controller. 
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Regarding the weightings R6 is to R1, R2 
and R3, appears coherent with the declared 
values. The proximity to the contrast 
attribute C1 shows an action that is not yet 
put in place but exists on the level of 
considered opinions. 
 
Conclusion 
 
The example of air traffic control 
highlights the relevance of the Evaluation 
model MP in the context of descriptive 
decision aiding. In doing this, the Model 
facilitates an examination of the reality of a 
decision and the identification of its limits. 
A decision aiding framework can thus be 
validated in order to identify a relevant aid, 
or a combination of aids. 
Our Evaluation model MP provides a 
highly useful tool for the decision analyst 
in structuring exchanges with the client. 
The Model is based on a Decision Aiding 
Process that provides a coherent 
methodological framework grounded on 
known concepts in decision aiding. The 
Model MP represents a useful tool in a 
constructive approach to decision aiding. 
Further examinations in this domain and in 
exploring related experiences in decision 
aiding will allow drawing richer lessons. 
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Abstract

The main objective of this work is to report on
the development of a multi-criteria methodology to
support the assessment and selection of an Informa-
tion System (IS) framework in a business context.
The objective is to select a technological partner
that provides the engine to be the basis for the de-
velopment of a customized application for shrinkage
reduction on the supply chains management. Fur-
thermore, the proposed methodology di�ers from
most of the ones previously proposed in the sense
that 1) it provides the decision makers with a set
of pre-de�ned criteria along with their description
and suggestions on how to measure them and 2)
it uses a continuous scale with two reference levels
and thus no normalization of the valuations is re-
quired. The methodology here proposed is has been
designed to be easy to understand and use, without
a speci�c support of a decision making analyst.
Key words: Group decision, multi-criteria
method, information systems.

1 Introduction

The development and use of Information Systems
(IS) has been actively pursued by organizations
for maintaining their competitive advantages in to-
day's dynamic environment. The assessment and
selection of IS applications is complex and chal-
lenging, since it often involves (a) multiple decision

makers, (b) multiple selection criteria, and (c) sub-
jective and imprecise assessments. To ensure that
the best possible IS is selected with proper justi�-
cation, it is desirable to use a structured approach
capable of comprehensively analyzing the perfor-
mance of available IS in a speci�c decision setting.

The group decision-making process is very dif-
�cult since it involves the presence of multiple
decision-makers each of which has his/her own per-
ception on how the problem should be addressed
and on how the decision process should be guided
[10]. Therefore, when multiple actors participate in
a decision, it is necessary to aggregate their opin-
ions, which can be made apriori, i.e., the group acts
together as a unit, or aposteriori, i.e., aggregating
the individual opinions by using some sort of prior-
ities, see e.g. [7]. A discussion and review on these
methods and their application to speci�c problems
can be found in [11]. In here, we propose an ag-
gregation process that although based on a group
consensus, it starts by analyzing individual pref-
erences. In our case the Decision Makers (DMs)
must agree on the evaluation given to each criteria
as well as on the weights that are to be associated
with the criteria. However, they start by perform-
ing individual evaluations. By doing so, they have
to justify to each other their opinion and thus dis-
cussion is forced.

While multi-criteria methods are well known and
many di�erent applications have been reported, ap-
parently with exception of AHP, they are not often
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used in the �eld of IS selection due the huge num-
ber of criteria that need to be assessed and also due
to teh existence of imperfect information, see [4].
they are not often used in the �eld of IS selection.

The method, however, can be used to assess the rel-
ative attractiveness of alternative ways of accom-
plishing virtually any speci�ed ends. For instance,
in [14] an Enterprize Resource Planning (ERP) im-
plementation framework has been proposed as a
guide for small manufacturing enterprizes consid-
ering ERP implementation. This framework inte-
grates simulation and can be used to better meet
the goals of reducing implementation costs while in-
creasing desired achievement levels. Multi-criteria
studies in �nance and accounting problems such as
bankruptcy prediction, mergers and acquisitions,
auditing, share repurchases can be found in [1] and
the references therein. For recent surveys on multi-
criteria applications see [2, 6].
Here, we propose a Multi-criteria Decision Aid

(MCDA) methodology, which can be characterized
as a non-linear and recursive process to select an
option among several. The methodology does not
aim at �nding the best decision, but rather to guide
the Decision Maker (DM) through the process of
selecting one that best suits their goal and their
understanding of the problem. Given that a solu-
tion is characterized by many di�erent criteria, usu-
ally there is no single solution that performs better
for all criteria. In addition, the existence of sev-
eral DMs makes it even harder, if not impossible,
to �nd a solution which is better for all of them.
Thus, tools aiding in the decision making process
are needed in order to force discussion, objectiv-
ity, and quanti�cation. However, many of the tools
available to DMs are not easy to use and require
the presence of an analyst to lead the process.
The methodology we propose here is simple to

use and requires a small e�ort to understand and
use it. It has been tested on a real application to
single global decision regarding the selection of a
IS, as reported in Section 3. The DMs were able
to perform the �nal evaluation and to reach a deci-
sion by themselves, i.e. without an analyst. There-
fore, our contributions are twofold. On the one
hand, we address the IS selection problem, which
has not been addressed before. On the other hand,
our methodology di�ers from the previously pro-
posed ones in the sense that it uses a continuous
scale with seven semantic levels with two reference

and thus when quanti�ed no normalization is re-
quired. Furthermore, it provides additional help to
the GDM since it provides an original set of criteria,
that can re�ned by GDM by removing, or modify-
ing, or adding new criteria, along with their de-
scription and suggestions on how to measure them.

The rest of the paper is organized as follows.
To begin with, in Section 2 we explain the multi-
criteria methodology proposed. Then, in Section
3 we present the background of the decision situa-
tion, i.e., a case study. Finally, in Section 4 some
conclusions are drawn and a discussion of future
work is provided.

2 MMASSITI Methodology

A group of DMs faces the problem of choosing one
alternative, over all possible others. In order to do
so, the DMs must �rst identify the set of criteria
to be used in the analysis of the the alternative
solutions, i.e. what will be used to measure desir-
ability or attractiveness of the alternatives. In the
methodology we propose this is done in two phases,
see Figure 1. In phase 1, the DMs determine a
set of requirements, all qualitative in nature, that
the available IS must satisfy in order to be consid-
ered as a possible decision alternative. Therefore,
at the end of phase 1, a reduced set of alternative
decisions, to be analyzed further in phase 2, have
been identi�ed. However, if the set of alternatives
is though to be too large, further analysis may be
performed in order too reduce it. Furthermore, the
�rst phase is also intended to help the DMs to struc-
ture the problem, since it helps them to think about
the IS assessment and its alignment with the orga-
nization's strategies and existing resources. Then,
in phase 2 the DMs must specify the criteria to be
used to evaluate the IS alternatives, i.e. techni-
cal requirements, functionalities, reliability, costs,
customization, implementation time, etc.. These
criteria include both quantitative and qualitative
aspects. In this phase, the DMs must also de�ne
the weights to be used to obtain a global evaluation
for each alternative through aggregation. Then, be-
fore presenting the better alternative, according to
the criteria chosen and the evaluations provided by
the DMs, robustness and sensitivity analyses are
performed.

Signi�cant research has been produced in the
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Figure 1: Structure of the proposed methodology.

multi-criteria decision area proposing several multi-
criteria methodologies and applications. Some au-
thors, such as Vincke [15], divide the methods in
American aspiration and European aspiration. Re-
garding the American aspiration ones, the most
popular and widely used are AHP - Analytic Hi-
erarchy Process [13] and MAUT/MAUVT - Multi-
ple Attribute Utility/Value Theory. The AHP de-
composes the original problem into sub-problems
that can be solved independently. Its popularity is
mainly due its software support - Expert Choice-
which uses pairwise comparisons along with a se-
mantic and ratio scale to assess the DM prefer-
ences. This hierarchical model is useful in many
situations; however, it is not easy to apply be-
cause of its axiomatic foundations. It assumes
that there must be outer and inner independence
between the di�erent hierarchical levels and ele-
ments, which is not always easy to verify, as is
the case of IS for business context. In what con-
cerns MAUT, the most popular applications are
SMART methods - simple multi-attribute ranking
technique [8] and SMARTER (SMART Exploiting
Ranks), an extended version due to Edwards and
Barron [5]. In these cases, the di�erent points of
view are aggregated into a unique function that
must subsequently be optimized. UTA - Utility
Additive Method is an indirect method of applying
MAUT, through PRECALC, an interactive soft-
ware [9]. Within the European methods we can �nd
ELECTRE - ELimination Et Choix Traduisant la
REalité (ELimination and Choice Expressing RE-
ality) [12] and PROMETHEE - Preference Rank-
ing Organization METHod for Enrichment Evalua-

tion [3]. The former comprises two main parts: the
construction, which compares each pair of actions
and the exploitation, which provides recommen-
dations based on the results previously obtained.
Many applications are reported in chapter 5 of [6].
PROMETHEE, which is also based on pairwise
comparisons (as is the case of ELECTRE) has suc-
cessfully been used in many decision making con-
texts worldwide, for a non-exhaustive list see [2].
MMASSITI is a multi-criteria methodology for

assessing and selecting information system and it
has been designed to be easy to understand and
use, without a speci�c support of a decision mak-
ing analyst, to o�er the Group of DMs (GDM) an
e�ective support decision-making process, and to
act as enhancer of the speci�cation accuracy. The
methodology intends to be simple so that the GDM
can be lead through it considering the following
steps:

Step 1: De�ne the consistent and coherent family
of criteria in consensus;

Step 2: Analyze and validate the description of
each criterion and de�ne how to measure it;

Step 3: De�ne the requirements and requirement
levels for the reference levels "neutral" and
"better" (these requirements may be adjusted
later, when evaluating alternatives);

Step 4: Establish the relative importance weights
to be associated to each criterion;

Step 5: Find out the largest value for the seven se-
mantic levels. (S−

3 : Much Worst, S−
2 : Worst,

S−
1 : Slightly Worst, S0: Neutral, S

+
1 : Slightly

Better, S+
2 : Better and S+

3 : Much Better).

Step 6: Assess each alternative on each criterion
and assign a collective value in accordance with
the range de�ned in step5.

Step 7: Compute the aggregated global score for
each alternative, using the additive model

Step 8: Sensitivity and robustness analyses;

2.1 De�ning and evaluating crite-

rion

In our methodology, the GDM is presented with a
set of pre-de�ned criteria that does not address a
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speci�c IS, but rather generally covers all the crite-
ria, taking into account the choice of any IS in an
organizational context. The intention is to present
to the GDM a "starting point". Nevertheless, it is
the GDM that de�nes and validates the consistent
and coherent family of criteria by restricting, or
modifying, or adding new criteria to initial family
of criteria they were presented with.
Our multi-criteria methodology uses a contin-

uous scale, rather than the usually used discrete
scale, with seven semantic levels. For each of these
levels the GDM �nds a maximum numerical value
within [−100, 100], except for "Neutral" that is val-
ued as 0 (S−3: Much Worst, S−2: Worst, S−3:
Slightly Worst, S0: Neutral, S+1: Slightly Better,
S+2: Better, and S+3: Much Better). Then, an
interval of possible evaluations or each semantic
level is computed by using the following relation
Sj−1 <= Sj <= Sj+1. It should be noticed that
no scale values is required. The range of values
for each of the semantic levels remains the same
throughout the whole decision making process (re-
gardless of the criterion or of the alternative under
evaluation).
Each DM decides, individually and indepen-

dently, on which value of the semantic scale to put
each criterion for each alternative. Then, a dis-
cussion follows among the DMs in order to �nd a
consensus �nal scale (for each criterion and each
alternative). Then, for each criterion and each al-
ternative the decision makers, individually, provide
a range of values within the range previously de-
�ned for the semantic scale. With these ranges a
common range is found and the DMs are provided
with it as well as with its median value. The GDM
must then �nd a consensus value xa

i for each cri-
terion on each each alternative, which may or may
not be the suggested one (the median), however it
has to fall in the common range.

2.2 Computing weights and the ag-

gregated global value

The swing weight procedure [17] is used for �nding
out the weight value vi for each criterion. These
values must be obtained by a consensus amongst
the GDM. The collective relative value of each cri-
terion is de�ned in relation to the most important
one, which has a value of 100. Once all weights
have been found, their value is normalized using

the Weber and Borcherding formulae [16]:

wi =
vi
v
, where

∑
i

vi.

The aggregated value of each alternative x(a), is
obtained by aggregating the utility value of each
alternative on each criterion xa

i . In order to do so,
we use the additive model due to its simplicity and
transparency (to the GDM).

x(a) =
∑
i

wix
a
i .

2.3 Sensitivity and robustness anal-

yses

Sensitive and robustness analyses are important to
assure GDM con�dence on the methodology re-
sults. In the sensitive analysis we evaluate the im-
pact of the variation of the weight of a criterion
using the full range of the scale. For this speci�c
work we propose to recompute the aggregated val-
ues for all alternatives considering the following 6
scenarios.

1. the weights in the second phase are all consid-
ered equal, while in the �rst phase their value
remains unchanged;

2. the weights have all the same value in both
phases;

3. vary the value of one criterion at a the time in
their full range;

4. vary the value of the two most important cri-
teria at the same time, while the rest remain
unchanged;

5. vary the value of the three most important cri-
teria at the same time, while the rest remain
unchanged.

Regarding the robustness analysis, each criterion
value is varied, one at the time. Several values for
the weights are considered and the range of the vari-
ation is bounded, since the criteria relative order
cannot be a�ected.
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3 Case Study

The methodology was tested on a retail software
company. The company wishes to select a tech-
nological partner to supply an engine that will be
used as a basis for the development of a customized
application for shrinkage reduction on the supply
chains management.
In a �rst stage, meetings were held in order to in-

troduce and explain the methodology to the project
management team, which was composed of the:
Shrinkage reduction business expert; OnLine An-
alytical Processing IT expert; Data warehousing
expert; Decision Support systems expert; Product
manager.
To perform the �rst phase of the methodology,

business and technical requirements were speci�ed
and readjusted by the GDM, based on the sug-
gested family of criteria, see Table 1. The family of
criteria proposed to the GDM was reached by per-
forming theoretical search, based on the literature,
and empirical work, questionnaires have been sent
to 300 companies and interviews have been con-
ducted with 14 companies. Several meetings were
held before a �nally set of criteria has been agreed
upon.
Having de�ned the requirements that the avail-

able IS must satisfy to be an alternative, a mar-
ket search was conducted. Five alternative IS were
found to be of interest and thus their merits are to
be analyzed. The alternatives in analysis will be
referred to in this paper as A, B, C, D and E.
Using the same methodology of phase 1, in phase

2 we have reached the criteria given in Table 2.
These are the criteria on which each alternative IS
is going to be evaluated.
The next stage, involved setting up the relative

importance ranking (weight) assigned to each crite-
rion according to the swing weight procedure [17].
Once this was achieved, the normalized criterion
weights were computed, as in Section 2.2. Next, it
follows the evaluation of each alternative on each
criterion. In order to do so, and as explained be-
fore in Section 2.1 a �xed scale with seven levels
was used, two of which are reference values.
The company though that a full evaluation of

the 5 alternatives would be a very costly process.
Therefore, an evaluation using the criteria of phase
1 was performed in order to �nd out the which
were the best alternative, that should be chosen

for further evaluation. The weighted additive ag-
gregation, see Table 3, shows that the alternatives
A and B both scored 48.22, while the remaining
alternatives all have similar scores and scored a lit-
tle less than alternatives A and B. (C scored 44.55,
D scored 44.02, and E scored 42.36), all with very
similar scores.
The methodological procedure in phase 2 is sim-

ilar to that of phase 1, but now considering phase
2 criteria, as given in Table 2. In addition, the
global score of phase 1 is used in phase 2, since the
global aggregated value of each alternative on the
A1 criterion automatically goes to phase 2. As al-
ready said, the GDMs have decided that only the
two best alternatives are to be analyzed in phase
2. The consensus evaluation obtained is given in
Table 4.
As it can be seen in Table 4, alternative A has the

best score, with a aggregated global value of 49.45,
while alternative by B has a aggregated global value
of 47.15. These values are quite similar, which was
not a surprise since the alternatives have similar
functionalities. Nevertheless, sensitivity and ro-
bustness analyses were carried out with several sets
of scenarios, as explained in Section 2.3, and the or-
der has always remained the same.
It should be noticed that, the results are only

valid for this analysis scope, this company and this
GDMs.

4 Conclusions

The methodology here proposed had as a main ob-
jective to be able to be used by decision makers
without the presence of experts in multi-criteria de-
cision methodologies. This was achieved since the
project management team was able to apply the
methodology themselves after meetings were held
in order to introduce and explain them the method-
ology.
Another important issue, in what concerns prac-

tical utilization, is the pre-de�ned set of criteria
that the GDM are provided with. This set of
criteria was proposed after performing theoreti-
cal search, based on the literature, and empirical
work, based on questionnaires and interviews. A
description of the criteria and guidelines on how
to quantify them are also provided. In addition,
the proposed methodology has the advantage of not
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A.1 Needs of the organization Results

A1.1 Entrance cost Aggregated expected value
A1.2 Business added value Set of alternatives
A1.3 Support/�t company strategies
A1.4 Platform development
A1.5 Requirements �t

Table 1: Criteria used in phase 1, resulting from the company business and strategic plan.

requiring normalization, regarding criteria evalua-
tion, since it uses a continuous scale with two ref-
erence levels.
The sensitivity and robustness analyses have

shown the methodology to be reliable since the rec-
ommendations have remained the same under sev-
eral di�erent scenarios.
Furthermore, we address the IS selection prob-

lem, which has not been addressed before (except
for the ERP particular case). A case study has
been reported.
Currently we are working on the implementation

of the methodology through a decision support sys-
tem. This will make the methodology even easier
to use since all data will be introduced through an
user-friendly graphical interface.
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A2: Vendor Risk Coe�cient Results
- IS maturity risk - Qualitative scale
- Financial risk
- Costumer portfolio
- Innovation skill

A3: Licensing and Cost Results
- Licensing and support cost - Qualitative scale

A4: Maintenance Results
- Annual cost - Maintenance cost/year
- Conditions

A5: IS perceived reliability Results
- Supplier customer portfolio
- System demonstration - Qualitative scale
- IS portfolio
- IS life cycle

A6: User friendly interface Results
- Excel look and feel - Qualitative scale

A7: Training Needs Results
- Training quality - Training quality
- Training cost - technical sta� no. and time

A8: Modularity facilities Results
- Types of modularity - Qualitative scale

A9: Evolution capabilities Results
- Open systems - Qualitative scale
-Future developments

A10: Development Complexity Results
-Learning curve - Hours/technical sta� times hour cost
- Development language

A11: Safety levels Results
- Customized - Qualitative scale
- Transition position follow-up

A12: Communication features Results
- (WEB; EDI, CIM, CRM, etc.) - Qualitative scale
- Standard protocols

A13: Data share Results
- Shared entities - Qualitative scale
- Managing high volume/detailed data

A14: Product stability/Support Results
- Qualitative scale

A15: Deployment/Implementation Cost Results
- Estimation schedule - Number of hours
- Additional Human Recourses (HR) - HR cost
- Additional IS -IS cost

Table 2: Criteria used in phase 2, for evaluating the IS alternatives.
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Criteria A1
1.1 1.2 1.3 1.4 1.5 value

Swing 75 100 70 60 95 255 Global
Weight 0.188 0.25 0.175 0.15 0.238 1 Scale (1�100)

A -15 0 0 -5 0 -3.57 48.22
B 0 0 0 0 -15 -3.57 48.22
C -50 0 0 -10 0 -10.9 44.55
D -15 -5 0 -5 -30 -11.96 44.02
E -75 0 0 0 -5 -15.29 42.36

Table 3: Evaluation of the criteria in phase 1 and the aggregated global value.

Phase 2 IS Alternatives
criteria Swing Weight A B

A1 95 0,081 -3,57 -3,57
A2 80 0,068 0 0
A3 95 0,081 10 0
A4 80 0,068 0 -15
A5 80 0,068 -10 10
A6 100 0,085 0 -15
A7 95 0,081 -15 0
A8 70 0,060 0 0
A9 70 0,060 -10 0
A10 80 0,068 0 -30
A11 50 0,043 0 0
A12 50 0,043 0 0
A13 90 0,077 0 0
A14 70 0,060 -15 0
A15 70 0,060 30 -30

Global 1175 1 -1.1 -5.7
value (49.45) (47.15)

Table 4: Evaluation of the criteria in phase 2 and the aggregated global value.
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Abstract. Ontologies define a set of concepts related to a 

certain domain as well as the relationships among them. This 

structure may be exploited to represent and reason about the 

preferences of a user. The user profile stores the degrees of 

interest of the user on several concepts using membership 

functions. In this way, each concept in the ontology is a fuzzy 

set and any user belongs to this fuzzy set to a certain degree. 

To represent the uncertainty on this information, a degree of 

confidence on the membership value is also included. After an 

initial assignment of preferences, spreading algorithms that 

exploit the taxonomical information of the ontology are ap-

plied to propagate the information about the user’s preferences 

(and their associated uncertainty) through the whole set of 

concepts. This framework for managing uncertain preferences 

has been successfully applied in a Tourism recommender 

system1. 

1 Introduction 

In the current context of information overload, people are daily 

confronted with many situations in which a decision must be 

taken in the presence of a wide set of alternatives defined on a 

large number of criteria or attributes. Recommender systems 

(RS) can be very helpful in these situations, because they can 

analyse automatically all the information available on the pos-

sible alternatives, compare it with the user preferences or inter-

ests, rate the alternatives and present to the user the most ap-

propriate ones. Thus, a basic component of RS is the user pro-

file, which stores the preferences.  

A current research trend is the design of semantic recom-

mender systems (SRS), in which the semantic information 

about the domain, usually represented in the form of an ontolo-

gy, is used to represent both the user profile and the recom-

mendable items. As pointed out in [3], SRS provide the bene-

                                                           
1
The content of this paper has been already published in the CCIS 

series of Springer, as Proceedings of the Conference IPMU, 2012 

[10]. Copyright corresponds to Springer publishers. 

http://www.springerlink.com/content/g881611130231446/ 

fits of semantic richness (preferences are richer and more de-

tailed than the standard ones based solely on keywords), hierar-

chical structure (allowing an analysis of preferences at different 

abstraction levels) and inference (the structure of the ontology 

may be used to reason about the preferences on all the domain 

concepts). As will be mentioned in the next section, some au-

thors have already proposed works with ontology-based user 

profiles, and where the ontology components (especially the 

concepts and the taxonomic relationships between them) are 

used to spread preference information through the ontology, to 

compare users to form clusters of people with similar tastes (in 

collaborative filtering systems) or to match the user preferences 

with the representation of each item (in content-based RS). In 

those systems the user profile is usually built and maintained 

through explicit information provided by the users (filling 

forms, rating items) or implicit information related to the inter-

action of the user with the RS (saving items, deleting items). 

However, up to our knowledge, the uncertainty associated to 

these kinds of information has not been appropriately consid-

ered and incorporated into the management of the user profile. 

The work presented in this paper intends to fill this gap, by 

proposing a general framework that allows representing and 

reasoning about the uncertainty associated to preferences in 

ontology-based SRS. 

The rest of the paper is structured as follows. Section 2 re-

views some related work on SRS, and points out the lack of 

management of the uncertainty associated to the sources of 

information. Section 3 explains the representation of prefer-

ences and uncertainties in the proposed framework, detailing 

how preferences can be easily initialized and how this initial 

information may be propagated downwards the ontology. Once 

the user has interacted with some recommended activities, the 

spreading algorithms detailed in section 4 update the preference 

and uncertainty information on all the ontology concepts. This 

framework has already been applied to a specific system for 

recommendation of touristic activities, as described in section 

5. The last section provides the final conclusions and outlines 

some points of future work. 
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2 Related work 

Recommender systems require a user profile that stores the 

degree of interest on each different criterion that describes an 

item [5]. Semantic-based recommender systems use the seman-

tic knowledge stored in a domain ontology to improve the 

accuracy of the recommendations. 

One possibility is to represent both the user preferences and 

the domain objects using the ontology concepts. Then, the 

relationships between them may be used to evaluate the simi-

larities between the user interests and the recommendable 

items. For example, in [1] the user profile includes all the items 

that have been bought by the user, along with an interest be-

tween 0 and 1. This information is transferred to the concepts 

that are leaves of a domain ontology. In [3] both user prefer-

ences and items are represented as a set of weights between -1 

and 1 associated to the concepts of an ontology. They also 

propose the idea of representing user stereotypes in the same 

way. The initial preferences are spread through the ontology by 

taking into account different kinds of semantic relationships 

between concepts. In [7] the initial user profile associates a 

weight 1 to each ontology concept. By analysing the documents 

with which the user interacts, the weights of the user profile are 

dynamically updated. This information is later spread through 

the ontology, by considering a particular pre-computed rela-

tionship weight between each pair of ontology concepts. A 

collaborative version of the same idea is applied in[8]. In [9] a 

content-based RS that crawls and clusters scientific papers 

according to their keywords is presented. The system matches 

those items with a personal ontology of concepts related to the 

user. 

The use of an ontology to represent user profiles permits 

their comparison in collaborative filtering systems. As an ex-

ample, in [4], the profile stores the tags employed by the user in 

a social network, which belong to a predefined taxonomy. By 

reasoning on the taxonomical relationships it is possible to 

compute the semantic similarity between users, and recom-

mend to a user the items that similar users have tagged. In [3] 

the authors propose to identify communities of interest from the 

tastes and preferences expressed by users in personal ontology-

based profiles. A user receives advertisements about items that 

have been positively valued by other users in the same cluster. 

Collaborative filtering using ontology-based user profiles is 

also applied in [6]. In this case, the authors propose to connect 

user profiles creating a social folksonomy and to provide a user 

with a recommendation of similar users in the network.  

   It is worth noting that, in all the works that represent user 

profiles through ontologies, the explicit management of uncer-

tainty has not been considered (neither in the user profile repre-

sentation nor in the propagation of this information through the 

ontology). The main novel component of the work proposed in 

this paper is the careful consideration of the explicit and im-

plicit sources of information about the user preferences in order 

to store (and reason about) not only the preferences associated 

to each domain concept, but also their reliability. 

3 A fuzzy approach to store the user profile 

in an ontology 

In a RS the domain ontology permits to classify the objects of 

recommendation. We consider that each object is an instance of 

one (or several) of the lowest level classes of the ontology (i.e. 

the leaves). Thanks to the taxonomical structure of the concepts 

in the ontology, we can reason about the objects at different 

levels of generality. We propose to use the domain ontology to 

represent the preferences of the users of the recommender 

system. In this way, the concepts are interpreted as subsets of 

the domain in which the user can be interested. As the interest 

degree can be different from one concept to another, the prefer-

ences are represented using fuzzy sets. 

 

Proposition 1. Let us consider a fuzzy set for each concept c of 

the ontology, so that, for each user u, µc(u)gives the member-

ship degree of u to the concept c. 

 

This membership degree is personal for each user and repre-

sents his degree of interest in a certain concept c. If the user is 

completely interested in c, then µc(u)=1. Oppositely, when 

µc(u)=0, we assume user u is not interested at all in concept c. 

When a certain user u needs a recommendation, we propose 

to find the values of µc(u)for all the concepts in the ontology. 

Once the ontology has been completely labelled with µc(u), the 

RS will be able to find the most appropriate items for this user, 

taking into account that each object is an instance of some of 

the concepts. The values of µc(u)will be calculated using ex-

plicit and implicit information elicited from the user interaction 

with the system. Due to this process of estimation, there is a 

strong uncertainty in the preference values. To manage this 

uncertainty, we will consider the following confidence degree: 

 

Proposition 2. Let us consider a confidence level CLc(u) be-

tween 0 and 1 that quantifies the confidence associated to the 

estimation of the membership degree of u to the concept c, 

denoted as µc(u).  

 

A large value of CLc(u)indicates that we can trust the value 

of µc(u)as the true degree of interest of the user u for the con-

cept c, whereas a low value indicates that the estimation is not 

so reliable. In that way, not only the degree of membership to 

the concepts in the ontology is considered to select the best 

alternatives, but also the confidence on the estimation of those 

values is taken into account. For instance, the recommender 

system may decide to ignore the values with a low confidence 

level, because they have not achieved enough support. 

 

In summary, the user personal profile consists on a copy of 

the ontology that stores the degree of interest of this user on 

each concept, as well as the related confidence levels. As an 

example, let us consider a recommender system for the mem-

bers of a Hiking association. Fig. 1 shows a small portion of the 

domain ontology, which can be used to recommend events, 

news or conferences of interest to the association members. As  
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Figure 1.Portion of Hiking ontology. 

 

 

 

said before, it is assumed that all the recommendable items are 

instances of the lowest level concepts (RuralRoutes, Win-

eRoutes, CultureRoutes, Trekking, etc.). The instances do not 

belong to the profile; they are stored in a database. 

 

3.1 Initialization of the profile 

Each ontology concept has an interest degree µc(u)estimated by 

the system, which is calculated from the collection of user 

information through the session, which can be extracted explic-

itly or implicitly. For the initialization of the user interests the 

application asks him to fill in a form wherehe can express the 

interest on some general domain aspects, represented by first-

level ontology concepts (in the example shown in Fig. 1, those 

general concepts are Routes and Sports). Rating values range 

from 0.0 (no interest) to 1.0 (highest interest). The confidence 

level associated to these ratings is 1.0 because the value is fully 

reliable since it is given directly by the user. 

3.2 Propagation of the initial preference and certainty 

values 

The structure of the ontology may be exploited to transfer the 

preference information through the nodes through a downwards 

propagation of the initial preference and confidence values 

obtained for the first-level ontology concepts.Imagine that a 

user explicitly expresses a high interest in the first-level con-

cept Routes(µRoutes(u)=0.8,CLRoutes(u)=1.0). This suggests an 

interest in different kinds of routes, which are represented by its 

descendants. Therefore, the system has to transfer the interest 

shown in the most general concept to its subclasses until the 

concepts in the lowest level (that are used to instantiate the 

items of recommendation) are reached. However, there is some 

level of uncertainty that the interest is equal in all its children, 

which increases as we propagate to deeper levels of the ontolo-

gy. We propose to copy the membership degree of the user to 

the parent class to all its descendants, but decreasing the degree 

of confidence at each level by a factor , which can be custom-

ized to the needs of the application and represents the decrease 

in certainty as we move down the ontology hierarchy, far from 

the general concepts that have been explicitly valued by the 

user.  

 

Definition 1 (Downwards propagation of the initial prefer-

ences) 

 

The preference associated to a concept c is calculated as an 

average of the preferences of his parents (χc), weighted by their 

confidence values. The confidence value associated to c is the 

average of the confidences in his parents, decremented by the 

factor : 
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The parameter alpha determines the rate of confidence decrease 

from one node to its descendent nodes, having α in [0..0,5]. 

This parameter must be fixed accordingly to each application 

domain and depending on the maximum number of levels we 

want to propagate the values. CL is set to 0 if Eq (2) gives a 

non-negative value. 
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Table 1.User actions collected by the system. 

User actions Explicit Implicit s w 

Save recommended item   ● 0.5 0.5 

Remove recommended item  ● -0.5 0.5 

Request detailed information about an item  ● 0.1 0.2 

Request item similar to the current one  ● 0.15 0.3 

Rate an item ●  [-1.0, 1.0] 1.0 

 

4 Dynamic refinement of the user profile 

During the execution of the recommender system, we can gath-

er additional knowledge about the user’s interests. The evi-

dences provided by the different types of actions on the objects 

are used to modify both the membership degrees of the user to 

the related concepts and their confidence level. The information 

obtained about an object i affects the concepts which i is instan-

tiating (which are leaves in the ontology). 

We distinguish two main types of information that can be 

obtained from the interaction of the user with the recommender 

system: 

 

A) Since each object is labelled with concepts at the lowest 

level of the ontology, we can learn about the interest of the 

user on these concepts by studying the actions he does on 

them, which can be either positive (e.g. saving a recom-

mended item) or negative (e.g. removing a saved item). 

For this type of indirect feedback, the confidence level 

should be low. 

B) Recommender systems may ask the user to rate some 

items shown to him. In this case, the rating values on the 

items can also be used to estimate the membership degree 

of the user to the lowest level concepts. The confidence 

level can be high because this is explicit information pro-

vided by the user. 

Table 1 summarizes the scores s (between -1 and 1) and the 

weights w (between 0 and 1) associated to each user action. 

This feedback is useful to refine the estimation of the member-

ship degree of the user by inferring his interests based on the 

behaviour of the user in front of the previously recommended 

objects. The scores are fixed depending on each application 

domain, indicating the reward and penalty given to each action. 

Similarly, the weight of those scores is set on each application 

case and it is used to control the impact of the actions on the 

preference scores stored in the user profile. 

Assume that we have observed a set of actions Ac on a group 

of objects that are instances of the concept c. The scores and 

weights associated to these actions are aggregated together as 

follows: 
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As can be seen in equation 3, the aggregated confidence of 

the actions is normalized using a parameter , which indicates 

the level above which a higher amount of evidence is not re-

quired to have a full aggregated confidence of 1. For instance, 

it could have a value of 2.4 if 3 good reviews (0.8*3) are con-

sidered enough to have a full confidence. If the aggregated 

confidence in the actions is higher than the current confidence 

level of the concept (CAc ≥ CLc), then its preference and confi-

dence values are updated as follows: 
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is a parameter between 0 and 1 that graduates the level of 

change between the current values and the scores and weights 

given by the user actions. The higher its value, the bigger is the 

impact of the user actions on the concept information. For 

instance, if it is 0.75, the new confidence will be computed 

taking into account the confidence in the last action 3 times 

more (0.25) than the previous confidence. 

4.1 Upwards propagation 

At this point, the feedback of the user has been used to modify 

the information stored at the lowest-level concepts of the ontol-

ogy. After the system has collected a sufficiently large set of 

user actions, the values can be propagated through the ontology 

to update the values of other related concepts. In a first step, we 

make an upwards propagation to the ancestor concepts of the 

modified leaves. Again, the more distant an ancestor is, the 

more uncertainty we have. 

Note that several children of the same concept may have 

been modified (e.g., the user may have interacted with instanc-

es of WineRoutes and OilRoutes, both children of Gastrono-

myRoutes). Let us assume that  cis the set of concepts that are 

children of c and have confidence values higher than a certain 

threshold (concepts that do not have enough confidence should 

not influence on their parents). The aggregated preference and 

confidence values of the children of c may be computed as 

follows: 
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If the aggregated confidence of the children of c, CAc is 

higher than a threshold, then its preference and confidence 

values are updated as shown in equations 7 and 8. β is the pa-

rameter used in equations 4 and 5, which regulates the degree 

of change. Those parameters must be empirically studied for 

each domain. 
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4.2 Downwards propagation 

Once the upwards propagation has been completed, a second 

step propagates the preference and confidence values to the 

descendants of the updated nodes. For instance, if the prefer-

ence of the user in SportRoutes has been modified due to the 

rating of some HorseRiding activities, a modification of the 

values for Biking and Trekking seems reasonable, due to their 

high semantic similarity with HorseRiding.   

In this downwards propagation, the information of a concept 

c is modified according to the preference and confidence values 

of its parents, χc, as long as these confidence values exceed a 

given threshold. The aggregation of the information of the 

parents is done equivalently to the upwards case, as follows: 
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If CAc is higher than a given threshold and c has not been 

updated during the upwards propagation, its information is 

changed according to equations 7 and 8. 

5 Recommendation of touristic activities 

The ontology-based preference management framework pre-

sented in this paper has been implemented in a Web recom-

mender system of tourist activities within the Catalan region of 

“Costa Daurada and Terres de l’Ebre”, called SIG/Tur. The 

architecture of the system and its main features are summarized 

in [2]. The system considers the uncertainty associated to the 

transmission of general preferences down the ontology hierar-

chy and the uncertainty associated to the interpretation of the 

actions of the user. 

A specific Tourism domain ontology, focused on the kind of 

activities available in this particular geographical area, has been 

manually built, following general guidelines of the World 

Tourism Organisation. It covers a wide variety of types of 

activities, which have been classified into nine main concepts 

that constitute the first level of the hierarchy (see Fig.2). There 

are 203 concepts in a 5-levels hierarchy.  

1,300 activities have been catalogued in an external data-

base, including a textual description, timetable, town and loca-

tion coordinates, among others. Each activity is annotated with 

the lowest level concepts in the ontology to which it belongs. 

The initialization of the user profile is done with the infor-

mation collected from the tourist with the application form 

shown in figure 2. In the initialization stage, these values are 

propagated downwards as explained in section 3.2. 

 

 

Figure 2. Explicit user interests about generic kinds of tourist activities 
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Figure 3.SIG/Tur graphical interface. 

 

Using this initial information, a first recommendation is 

done using both content-based and collaborative-based tech-

niques [5]. The basic idea is that the RS considers the ontology 

leaves that have a certainty level above a certain threshold, and 

orders them according to their preference level. After that, the 

system builds a list of specific activities associated to the con-

cepts of the top of this ranked list and shows them to the user. 

The system displays the activities and their localization on a 

map, as shown in Figure 3.The interaction of the user with the 

recommended items allows refining the user profile dynamical-

ly, as described in section 4. Users can select activities which 

are added to a travel planner, can ask for additional information 

and also rate the activity proposed. The refinement of the pro-

file is applied after 10 user actions. Then, a new list of recom-

mended activities is proposed to the user. 

6 Conclusions 

The idea of using semantic domain knowledge to improve the 

accuracy of the recommendations provided by an intelligent 

system is compelling, and there are some works that have al-

ready suggested the use of ontologies to represent the user 

profile and the items of recommendation[1, 3, 7, 8]. However, 

those tools do not support the uncertainty associated to these 

preferences (both the one due to the lack of initial information 

and the one associated to the dynamic changes in the user pro-

file induced from the user actions). This work suggests a first 

step in this direction, considering the maintenance of both 

preference and certainty information for each ontology concept. 

The framework is general enough to be usable in different 

applications, because the system actions (and their scores and 

weights) and the parameters for preference adaptation can be 

customized. Our future work includes a thorough analysis of 

the influence of these parameters in the dynamic change of the 

user preferences, the analysis of different aggregation proce-

dures of the preferences coming from a set of children/parents, 

the study of different ways in which the information about 

preferences and certainties may be used by the RS, the estima-

tion of the user satisfaction with the provided recommendations 

and the test of this general framework in other domains. 

As future work we would like to consider the case of ob-

taining pairwise comparisons of the actions proposed by the 

recommender system. In this case, the preference update could 

consider all the concepts related to the pair of actions com-

pared. Pairwise comparison is a typical approach used to learn 

the preference model in some Multi-criteria Decision Aid 

methods. 
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On measuring and testing the
ordinal correlation between
valued outranking relations
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Abstract. We generalize Kendall’s rank corre-
lation measure τ to valued relations. Motivation
for this work comes from the need to measure the
level of approximation that is required when re-
placing a given valued outranking relation with a
convenient crisp ordering recommendation.

Keywords: Multiple criteria decision aid; Or-
dinal correlation; Kendall’s tau, Outranking rela-
tions; Bipolar credibility valuation.

Introduction

When proposing a measure for providing informa-
tion on the potentially conflicting nature of the
criteria in a given MCDA problem [1], we applied
Kendall’s rank correlation measure τ to the ordi-
nal comparison of the marginal rankings observed
on each criterion. Now, we propose to furthermore
generalize the same idea to the direct comparison
of bipolarly-valued binary relations [5, 6].

This work is motivated, first, by the need to fine-
tune meta-heuristics for multiple criteria based
clustering, where the eventual clustering results
may be compared to an a priori given pairwise
global outranking relation [2]. A second, similar
motivation comes from the need to compare mul-
tiple criteria based rankings obtained with dif-
ferent ranking rules like Kemeny’s, Kohler’s, the
Promethee net flows rule [14], or, more recently,
Dias-Lamboray’s prudent leximin rule [3]. Assess-
ing the operational performance of these rules may
be based on the more or less consistent ordinal
correlation observed between each ranking results
and the empirical underlying valued outranking
relation.

The present work is closely related to, without
being inspired from, recent results concerning the
formal and empirical analysis of the fuzzy gamma
rank correlation coefficient [4].

After the formal introduction of our correlation
measure, and the discussion of some of its proper-
ties, we provide empirical results for statistically
testing the presence or absence of any correlation
between different types of random relations, and
more particularly, valued outrankings.

1 Measuring ordinal correlations

1.1 Ordinal correlation between
crisp relations

Let R1 and R2 be two binary relations defined on
the same finite set X of dimension n. Kendall’s
rank, or ordinal, correlation measure τ is essen-
tially based on the idea of counting the number
of concordant (equivalent) non reflexive pairwise
relational situations, normalized by the total num-
ber n(n− 1) of possible such relational situations.
If C = #{ (x, y) ∈ X2 : x 6= y and

(
(xR1 y) ⇔

(xR2 y)
)
} denotes the number of concordant non

reflexive relational situations we observe, that
Kendall’s τ measure can be defined as follows1:

τ(R1,R2) := 2× C

n(n− 1)
− 1 . (1)

It is worthwhile noticing that Kendall [7, 8] used
a very natural way (see [5, 6]) of transforming a
direct counting of concordant, i.e. logically equiva-
lent situations, into a bipolarly valued correlation
index. Unanimously (100% equivalent situations)
concordant relations are matched to a correlation
index of value +1.0, 50% concordance between the
relations (50% equivalent and 50% not equivalent
situations) is matched to a zero-valued correla-
tion index, and unanimously discordant relations

1 Originally, Kendall [7, 8] counted the number of in-
versions observed when comparing two linear orders.
Formula (1), hence, takes a dual form: τ(R1,R2) =
1 − 2 ×

(
n(n− 1) − C

)
/ n(n− 1) [9, see page 104].
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(100% non equivalent situations) are matched to
a correlation index of value: −1.0.

Example 1.1. Let us consider the following crisp
relations R1 and R2 defined on a set X = {a, b, c}
of nodes, where R1 = {(b, c), (c, a)} and R2 =
{(a, b), (a, c), (b, c)}. As we observe as many con-
cordant situations: ¬(bR a), (bR c), and ¬(c, b),
as discordant situations: ¬(aR b), (bR a), and
¬(cR a), the Kendall τ(R1,R2) correlation index
equals: τ(R1,R2) = 2× 3

6
− 1 = 0.0 .

The τ rank correlation index implicitly relies on
the assumption that each relation is completely
determined. Either (xR y) or ¬(xR y); all rela-
tional situations between any pair of elements of
X are exactly known. But, what happens when
we compare now valued relations, where the val-
idation of relational situations might be more or
less precarious?

1.2 Valued equivalence of
relational situations

Let R1 and R2 be two binary relations defined on
the same finite set X of dimension n and charac-
terized via a bipolar characteristic function r tak-
ing values in the rational interval [−1.0; 1.0] [5, 6].
We call such relations, for short, r-valued and of
order n.

For any such valued relation R, its characteristic
function r supports the following semantics:

i) r(xR y) = ±1.0 signifies that the relational
situation xR y is certainly valid (+1.0), resp.
invalid (−1.0);

ii) r(xR y) > 0.0 signifies that the relational sit-
uation xR y is more valid than invalid;

iii) r(xR y) < 0.0 signifies that the relational sit-
uation xR y is more invalid than valid;

iv) r(xR y) = 0.0 signifies that the relational
situation xR y is indeterminate, i.e. neither
valid, nor invalid.

Logical negation, conjunction, and disjunction of
such r-characteristic values may be respectively
computed with changing the sign, applying a min,
or max operator [5, 6, 10]. For instance:

r
(
¬(xR y)

)
= −r(xR y),

r
(
(xR1 y) ∧ (xR2 y)

)
= min

(
r(xR1 y), r(xR2 y)

)
,

r
(
(xR1 y) ∨ (xR2 y)

)
= max

(
r(xR1 y), r(xR2 y)

)
.

These logical operators, now, allow us to com-
pute, for instance, the r-valued logical equivalence
of any two relational situations:

r
(
(xR1 y)⇔ (xR2 y)

)
= r
[(
¬(xR1 y) ∨ (xR2 y)

)
∧
(
¬(xR2 y) ∨ (xR1 y)

)]
= min

[
max

(
− r(xR1 y), r(xR2 y)

)
,

max
(
r(−xR2 y), r(xR1 y)

)]
Finally, we will need to measure the average level

of determinateness of an r-valued relation R of

order n, denoted d(R), and taking value in the
interval [0; 1]:

d(R) :=

∑x6=y
x,y∈X2 abs(r(xR y))

n(n− 1)
. (2)

Thus, a crisp – a completely ±1-valued – relation
shows a determinateness degree of 1, whereas an
indeterminate – a completely 0-valued – relation
shows a determinateness degree of 0.

Example 1.2. We may apply the concepts and
tools of this r-valued credibility calculus for assess-
ing, for instance, the actual equivalence of the rela-
tional situations we observed in Example 1.1. Take
for instance the situation (aR b). Here we have:
r(aR1 b) = −1.0 and r(aR2 b) = 1.0. It follows
that r(aR1 b ⇔ aR2 b) = min(−1.0, 1.0) = −1.0.
Whereas, if we take the pair (b, c), we obtain
r(bR1 c ⇔ bR2 c) = min(1.0, 1.0) = 1.0. Hence,
we faithfully recover in the crisp case, the original
Kendall τ values. Suppose now that relation R1

is not certainly determined and r(aR1 b) = −α
with α ∈ [0; 1]. In this case r(aR1 b ⇔ aR2 b) =
min(−α, 1.0) = −α. Similarly, suppose now that
r(bR1 c) = α. In that case r(bR1 c ⇔ bR2 c) =
min(α, 1.0) = α.

This gives us a hint that the r-valued equiv-
alence of two valued relational situations verifies
the following important property:

Property 1.1.
Let R1 and R2 be any two r-valued relations de-
fined on the same set X. For all x, y in X2, we
have:

r
(

(xR1 y)⇔ (xR2 y)
)

=

±min
(

abs(r(xR1 y)), abs(r(xR2 y))
)
.

Proof.
Suppose r(xR1 y) = α and r(xR2 y) = β with
α, β ∈ [−1; 1]. If abs(r(xR1 y)) = abs(r(xR2 y)),
Property 1.1 follows immediately from Equa-
tion (2). Otherwise, we may observe the following
cases:

1. |α| > |β|:

i) if α > β ≥ 0 then

min[max(−α, β),max(−β, α)] = β > 0;

ii) if α > 0 > β then

min[max(−α, β),max(−β, α)] = β < 0;

iii) if β > 0 > α then

min[max(−α, β),max(−β, α)] = −β < 0;

iv) if 0 ≤ β > α then

min[max(−α, β),max(−β, α)] = −β > 0.

2. |β| > |α|:

i) if β > α ≥ 0 then

min[max(−α, β),max(−β, α)] = α > 0;

ii) if α > 0 > β then

min[max(−α, β),max(−β, α)] = −α < 0;
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iii) if β > 0 > α then

min[max(−α, β),max(−β, α)] = α < 0;

iv) if 0 ≤ α > β then

min[max(−α, β),max(−β, α)] = −α > 0.

With Property 1.1 in mind, we may now gen-
eralize Kendall’s ordinal correlation measure for
taking into account genuine r-valued relations.

1.3 Correlations between valued
relations

The r-valued equivalence of relational situations
may be judiciously used, as in the crisp case, for
assessing the numerator of the ordinal correlation
measure. Yet, stating the adequate denominator
needs some further going considerations. In the
classical crisp case, following Kendall, we divide
the sum of pairwise equivalences with n(n − 1),
i.e. the total number of concerned non reflexive
situations. If we would proceed this way in the val-
ued case, the resulting measure would integrate a
mixture of both the ordinal correlation as well as
the actual determinateness of the equivalence ob-
served between the considered r-valued relations.
To factor out both these effects we take, instead,
as denominator the maximum possible sum of r-
valued equivalences we could potentially observe
when both r-valued relations would show com-
pletely concordant relational situations.

Hence, we formulate the r-valued ordinal corre-
lation measure τ between two r-valued relations
R1 and R2, defined on a same set X, as follows:
τ(R1,R2) :=∑

x6=y r
(

(xR1 y)⇔ (xR2 y)
)

∑
x6=y min

[
abs

(
r(xR1 y)

)
, abs

(
r(xR2 y)

)]
(3)

where, in order to avoid divisions by zero, we as-
sume that a zero sum of r-valued equivalences
occurring in the numerator always takes strong
precedence over the potential zero sum determi-
nateness occurring in the denominator. Indeed, if
the sum of absolute values of r-valued equivalences
is zero, then so must essentially be the sum of the
corresponding signed r-valued equivalences.

It is furthermore worthwhile noticing that the
denominator in Formula (3), once divided by the
number of non reflexive relational situations, i.e.:∑

x6=y min
[

abs
(
r(xR1 y)

)
, abs

(
r(xR2 y)

)]
n(n− 1)

(4)
gives, in fact, the average determinateness degree
of the r-valued equivalence relation R1 ⇔ R2 ob-
served between both r-valued relations. In case
of crisp relations, this determinateness degree al-
ways takes maximum value 1.0. But, as soon as
one of both valued relations appears completely

indeterminate, d(R1 ⇔ R2) becomes 0. In this lat-
ter case, τ(R1,R2) becomes equally 0. Otherwise,
τ(R1,R2) gives the ordinal correlation measure in-
dependently of their equivalence determinateness
level.

Describing the ordinal correlation between two
r-valued binary relations, hence, requires to show
both, the relative ordinal correlation measure τ
defined in Equation (3), as well as the determi-
nateness degree D of the corresponding relational
equivalence defined in Equation (2).

Example 1.3. To illustrate this insight, we con-
sider in Table 1, two randomly r-valued relations
R1 and R2 of order n = 3 and defined on a same
set X = {a, b, c}. The pairwise r-valued equiva-

Table 1. Examples of randomly valued relations

r(xR1 y) a b c

a − +0.68 +0.35
b −0.94 − +0.80
c −1.00 +0.36 −

r(xR2 y) a b c

a − −0.32 +0.58
b −0.14 − +0.75
c −1.00 +0.08 −

lence situations R1 ⇔ R2 are shown in Table 2.

Table 2. r-valued equivalence between R1 and R2

r(xR1 y ⇔ xR2 y) a b c

a − −0.32 +0.35
b +0.14 − +0.75
c +1.00 +0.08 −

Hence,

τ(R1,R2)

=
−0.32 + 0.35 + 0.14 + 0.75 + 1.00 + 0.08

+0.32 + 0.35 + 0.14 + 0.75 + 1.00 + 0.08

=
0.200

0.264
= +0.7575 ,

whereas the corresponding equivalence determi-
nateness:

d(R1 ⇔ R2) =
0.264

6
= 0.44 .

Thus, nearly 76% or the jointly determined ordinal
information is actually shared by both r-valued
relations, independently of the respective 44% of
determinateness of the r-valued equivalence situ-
ations.

If we had instead used the classical denomina-
tor n(n− 1) for computing the actual correlation
measure, we would have obtained a much smaller
τ value of only: 0.200

6
= +1/3 (33.33% instead of

75.75%); potentially misleading us, thus, on the
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apparent correlation between R1 and R2. Notice
that this result of 1/3 is in fact the product of
τ(R1,R2) with d(R1,R2), i.e. 0.7575× 0.44.

1.4 Properties of the ordinal
correlation measure

Again, let R1 and R2 be two r-valued binary re-
lations defined on a set X of dimension n. We
say that R1 and R2 show a same, respectively an
opposite, orientation if, for all non reflexive pairs
(x, y) in X, r(xR1 y ⇔ xR2 y) > 0, respectively
r(xR1 y ⇔ xR2 y) < 0.

Property 1.2. If two r-valued relations R1 and
R2, defined on the same set X, show a same,
respectively an opposite, orientation, τ(R1,R2)
equals +1.0, respectively −1.0, independently of
their equivalence determinateness d(R1,R2).

Proof. Property 1.2 readily follows from Prop-
erty 1.1 and the observation that in case of a same
orientation, respectively an opposite orientation,
the sum of terms in the numerator of Formula (3)
equals the sum, respectively the negation, of the
sum of terms in the denominator.

The logical negation of an r-valued relation R,
denoted ¬R, is called its dual relation. And, the
reciprocal of an r-valued relation R, denoted R,
is called its converse relation. The following very
natural properties are verified by the generalized
ordinal correlation measure τ .

Property 1.3. Let R1 and R2 be two r-valued bi-
nary relations defined on a same set X and let the
ordinal correlation measure τ be defined by For-
mula (3):

τ(R1,R2) = τ(R2,R1) (5)

τ(¬R1,R2) = −τ(R1,R2) (6)

τ( R1, R2) = τ(R1,R2) (7)

τ(¬ R1,¬ R2) = τ(R1,R2) (8)

Proof. Equations (5) to (8) follow immediately
from the definition of the τ correlation measure
(see Formula 3):

(5) Symmetry of the τ measure follows from the
commutativity of the max and min operators
used for computing the terms of numerator as
well as denominator.

(6) Negating one of the r-valued relations changes
solely the sign of all r-valued equivalences in the
numerator.

(7) Taking the converse relations of both r-valued
relations means correspondingly transposing all
(x, y) terms to (y, x) terms, jointly in numera-
tor and denominator; thus, leaving invariant the
resulting fraction.

(8) Taking the codual relations, i.e. the negation of
the converse, of both r-valued relations, hence,
leaves invariant their τ correlation measure.

In order to avoid, the case given, being fooled
by randomness, we address in the next section the
problem of estimating via Monte Carlo simula-
tions the actual significance of the ordinal corre-
lation measure when working with different types
of random r-valued relations.

2 Testing for ordinal correlations

Originally, Kendall only considered correlations
between crisp rankings without ties. Kendall’s τ
measure for pairs of random instances of such
rankings of order n is known to show an expected
correlation µτ = 0.0 with standard deviation [12]:

στ =

√
2(2n+ 5)

9n(n− 1)
.

This gives for rankings of order n = 20, for in-
stance, a standard deviation στ ≈ 0.17. Assuming
a nearly Gaussian distribution of µτ , we obtain
90% and 99% confidence intervals of approxima-
tively ±0.22, respectively ±0.40. Hence, a mea-
sure |τ | > 0.4 observed between two rankings of
20 objects reveals a significant positive or negative
ordinal correlation between them.

To similarly estimate the significance of the τ
correlation measure when comparing r-valued re-
lations, we were running extensive Monte Carlo
simulations with, in turn, three specific models
of random relations, namely random uniformly r-
valued ones, r-valued weak tournaments and, ran-
domly generated bipolar outranking relations re-
sulting from the aggregation of multiple cost and
benefit criteria.[10].

2.1 Random r-valued relations

First we consider a model of random relations
where to each non reflexive pair of elements (x, y)
in X is associated a uniform random float between
−1.0 and 1.0. Each possible r-valued relation has
thus the same probability to appear. To get a
hindsight on the correlation and determinateness
measures we may obtain with this genuine kind
of r-valued relations, we generate large samples
of 100 000 pairs of such r-valued relations for dif-
ferent orders n. Each pair (x, y) has, thus, in the
limit, an average probability of 1/2 to be related
or not; the strict indeterminate value 0.0 having
no chance to effectively appear as random number.

In Figure 1 is represented the scatter plot of the
resulting tuples (d, τ) for r-valued relations of or-
der 20. What strikes immediately is the nearly per-
fect symmetry of the resulting distributions, both
of the determinateness degrees, as well as of the
correlation measures.

In this model of random r–valued relations, the
distribution of the equivalence measures E of each
pairwise relational situation is following a sym-
metric triangular density with spread ±1.0 and

94



Figure 1. Scatter plot of (d, τ) for pairs of randomly r-valued relations of order 20

0 mode. Such random variables admit a mean
µe = 0 and a standard deviation σe =

√
3/18.

A similar situation is observed when considering
their equivalence determinateness measures. Each
term in the denominator of Formula 3 is cho-
sen from a same independent and identically dis-
tributed random variable D with positive density
1 − x for x in [0; 1[. This distribution – a special
case of the triangular distribution where the mode
equals the lower limit – shows a mean µd = 1/3
and a standard deviation of σd =

√
1/18.

Hence, the observed random ordinal correlation
measures τ =

∑
E∑
D

result from the ratio of two

non-independent sums of n(n−1) independent and
identically distributed random variables. Follow-
ing from the central limit theorem, the observed
statistics (see Table 3) rapidly show, with increas-
ing order n, a more and more Gaussian distribu-
tion with mean µ̂τ ≈ µe

µd
= 0 and standard devia-

tion:
σ̂τ√

n(n− 1)
≈ σe

µd

1√
n(n− 1)

getting ever smaller with increasing order n of the
r-valued relations.

In Table 3 we may notice that the observed
empirical standard deviations σ̂d when multiplied
with

√
n(n− 1) converge indeed to σd which

equals
√

1/18 = 0.2357023. Similarly, we may
notice that the observed standard deviation σ̂τ
tends also to the theoretical standard deviation
στ = 3

√
3/18 = 1.224745 when multiplied by√

n(n− 1). Notice, however, a consistent negative
bias of roughly 2%.

Example 2.1. Consider two given r-valued rela-

tions R1 and R2 of order 20. To test if they could
have been randomly generated, we may apply a
two-sided test with null hypothesis: H0 “relations
R1 and R2 are randomly r-valued”. From the em-
pirical results, we see thatH0 may be rejected with
an error probability of 10% when |τ(R1,R2)| >
0.1035 or |d(R1,R2)− 0.3333| > 0.202. Using, our
theoretical standard deviations στ = 3

√
3/18, re-

spectively σd =
√

1/18, we may precisely confirm
these confidence intervals: ±0.1033, respectively
±0.0199 with a Gaussian test.

We have thus established a generic test appa-
ratus for two-sided, or both positive or negative
one-sided tests for measuring the significance of
the ordinal correlation and equivalence determi-
nateness of any two given r-valued relations.

Yet we are more interested in testing the corre-
lation and equivalence determinateness when con-
sidering a specific subset of r-valued relations,
namely weakly complete ones. Uniformly r-valued
random relations, indeed, are statistically quite
regularly structured, with on average 1/4 of dou-
ble links, 1/4 of single forward links, 1/4 of single
backward links and, 1/4 of no links. When work-
ing in the fields of social choice or multiple criteria
decision aid with “at least as good as” preferen-
tial situations, we usually consider complementary
concordance versus discordance relations [11] that
do not allow a “no link” situation.

2.2 Random weakly complete
relations

Formally we say that a r-valued relations R is
weakly complete if for all (x, y) ∈ X, r(xR y) < 0
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Table 3. Summary Statistics, for 100000 pairs of randomly r-valued relations

d(R1,R2) d σ̂d σ̂d
√
n(n− 1) Conf. 90% Conf. 99%

n = 5 0.3333 0.0527 0.23568 ±0.0866 ±0.1355
n = 10 0.3334 0.0249 0.23622 ±0.0406 ±0.0645
n = 15 0.3333 0.0162 0.23476 ±0.0266 ±0.0418
n = 20 0.3333 0.0121 0.23587 ±0.0202 ±0.0276
n = 30 0.3333 0.0080 0.23597 ±0.0132 ±0.0207
n = 50 0.3333 0.0048 0.23758 ±0.0078 ±0.0121

τ(R1,R2) τ σ̂τ σ̂τ
√
n(n− 1) Conf. 90% Conf. 99%

n = 5 0.0003 0.2731 1.22134 ±0.4500 ±0.6766
n = 10 0.0000 0.1289 1.22285 ±0.2181 ±0.3291
n = 15 0.0000 0.0842 1.22017 ±0.1386 ±0.2156
n = 20 0.0000 0.0621 1.21055 ±0.1035 ±0.1425
n = 30 0.0000 0.0414 1.22113 ±0.0681 ±0.1064
n = 50 0.0000 0.0247 1.22259 ±0.0406 ±0.0636

Figure 2. Histogram of correlation measures with normality test for pairs of random weakly complete relations

of order 20

implies r(xR y) ≥ 0. Each link is therefore either a
double, or a single forward or backward link, each
one with equal probability 1/3.

Determinateness distribution of equivalence of
pairs of this model of random r-valued relations
remains very close to 1/3, as in the general model
above (see Table 4), except a slight lowering of its
mean values (compare with Table 3). Similarly, we
may again observe an empiric distribution of cor-
relation measures which follows, with increasing
order of the relations, more and more, due to the
central limit theorem, a Gaussian distribution. In
Figure 2 is represented a histogram from a sample
of 100 000 random instances of weakly complete
r-valued relations of order 20. Notice first the fact
that the sampled mean correlation measure µ̂τ is
shifted roughly by +0.111, depending on the given

degree of weakness. In the limit, a weakness de-
gree of 1.0, on the one hand, would give always
the same complete relation, showing, hence, a con-
stant correlation measure of 1.0. A weakness de-
gree of 0.0, on the other hand, would give samples
of random tournaments with mean and median
correlation measures concentrated around 0 as in
the general case above.

In Table 4 we summarize empiric statistical re-
sults for weakly complete r-valued relations of dif-
ferent orders, maintaining constant a weakness
degree of 1/3. The observed distribution of cor-
relation measures τ , besides the already men-
tioned positive shift of the mean by approximately
+0.111, also shows an empiric standard deviation
σ̂τ multiplied by

√
n(n− 1) that is no longer a

constant independent of the given order n. Hence,
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Table 4. Summary Statistics, for 100000 pairs of random weakly (1/3) complete relations

d(R1,R2) µ̂d σ̂d σ̂d
√
n(n− 1) Conf. 90% Conf. 99%

n = 5 0.33344 0.05268 0.23568 0.24920 0.42208 0.20493 0.47489
n = 10 0.33316 0.02490 0.23622 0.29262 0.37433 0.27069 0.39861
n = 15 0.33316 0.01634 0.23476 0.30646 0.36025 0.29164 0.37578
n = 20 0.33320 0.01209 0.23587 0.31342 0.35315 0.30262 0.36486
n = 30 0.33316 0.00799 0.23597 0.32006 0.34630 0.31269 0.35406
n = 50 0.33318 0.00477 0.23758 0.32537 0.34102 0.32099 0.34558

τ(R1,R2) µ̂τ σ̂τ σ̂τ
√
n(n− 1) Conf. 90% Conf. 99%

n = 5 0.1112 0.3032 1.3560 −0.3981 +0.6039 −0.6559 +0.8229
n = 10 0.1113 0.1592 1.5103 −0.1537 +0.3713 −0.3019 +0.5082
n = 15 0.1112 0.1138 1.6491 −0.0767 +0.2978 −0.1810 +0.3978
n = 20 0.1112 0.0909 1.7720 −0.0395 +0.2604 −0.1231 +0.3399
n = 30 0.1116 0.0681 2.0087 −0.0003 +0.2234 −0.0631 +0.2869
n = 50 0.1112 0.0484 2.3957 +0.0313 +0.1905 −0.0132 +0.2348

the equivalence measures on the numerator of
the τ measures are no longer independent and
identically distributed. Consequently, the central
limit theorem is no longer automatically applica-
ble. When verifying the plausibility of the random-
ness hypothesis when comparing weakly complete
r-valued relations, we are thus solely left with the
potentially biased sample standard deviations and
the corresponding tail percentiles estimations.

Example 2.2. With 99 bins, the χ2 test (see
Figure 2), however, clearly confirms (26.898 �
χ2(0.01, 98) = 68.396, p-value = 0.0) for order
n = 20 and average weakness 1/3, the qual-
ity of the Gaussian approximation with empirical
mean µ̂τ = 0.1112 and standard deviation σ̂τ =
0.0909. The Gaussian 90%-confidence, resp. 99%-
confidence, interval of the mean correlation mea-
sure µτ , hence, gives the limits [−0.0384; +0.2606],
respectively [−0.1231; +0.3454]. And, both inter-
vals are, indeed, very close to the empirical ones
(see Table 4, row n = 20) we obtain with a sample
of 100 000 random instances.

Finally, we consider a special subset of weakly
complete r-valued relations, namely r-valued out-
ranking relations.

2.3 Random outranking relations

Concordance relations, i.e. weakly complete r-
valued relations naturally result from the ordi-
nal aggregation of multiple performance criteria
when considering the weighted concordance of the
statements: “x performs at least as good as y”
[10]. Our random model for such kind of r-valued
relations is based on randomly generated perfor-
mances for all decision actions in x ∈ X on each
criterion. We distinguish three types of decision
actions: cheap, neutral and expensive ones with an
equal proportion of 1/3. We also distinguish two
types of weighted criteria: cost criteria to be mini-
mized, and benefit criteria to be maximized ; in the
proportions 1/3 respectively 2/3. Random perfor-
mances on each type of criteria are drawn, either
from an ordinal scale [0; 10], or from a cardinal

scale [0.0; 100.0], following a parametric triangular
law of mode: 30% performance for cheap, 50% for
neutral, and 70% performance for expensive deci-
sion actions, with constant probability repartition
0.5 on each side of the respective mode. Cost crite-
ria use mostly cardinal scales (3/4), whereas ben-
efit criteria use mostly ordinal scales (2/3). The
sum of weights of the cost criteria always equals
the sum weights of the benefit criteria. On cardinal
criteria, both of cost or of benefit type, we observe
following constant preference discrimination quan-
tiles: 5% indifferent situations, 90% strict prefer-
ence situations 90%, and 5% veto situation. We
call this random model of r-valued relations for
short random CB-outranking relations.

In Table 5 we summarize the empirical results
for various numbers of decision actions (n) and
criteria (c). Most noticeable is here the dimin-
ishing average determination degrees with rising
numbers n of actions and, especially numbers c of
criteria. Indeed, the fixed proportion of veto sit-
uations (5%) on each cardinal criteria augments,
with the number of criteria, the probability of the
presence of pairwise indeterminate, i.e. 0-valued,
outranking situations. Furthermore, the empiric
distribution of the determination degrees appears
no more to converge to a Gaussian type limit.

In Figure 3, one may notice, indeed, on a sam-
ple of 100 000 random CB-outranking relations
of order n = 20 and criteria c = 13, an ap-
parent left asymmetry, confirmed by a positive
skewness of 0.876, as well as a clearly leptocur-
tic distribution (excess kurtosis: +1.7884) of the
observed determinateness degrees. Comparing the
observed distribution with a theoretical gamma
distribution, reveals a positive match with param-
eters: α = 38.119 and β = 0.004. With order
n = 30 and criteria c = 21 one obtains a similar
gamma estimation with parameters: α = 64.594
and β = 0.002.

With rising numbers of indeterminate prefer-
ential situations, the proportion of double links
compared to single links, is no more as regular
(1/3 against 2/3) as in the genuine model of ran-
dom weakly complete relations. In the n = 20 and
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Figure 3. Histogram of determination degrees for pairs of random CB-outranking relations of order 20

Table 5. Summary Statistics, for 100000 pairs of random CB-outranking relations

d(R1,R2) µ̂d d̂50% σ̂d Conf. 90% Conf. 99%

n = 5, c = 3 0.3259 0.3250 0.1131 0.1500 0.5255 0.0750 0.6333
n = 10, c = 7 0.2207 0.2165 0.0482 0.1494 0.3072 0.1204 0.3681
n = 15, c = 9 0.1910 0.1867 0.0362 0.1399 0.2577 0.1196 0.3102
n = 20, c = 13 0.1557 0.1527 0.0252 0.1203 0.2013 0.1053 0.2435
n = 30, c = 21 0.1372 0.1357 0.0174 0.1120 0.1674 0.1002 0.1989

τ(R1,R2) µ̂τ τ̂50% σ̂τ Conf. 90% Conf. 99%

n = 5, c = 3 0.0378 0.0345 0.5145 −0.7929 +0.8610 −1.0000 +1.0000
n = 10, c = 7 0.0629 0.0644 0.3037 −0.4420 +0.5560 −0.6483 +0.7467
n = 15, c = 9 0.0727 0.0761 0.2417 −0.3323 +0.4667 −0.5206 +0.6354
n = 20, c = 13 0.0984 0.1017 0.2085 −0.2492 +0.4383 −0.4224 +0.5904
n = 30, c = 21 0.1239 0.1272 0.1712 −0.1639 +0.4007 −0.3162 +0.5339

c = 13 case, with a sample of 100 000 random in-
stances, we observe only 18.7% double links, with
71.6% single links and, in this particular case,
9.8% of indeterminate links. Consequently, in Ta-
ble 5, we observe lower average correlation mea-
sures µ̂τ than with the previous model. Further-
more, the convergence to a Gaussian limit distri-
bution with rising order of the relations is no more
apparent when considering in Figure 4 the Q-Q
plot of the simulated correlation quantiles against
Gaussian quantiles for the case n = 20 and c = 13.
A very high χ2 value (567.356) rejects, indeed, the
Gaussian approximation hypothesis.

Appreciating the significance of the correla-
tion between pairs of CB-outranking relations re-
mains, hence, solely possible on the basis of sam-
pled tail percentiles from Monte Carlo simula-
tions. In the appendix we have gathered estimated
5%, 95%, 0.5% and 99.5% percentiles for relations
of various orders and numbers of criteria that may

be relevant in an MCDA context.

Example 2.3. Let us eventullly consider the ran-
dom r-valued CB-outranking relation shown in
Table 6. Relation R1, with an average determi-
nation degree d(R1) = 0.397, is defined on n = 10
decision actions and results from the ordinal con-
cordance observed on c = 7 performance criteria.
Applying for instance Kemeny’s ranking rule [13]
would give us the following crisp linear order:
[4, 2, 7, 8, 9, 1, 10, 6, 3, 5], showing a highly signifi-
cant correlation of +0.888 with R1 (see the up-
per limit 0.747 of the 99% confidence interval
in Table 5). Indeed, under the hypothesis of a
completely random ordering, such a high corre-
lation measure would appear in less than 0.5%
of cases. When ranking now with the help of the
net flows scores à la Promethee [14], we would
obtain the order: [4, 9, 2, 7, 8, 10, 1, 6, 3, 5], show-
ing a less higher correlation (+0.776) with R1.
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Figure 4. Q-Q plot of empiric again normal correlation quantiles for pairs of random CB-outranking relations

of order 20

Table 6. Example of random CB-outranking relation (n = 10, c = 7)

R1 1 2 3 4 5 6 7 8 9 10

1 − +0.14 +0.43 −0.14 +0.29 +0.14 +0.43 −0.14 ±0.00 +0.43
2 +0.43 − +0.43 −0.43 +0.43 +0.14 +0.14 +0.43 +0.14 +0.14
3 −0.43 −0.43 − −0.71 +0.43 +0.00 −0.43 −1.00 −1.00 −0.14
4 +0.14 +0.71 +1.00 − +0.71 +0.43 +0.71 +0.43 +0.14 +0.57
5 +0.14 −0.43 −0.43 −0.71 − −0.71 −1.00 +0.14 −1.00 −0.43
6 −0.14 −0.14 +1.00 −0.43 +0.71 − −0.14 −0.14 +0.14 −0.43
7 +0.14 +0.14 +0.43 −0.43 +1.00 +0.14 − +0.14 +0.43 +0.29
8 +0.43 −0.14 +1.00 −0.43 +0.43 +0.14 −0.14 − +0.43 −0.14
9 +1.00 −0.14 +1.00 −0.14 +1.00 +0.43 +0.14 −0.14 − +0.14
10 −0.43 −0.14 +0.43 +0.14 +0.43 +0.43 +0.29 +0.14 −0.14 −

Kohler’s rule would, furthermore, give us the or-
der: [4, 2, 8, 10, 9, 6, 1, 7, 3, 5] with the same corre-
lation of +0.776. Finally, Tideman’s ranked pairs
rule [15], in fact the dual of Dias and Lamb-
oray’s leximin rule [3], will deliver the order:
[4, 2, 8, 9, 1, 7, 10, 6, 3, 5] with, this time again, a
highly significant correlation measure of +0.872.
As we compare here each time R1 with a 1.0-
valued (crisp) linear order, the correlation under-
lying equivalence determination degree is actually,
in all cases, equal to d(R1) = 0.397. By the way,
we may notice that the same first ranked decision
action with all the ranking rules is action 4, in fact
a Condorcet winner that outranks all other de-
cision actions with a majority of at least 57% of
the criteria weights (see row 4 in Table 6).

Conclusion

We have consistently generalized Kendall’s rank
correlation measure τ to r-valued binary relations
via a corresponding r-valued logical equivalence
measure. The so extended ordinal correlation mea-

sure, besides remaining identical to Kendall’s mea-
sure in the case of completely determined linear
orders, shows interesting properties like its inde-
pendence with the actual determinateness degree
of the r-valued equivalence. Empirical confidence
intervals for different models of random r-valued
relations, like weakly complete and, more particu-
larly, r-valued outranking relations are elaborated.
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Abstract. We present in this paper a real world application for the
elicitation of decision parameters used in the evaluation of thermal
comfort in high speed trains. The model representing the thermal
comfort is a hierarchical one and we propose to use different aggre-
gation methods for different levels of the model. The methods used
are rule-based aggregation, Electre Tri and 2-additive Choquet. We
show in this paper the reasons of the choice of such methods and de-
tail the approach used for the elicitation of the parameters of these
methods.

1 Introduction

Comfort is one of the main raison of the choice of trains for long
trips. In this paper we are interested in one of the composant of global
comfort which is the thermal one. We show how we define the ther-
mal comfort using physical evaluations (temperature, air speed, etc.)
in order to be as close as possible to the comfort perception of train
passengers. In the following section we present how we establish our
model. Our model requires different aggregation steps, in Section 3
we introduce these aggregation steps by presenting in a brief way
their formulations, the raisons of their choice and specially the ap-
proach that we used for the elicitation of their decision parameters.
We conclude our paper by some recommendations for elicitation ap-
proaches.

2 Thermal comfort model

Existing methods used for the evaluation of the thermal comfort on
high speed trains are based on the Fanger’s model ([4]), initially de-
veloped for office buildings. Fanger’s model uses two indices, the
PMV (Predicted Mean Vote) and thePPD (Predicted Percentage of
Dissatisfied). ThePMV is calculated using five criteria : clothing,
metabolic rate (activity of the subject), temperature, air velocity and
humidity, and is devised on the basis of tests conducted on a large
group of subjects. Once thePMV value has been established from
tables, it is then possible to determine thePPD. Fanger’s model is
devoted to static situations with long time exposure. The climatic en-
vironment parameters and activities of subjects are supposed to be
constant. For these reasons its use for trains is not always very ade-
quate. Moreover, some recent research done by the SNCF ( [22], [16]
), specially some surveys with the passengers on the train, showed
that the results of the Fanger’s model are not always correlated with
the perception of the passengers. Figure 1 presents an example of
responses of five passengers to the question “How do you evaluate
the thermal conditions in this train?” and the evaluation given by the

PMV. The first part of the figure represents the answers of passengers
and the second part the results obtained by thePMV.

Figure 1. Difference between observations and thePMV results

A bibliographical summary of previous projects and research stud-
ies on evaluation and perception of thermal comfort was carried at the
SNCF [26]. Some of these studies show that there are some percep-
tive parameters, missed in Fanger’s model, which must be taken into
account in the evaluation of thermal comfort.

1. The thermal comfort is a subjective notion, the perception can
change from a subject to another one and this variability is not
taken into account by thePMV index. Indeed, although this vari-
ability may be estimated by thePPD, it is not possible to estimate
the thermal comfort of a given subject or a group of subjects shar-
ing the same perception of the comfort.

2. The thermal preferences of a passenger may change with the sea-
son.

Other research studies done by the SNCF ( [21], [27]) showed that
the comfort on the trains is closely related to two perceptions:

1. there must beno unpleasant sensationscaused by climatic param-
eters during the journey,

2. there must not be adiscontinuity of ideal thermal conditions. Such
discontinuity is generally caused by the variations of outside tem-
perature, drafts air and the gap between outside and inside tem-
perature.

Another result of these studies is that the most important climatic
parameters are temperature and air speed.
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Using these results and after several meetings with thermal experts
we propose the following model presented in Figure 2 for the evalu-
ation of thermal comfort on high speed trains:

Thermal comfort

S1 S2

No unpleasant sensations

fTTim fT hrz fT vrt fT paroi fV

No discontinuity

fTTicTem fTpre

S3

Figure 2. Thermal comfort model

In Figure 2,

• Si represents a season,
• fTTim represents the weighted mean gap between the average

inside temperaturet and the reference inside temperaturetideal,
• fT hrz represents the weighted mean gap between the maximum

and minimum inside temperature on a horizontal section,
• fT vrt represents the weighted mean gap between the maximum

and minimum inside temperature measured at head, chest and legs
of the passenger,

• fT paroi represents the weighted mean gap between the tempera-
ture next to the windows and the average inside temperature,

• fV represents the mean of normalized gaps between the reference
range of air speeds and the inside air speeds,

• fTTicTem represents the average rate of change of inside temper-
atures according to the outside temperatures,

• fTpre represents the gap between the inside temperature and the
reference inside temperature when a passenger enters into a train.

3 Agregations

Each node of the thermal comfort model needs an aggregation
method, the aggregations are done from the bottom to the top of the
model.

3.1 Procedure to find the most appropriate
aggregation method

In order to find the most appropriate aggregation method for each
node, we ask the following questions to the experts:

Q1: do we need a ranking or a classification of trains on this node?
Q2: do we have ordinal or quantitative data?
Q3: are there any dependance between the subcriteria of this node?
Q4: is it acceptable to have a compensation between the subcriteria of

this node?
Q5: are there some important subcriteria of this node which may have

a veto power (it means that such a subcriteria may put a veto for a
good global evaluation if the evaluation of the train is not sufficient
for this special subcriteria)?

Q6: are there too many subcriteria in this node?

Table 3.1 presents a quick analysis of three aggregation methods
(rule-based aggregation, Electre tri, Choquet) in relation to the pre-
vious questions. These methods will be presented in the following

subsections. The answers are given in a very general way, some of
them may be different with additional studies (for instance if we have
ordinal data, we can translate the ordinal evaluation to utilities with
a good elicitation method, ...).

Question Rule-based Electre Choquet
Q1 classification classification ranking
Q2 ordinal/quantitat. ordinal/quantitat. quantitat.
Q3 dependance no dependance1 dependance
Q4 no compensat. no compensat. compensat.
Q5 veto2 veto no veto
Q6 not too many3 5-6 criteria4 5-6 criteria5

Table 1. methods and their properties

The choice of the aggregation is done in accordance with the an-
swers to the questions presented above but there are also two other
points that we have to take into account. The method must:

1. provide results in accordance with the preferential expectations of
thermal experts and the answers of passengers to the surveys,

2. be easy to understand. It means that if there are many aggregation
methods with expected properties, we may chose the most intu-
itive one in order to facilitate the use and the acceptation of the
method by thermal experts. For thermal experts rule-based method
is the most intuitive one between the three aggregation methods of
Table 3.1 (they are used to have logical rules for the evaluations).
However, the logical rules which will be used must be easy to in-
terpret, it is not acceptable to have a big number of rules which
have not intuitive meaning but correspond to the answers of the
passengers to the survey. After rule-based method the experts fell
more comfortable with Electre tri method since all the parameters
(weights, indifference thresholds, veto thresholds, etc.) are present
in a transparent way while some important indices of Choquet in-
tegrals (dependance and importance indices) are not very trans-
parent in the beginning of the evaluations.

These two last points are important for our approach. The first
point may be used in the validation step of our approach by compar-
ing the theoretical results with passengers answers. It also says us
that we can use some preferential examples in order to determine the
parameters of the chosen aggregation method. This point is central
for the following section where we will present the elicitation meth-
ods. The last point says us that we have to see first of all if we can use
rule-based aggregation with simple rules if not we have to try Electre
tri and finally we have to test Choquet integrals.

In the following we will present the aggregation method used in
each node of the model. For confidentiality purposes we can provide
neither the real examples that we used during the elicitation steps nor
the real values of decision parameters.

3.2 No discontinuity

In this node we have two criteriafTTicTem(e, S) andfT pre(e, S)
(see Figure 2), evaluated on cardinal scales, to be minimized. The
experts stated that they just need to have a classification into three
ordinal categories “no discomfort”, “mild discomfort” and “discom-
fort”. Our idea is to find a simple aggregation procedure like a small
set of rules because of the small number of criteria and categories.

The classical rule-based methods in multicriteria decision making
(MCDA) have their roots in rough sets theory [23] which aims at pro-
viding a set of rulesR = {R1, R2, .., Rk} (“if <conditions>then
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<decision>”) from a learning set of decision examples provided by
the DM. This learning set is a set of alternativesA evaluated on a set
of attributesQ = {q1, .., qm} for which, decisions (the assignment
of alternatives into categories{C1, .., Cp}) were taken in the past
by the DM (some fictitious examples may be also used if there are
no previous decisions). The difficulty of the classical rough sets ap-
proach for MCDA is that it can not deal with preference order on the
elements ofQ and the categories{C1, .., Cp}, and thus may violate
the monotonicityof preferences. For this purpose, Greco, Mattarazzo
and Slowinski proposed a generalization of the classical approach by
proposing what they called Dominance-based Rough Set Approach
(DRSA) [7, 8]. In our application we do not need DRSA since the
induction of rules could be performed directly with the DM because
of the small number of criteria, categories and also because of some
limit values that the experts used to have. However, we should ensure
that the set of rules satisfies three properties : the exclusiveness (each
alternative must be assigned at most to one category), the monotonic-
ity (the set of rules must be coherent with the dominance principle)
and the exhaustivity (each alternativea must be assigned to a cate-
gory by a rule)6.

It turned out that the rules inducted with the experts by using a
small set of fictitious examples, make use of theminimumaggregator.
Indeed, for the experts, each criterion has two thresholds (s1 ands2
for fTTicTem(e, S) ands′1 ands′2 for fT pre(e, S)) separating three
comfort categories (reflecting three levels of comfort like in Tab. 2).

Level of comfort Ordinal values
No discomfort 3

Mild discomfort 2
Discomfort 1

Table 2. The coding of comfort categories

Let ClTicTem(e, S) and Clpre(e, S) be the translations of
fTTicTem(e, S) andfT pre(e, S) in terms of levels of comfort :

ClTicTem(e, S) =







3
2
1

if fTTicTem(e, S) ≤ s1
if s1 < fTTicTem(e, S) ≤ s2
if fTTicTem(e, S) > s2

(1)

Clpre(e, S) =







3
2
1

if fT pre(e, S) ≤ s′1
if s′1 < fT pre(e, S) ≤ s′2
if fT pre(e, S) > s′2

(2)

After that a train is assigned to one of three comfort categories for
No discontinuityusing the minimum operator:

ClNoDisc(e, S) = min
{

ClTicTem(e, S), Clpre(e, S)
}

3.3 No unpleasant sensations

In this node we have five criteria (see Figure 2) evaluated on cardinal
scales, to be minimized. The experts stated that here again they just

6 Vanderpooten and Azibi [1] have proposed an approach to check if the rule
base satisfies the three previous requirements, provided that the rules have a
particular structure. This approach consists on transforming the rules from
logical to algebraic representation which allows to solve a series of linear
programming in order to check the three requirements. We can also identify
with this approach, alternatives which are not covered by rules satisfying
these requirements.

need a classification into three ordinal categories “no discomfort”,
“mild discomfort” and “discomfort” (see again Table 2).

After some discussions with the experts on comfort and on rolling
stocks about these criteria, they claim that the first and the last crite-
rion (fTTim(e, S) andfV (e, S)) are by far the most important and
can not be compensated by the three others for reducing the discom-
fort sensation.

The fact that we need an ordinal classification by using five criteria
(it is too much to have intuitive logical rules) and that we have some
type of veto (and/or no compensation), are the basic motivations of
the choice of Electre Tri method in this node.

Electre Tri is a multicriteria sorting method developed by B. Roy
[24]. Its principle is to assign alternatives to predefined and strictly
ordered categories (from the worst to the best):C1, C2, ...Cp+1. The
assignment of an alternativea ∈ A in a category is based on the
comparison ofa with the profilesb1, b2, ..., bp (which separate these
categories) onm criteriag1, g2, .., gm. A profile bh is a fictitious al-
ternative which is considered as the lower limit of the categoryCh+1

for h = 1, .., p. The comparison of an alternativea with a profilebh
is performed with an outranking relationS, whose meaning is“ a is
at least as good asb” . The assertionaSb is validated if and only if
the two following conditions are satisfied: a “majority” of criteria is
in favor ofa (the weighted sum of criteria in favor ofa is greater than
a threshold) and none of the criterion which is in favor ofb should be
against (put a veto) this assertion.

The parameters that can be inferred for a Electre Tri model are:

• The weights of the criteriak1, .., km
• The profilesgi(bh) ∀i and∀h
• The veto thresholdsvi ∀i (if there are)
• The indifferenceqi and preferencepi thresholds∀i (if there are)

These preferential parameters can be either provided by the
DM himself, which rarely happens, or inferred by aggrega-
tion/desaggregation methodologies. In these methodologies, the DM
is asked to provide a holistic judgment about a subset of potential
alternativesA∗ ⊂ A by assigning them in predefined categories.
Often, a mathematical programming is solved in order to obtain the
estimated parameters that best restore the assignment proposed by
the DM, we can have two possible cases for that:

• the mathematical programming can restore the assignment: then
the DM can see the results of assignment of other potential al-
ternatives by the inferred model, which can help him to provide
further informations or

• the mathematical programming can not restore the assignment:
then the DM can see which preferences are inconsistent with the
model (but not necessary with its reasoning), so, he may either
modify (or withdraw) them or decide that these preferences are so
important that the model of Electre Tri must be dropped.

The main difficulty when inferring an Electre Tri model with a
mathematical programming is that we can not infer all the parame-
ters simultaneously because the corresponding constraints are non-
linear and non-convex. Therefore some parameters must be inferred
directly with the DM.

In the literature, the first methodology for inferring Electre Tri
parameters by mathematical programming was performed by V.
Mousseau and R. Slowinski [19]. In 2001, V. Mousseau, J. Figueira
and J.P. Naux proposed a linear programming formulation for infer-
ring the weights [18]. A. Ngo The and V. Mousseau in 2002 pro-
posed an elicitation of the category limits [28]. Besides the aggrega-
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tion/desegregation methodologies, direct methods was performed for
inferring the Electre Tri model, like SRF ([5]).

We used the following procedure for our application:

• Since we need three categories, we just need to define two profiles.
The profilesb1 andb2 were determined directly with the experts
because they are used to work with some comfort levels defined
by the limit evaluations on criteria.

• The weight of criteria were elicited by identifying all subsets of
minimum coalitions of criteriaF ⊆ F in favor of an alternative
such that the alternative remains at least as good as the profile for
the experts, without taking into account the veto power of criteria
(for instance the expert says that it is sufficient to havea better
thanb for the three first criterion in order to say thata is at least
as good asb, ...)

• Ones the weights are determined, we considered a set of learning
alternatives in order to elicitate the veto thresholds.

A∗ =
⋃

F⊆F

(AF (1) ∪AF (2))

built from F such that forp = {1, 2}:

AF (p) = {a ∈ A : ∀i ∈ F : gi(a) > gi(bp) and

∀j ∈ F\F : gj(a) ≤ gj(b1)}

We focused then on some alternativesa ∈ A∗ for which, we
increase progressively the value ofgj(a) (we decrease the perfor-
mance)∀j ∈ F\F , keeping the same performances in the remain-
ing criteria, until the assertionaSbp being not valid. Letg∗j be the
smallest value such thataSbp is not valid. The veto threshold is
thus:

vj(gj(a)) = g∗j − gj(a)

3.4 Comfort in a given season

In this note the evaluations on the“No unpleasant sensations”and
the“No discontinuity” will be aggregated. These two criteria are
evaluated on an ordinal scale with three grades. The experts stated
that here again they just need to have a classification into three ordi-
nal categories “no discomfort”, “mild discomfort” and “discomfort”
(see again Table 2). The small number of criteria and grades allows
us to use rule-based methods in a very similar way as in Subsection
3.2. When asking the experts about the importance of the criteria,
they stated that theno unpleasant sensationscriterion is more impor-
tant. Our second questioning was to know if the overall discomfort
in a given season is greater than the maximum discomfort arising
from “No unpleasant sensations”and “No discontinuity”. The an-
swer was negative and besides, they stated that the overall discomfort
is close enough to the maximum discomfort arising from the two cri-
teria (the smallest category among the two criteria).

On the basis of this preferential information, we thought it could
be useful to keep the same number of categories (the discomfort does
not increase) as an evaluation of thermal comfort on each season. The
principle of the set of rules is to assign the alternatives to the worst
category among the categories corresponding to the two criteria in
witch the alternative is assigned excepted when the alternative is in
the category3 for “No unpleasant sensations”andcategory1 for
“No discontinuity”, in which case it is assigned to thecategory2.
This set of rules can be summarized in the following formula:

Cl
season

(e, S) =

{

2 if ClNoUnplSns(e, S) = 3 andClNoDisc(e, S) = 1

min{ClNoUnplSns(e, S), ClNoDisc(e, S)} otherwise
(3)

3.5 Thermal comfort

The aggregation in this node will provide the global evaluation of
thermal comfort. We have to aggregate three evaluations, each of
them being ordinal with three grades representing the thermal com-
fort in seasonSi. We began our discussion with experts by trying to
define an aggregation which will provide three ordinal classes as in
other nodes. We tried first of all rule-based methods. Intuitively, we
though that theminimumoperator would be a good candidate. How-
ever, some pairwise comparison examples that we showed to our ex-
perts proved that theminimumoperator was not adequate. Moreover,
it was not possible to find simple rules in accordance with their pref-
erences. Then, we tried to see if we could use another classification
method such as Electre Tri. The main difficulty of such an approach
was the fact that for the experts it was very difficult to define a se-
mantic for the categories. Futhermore, during the discussions with
experts we noticed that there may be some dependancies between
the three seasons. For that reason we decided to test Choquet inte-
grals by proposing some pairwise comparisons to our experts.

Choquet integral in MCDA is an aggregation operator devel-
oped by T. Murofushi and M. Sugeno at the end of the eigh-
teenth [25, 20]. Since, many studies and applications of Choquet inte-
gral in MCDA have been carried mainly for building the theoretical
foundations [13, 12, 11, 15] and eliciting the parameters [6]. Cho-
quet integral is a generalization of the most known scoring methods:
The weighted sum, the ordered weighted average[29], the weighted
minimum and the maximum[3]. Choquet integral of an alternative
a, evaluated on the family of criteriaF is given by the following
formula:

Cµ(a) =
n
∑

i=1

[

aσ(i) − aσ(i−1)

]

µ(σ(i), ..., σ(n)) (4)

Whereai = ui(gi(a)).
ui(.) : Xi 7→ [0, 1] are non decreasing utility functions.
σ is a permutation onF such that:aσ(1) ≤ aσ(2) ≤ ... ≤ aσ(n).
µ(.) is acapacityonF

Definition 1 A capacity (or a fuzzy measure)µ onF is a set function

µ(.) : P(F ) 7→ [0, 1]

satisfying the following conditions:

(i) µ(∅) = 0, µ(F ) = 1
(ii) ∀S,T ⊆ F : S ⊆ T ⇒ µ(S) ≤ µ(T )

The capacityµ(S) of a subset of criteriaS can be interpreted as the
weight importance of the coalition of criteria ofS. It allows to con-
sider more preferential information than the scoring methods men-
tioned below, like the interactions among criteria or the mutual de-
pendence of criteria.

Choquet integral provides also some numerical indices for ana-
lyzing the preferential information likethe Shapley valueΦµ(i) for
measuring the importance of a criterion and the interaction index
Iµ(S) for measuring the interaction among the criteria belonging to
S ⊆ F .

Φµ(i) =
∑

T⊆F\i

(n− |T | − 1)!|T |!

(n)!
[µ(T ∪ i)− µ(T )] (5)

Iµ(S) =
∑

T⊆F\S

(n− |T | − |S|)!|T |!

(n− |S|+ 1)!

∑

L⊆S

(−1)|S|−|L|µ(T ∪ L)

(6)
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wheren is the cardinality ofF . The application of Choquet inte-
gral in MCDA requires the elicitation of utility functionsui and
the capacitiesµ. The main requirement when eliciting the util-
ity functionsui is the commensurabilityof the scales. The MAC-
BETH approach [2] is often used for eliciting the utility func-
tions (by assuming that the DM is able to give information us-
ing intensity of preference) by building an interval scaleui in or-
der to encode the attractiveness of the elements of subsetsXi =
{(01, .., 0i−1, xi, 0i+1, .., 0m)/xi ∈ Xi} s.t.0i and1i are the worst
and the best values inXi. The commensurability is ensured by fixing
the scales:ui(1i) = 1 andui(0i) = 0 ∀i.

Regarding the elicitation of the capacitiesµ, several methodolo-
gies and algorithms have been developed in the literature. The gen-
eral idea of these methodologies is to ask the DM to express his pref-
erences on a set of learning alternativesA∗. These preferences from
which the capacities will be elicited, can be a partial ranking of:

• Alternatives ofA∗

• Differences of intensity of preferences of some alternatives inA∗

• Importance of criteria,
• Interactions between criteria
• ...

This preferential information is then translated into mathematical
constraints such as:

• a ≻ b ⇒ Cµ(a) ≥ Cµ(b) + δ1
• a ≻ b more thanc ≻ d⇒ Cµ(a)−Cµ(b) ≥ Cµ(c)−Cµ(d)+δ1
• The criterioni is more important than the criterionj ⇒ Φµ(i) ≥

Φµ(j) + δ2
• The criteriai andj are complementary⇒ Iµ(ij) ≥ δ3
• ...

Whereδ1, δ2 andδ3 are preference thresholds which must be defined
with the DM. It is also possible to fix the number of criteria which
may interact.

Definition 2 (k-additivity) A capacityµ onF is k-additive if there
is no interaction among criteria of every subsetS ⊆ F whose cardi-
nality is greater thank, ie.,∀S ⊆ F s.t.|S| > k, Iµ(S) = 0.

Most of the methodologies in the literature [14, 10, 9, 17] use an
optimization problem with the previous constraints for identifying
the capacities. The objective function may differ from a methodology
to another.

If a solution is found to this optimization problem then the DM
can analyze the results corresponding to the Choquet integral with
the identified capacities, he may add further preferential information
and thus solves again a new optimization problem. Such a process is
performed iteratively until finding a satisfactory model.

If no solution is found to the optimization problem then either the
DM preferences are not consistent with the theoretical properties of
Choquet integral (transitivity of preferences, monotonicity...etc.) or
the number of parameters to be identified is not sufficient to restore
the DM preferences. In the first case, inconsistencies must be de-
tected and the DM must change its preferences. In the second case
we increase progressively the additivity of the capacities until a so-
lution is found.

The inference of the parameters of the Choquet integral model
consists on the elicitation of the utility functions and the capacities:

Elicitation of utility functions The utility functions
uS(Clseason(e, S)) (where S ∈ {S1, S2, S3}) corresponding

to the criteria of our problemClseason which will be aggregated
with Choquet integral must be commensurate. This requirement
leads to put for each criterionuS(1) = 0 (the worst evaluation)
anduS(3) = 1 (the best evaluation). We put thenuS(2) = 0.5
after ensuring that the difference of attractivenessuS(2) − uS(1) is
equivalent touS(3) − uS(2) for S ∈ {S1, S2, S3}. We thus have:

uS(Clseason(e, S)) =







1 if Clseason(e, S) = 3
0.5 if Clseason(e, S) = 2
0 if Clseason(e, S) = 1

Let us remark that for our application the elicitation of the utility
functions was not problematic because the criteria are evaluated on
homogeneous scales and the setXi of the possible values of the cri-
teria is small. In general cases, this step is more difficult.

Elicitation of the capacities The elicitation of the capacities was
performed as follows:

1- Collecting the preferential information: We first asked the ex-
perts and the DMs to provide an order representing the impor-
tance of criteria (which season is important?) in order to build a
“relevant” set of learning examples. We built 14 fictitious trains.
This set of learning examples was a set of pairwise comparisons
of some of these trains. We asked then the experts and the DMs to
give their preferences related to this set.

2- Interactions among criteria: We have transformed the set of
pairwise comparisons into linear constrains and we tried to find
additive capacities (k = 1) which corresponds to the weighted
sum. When solving a linear programming with these constraints,
we found no solution. The reason of such failure may be the pres-
ence of some types of interactions among criteria. Hence we de-
cided to test a 2-additive model.

3- Aggregation/disaggregation procedure: In order to find the ca-
pacities which best restore the preferences, we have used an aggre-
gation/disaggregation procedure. We have first fixed the additivity
to 2 (interactions only among pairs of criteria) and we tried to find
2-additive capacities by an approach proposed by Marichal and
Roubens [14] which aims at solving a linear programming where
the objective function to be maximized is the minimal difference
between the Choquet integrals of the compared alternatives. The
linear programming have the following form:

(LP )























































max f = ǫ
Cµ(a1)− Cµ(b1) ≥ δ1 + ǫ
Cµ(a2)− Cµ(b2) ≥ δ2 + ǫ
.
.
.
µ(∅) = 0
µ(F ) = 1
µ(S) ≤ µ(T ),∀S ⊆ T,∀T ⊆ F

(7)

The linear programming gave us several feasible solutions repre-
senting the capacity values of the Choquet integral. We chose the
first solution and used it in order to obtain a total weakorder of our
14 fictitious trains. We asked then the experts and the DMs if this
weakorder was in accordance with their preferences (see Fig. 3). The
answer was negative because:

• there were trains which were dominated by others while they had
the same overall value (the alternatives O2 and O9 in Fig. 3),
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• there were some trains (on which the DMs were not asked to ex-
press their preferences) having different overall values while they
were considered as equivalent by the experts (the alternatives O2
and O8 in Fig. 3).

Figure 3. Thefirst step of the aggregation/disaggregation procedure

Ones the inconsistencies were identified, we added the corre-
sponding constraints and we solved a new linear programming (LP).
Figure 4 represents the results of this second step. The new capacity
values obtained by solving (LP) provided to a new ranking of trains
which was in accordance with the DMs preferences.

Figure 4. Thesecond step of the aggregation/disaggregation procedure

After identifying the capacities, one can proceed to an analysis of
the preferential information by computing theinteraction IndicesIµ
and Shapley valuesΦµ in order to better understand the nature of
interactions among criteria or to have an idea about the intensity of
the importance of criteria. We can see in Fig. 5 that all interaction
indices are positive which means that the criteria are rather comple-
mentary. The interaction betweenS1 andS3 is the most important.
We can see also that the thermal comfort in the seasonS3 is the most

important one andS1 is less important thanS2 andS3. Our experts
said that this analysis corresponded very well to their intuition.

Figure 5. Theinteraction indices and Shapley Values

4 Conclusion

In this paper we presented a real world application. Our application
shows how we constructed the hierarchical model representing the
thermal comfort in the high speed trains, how we chose the aggrega-
tion methods and how we elicited the parameters of these methods.

We wanted to point out that a real world application could need
several aggregation steps and each step could require a different ag-
gregation method. The choice of the aggregation method must be
done with the DMs and experts using a guided approach.

The SNCF insisted on the fact that the results of the application
must be in accordance with the perception of train passengers. We
thought that for this purpose an elicitation method using some com-
parison examples coming from surveys with passengers is very ade-
quate.

Sometimes the results obtained by eliciting all the parameters us-
ing some examples may provide some unexpected results. For in-
stance if all the parameters of Electre Tri (the weights, the profiles,
the thresholds) are elicited all together, one can obtain importance
weights which are in contradiction with the intuition of the DMs
since they depend also on the profiles. For this reason we think that
if some of the parameters can be elicited directly with experts, we
have to use these elicitations and then complete them by using more
sophisticated methods based on comparison examples.

An aggregation/disaggregation approach (step 1 : proposing com-
parison examples, step 2 : using them in order to determine some
parameters, step 3: presenting some new results to the DM using the
results of the second step, step 4 : integrating the comments of the
DMs on the step 3 in order to better determine parameters, ...) is ap-
preciated by the DMs and the experts.
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Abstract.1  One of the most challenging tasks in the construction 

of recommender systems is the definition of mechanisms that 

permit to automatically learn the user’s interests and combine 

different types of data. This paper presents a framework that stores 

the preferences of the user on a set of numerical and categorical 

criteria. The system is able to analyse the selections of the user and 

dynamically adapt his/her preferences over time. The management 

of the information is domain independent, since the framework can 

be applied to any scenario in which the user is constantly faced 

with a decision problem. A study of the performance of these novel 

adaptation techniques shows promising results. 

1 Introduction 

In the current Knowledge Society users have access to a huge 

number of information, data and knowledge sources. Due to the 

astonishing speed at which new content is created and published, 

evaluating all the incoming information has become a difficult, 

time-consuming and overwhelming task. In this scenario, users are 

constantly confronted with situations in which they are receiving a 

continuous stream of data and they have to find the items that fit 

better with their needs and preferences. That is the reason why the 

necessity of using a Recommender System (RS) to assist these tasks 

is increasing every day [3,8,19]. 

The work described in this paper2 assumes a context in which 

alternatives are described by both numeric and categorical 

attributes. The set of alternatives contains the proposals available 

in the RS such as a tourist destinations, films, restaurants, etc. The 

alternatives are described by means of a set of criteria that can be 

independently evaluated. For instance, if the alternatives are 

restaurants then the criteria could be related to the type of food, the 

average price and the distance to the city centre. In this case, each 

proposal known by the RS would be defined with two numerical 

values (average price, distance to the city centre), and a categorical 

one (the type of food, that can be Mediterranean, Indian, Chinese, 

etc.).  

                                                                 
1 ITAKA (Intelligent Technologies for Advanced Knowledge Acquisition) 
research group. Department of Computer Science and Mathematics, 
Universitat Rovira i Virgili, Avinguda Paisos Catalans, 26, 43007 
Tarragona, Catalonia (Spain). Email addresses: lucas.marin@urv.cat, 
antonio.moreno@urv.cat, david.isern@urv.cat, aida.valls@urv.cat. 
Website: http://deim.urv.cat/~itaka. 
2
 Some of this work has already been presented in previous papers from the 

authors [7,10,11,12,13]. 

As noted by several researchers, the definition of the degree of 

expressivity of the preferences can be a hard problem [1,14,16]. In 

most cases users find it very difficult to express their preferences 

using a numerical scale. So, a linguistic approach can be employed 

to handle preferences using linguistic terms, providing a higher 

modelling flexibility [16].  

In this work the user’s preferences over the attribute values are 

given in linguistic terms, although a transformation from the 

numeric preference function is necessary in the case of numeric 

attributes (see section 7). The main goal is to design algorithms 

capable of automatically learning the user’s preferences from 

his/her interaction with the system, without the user having to 

spend time making an explicit declaration on his/her preferences on 

all the values of all the attributes. These algorithms will be 

especially suitable in situations in which the user is constantly 

confronted with a decision problem (e.g., which news to read every 

morning), rather than in single-shot (or very infrequent) decisional 

problems. In a setting in which the user has to make choices very 

often, the user profile adaptation algorithms will benefit from them 

to learn quickly the user’s interests. 

The rest of the paper is organised as follows. Section 2 makes a 

very brief overview of the area. Section 3 describes how each of 

the alternatives of a decision problem is evaluated, taking into 

account the current information in the user profile. Section 4 shows 

the whole architecture of the recommender system, including the 

module of preference adaptation. Sections 5 explains how the 

system learns the preferences over categorical attributes, whereas 

section 6 extends the learning mechanisms to the case in which the 

categorical attribute is multi-valued. Section 7 describes the 

adaptation mechanisms to learn numeric preferences. Section 8 

explains the evaluation procedure of the adaptation techniques and 

comments the system’s performance. Finally, some conclusions 

and future lines of work are presented. 

2 Background 

As introduced by [17], the main problem of recommender systems 

is the incompleteness in the representation of the user’s 

preferences. In many cases the adopted solution is the 

simplification of the models of the users and the alternatives. Some 

of the initial attempts to tackle this problem were the construction 

of utility functions (based on multi-attribute utility theory 

(MAUT)). These types of systems have high confidence on the 

results because those utility functions are specially designed on 
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each problem / domain [2] but, at the same time, they have a low 

level of generalization.  

Another approach to deal with alternatives is to sort and classify 

them according to a set of attributes. [15] propose the ELECTRE 

TRI model that permits the decision maker to dynamically classify 

(even hierarchically) the set of alternatives. However, this model is 

based on optimizations designed for problems in which the user 

interests do not change over time. 

    Differently, in recommender systems it is more appropriate to 

take an adaptive and constructive approach to the decision task, 

such as the model of critiquing-based RS [4,5]. This approach uses 

conversational models (using natural language techniques) and 

graphical user interfaces to guide the users to efficiently target their 

ideal products and learn from the user feedback. 

Recently, query-based systems have been proposed for 

preference elicitation [2,20].  Queries are commonly used in 

conjoint analysis and product design [9], requiring a user to 

indicate which alternative is most preferred from a set of options. 

Under some very general assumptions, optimization of choice 

queries reduces to the simpler problem of choosing the optimal 

recommendation set, so that if a user were forced to choose one, it 

maximizes the expected utility. Our work is partially based on this 

model, assuming that the selection of one alternative from the set is 

representative enough to extract some knowledge about the user’s 

preferences.  

3 Linguistic aggregation operators 

This section describes how the preference information that is used 

by the RS is represented in the user profile. When the RS is 

evaluating the overall preference score of a given alternative, the 

information in the user profile is used to know the partial 

preference score for each criterion, which is given in a common 

linguistic scale (such as “High”, “Medium” or “Low”). After that, 

all the linguistic scores are aggregated to obtain an overall score for 

the alternative. Although the RS is based on linguistic scales, the 

model of preferences is different depending on the nature of the 

attribute that is being evaluated, distinguishing the numerical 

measurement scales from the categorical ones.  

In the case of numerical attributes, the user profile stores a 

numerical preference transformation function. Afterwards, a 

translation into a linguistic term can be made. In the case of 

categorical attributes, the user profile represents directly the degree 

of preference over each possible value using the linguistic scale, 

selecting the appropriate term “High”, “Medium”, “Low”, etc.  

The definition of the meaning of those terms is made by using 

fuzzy sets as can be seen in figure 1, where 5 fuzzy linguistic 

preference terms are defined. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Example of a balanced linguistic preference set 

Terms in Figure 1 are distributed uniformly across the 0-1 domain: 

all the fuzzy sets have the same shape and are symmetrical. When 

it is necessary to aggregate some linguistic terms into a single 

value, the Linguistic Ordered Weighted Averaging (LOWA, [6]) 

aggregation operator is usually employed. However, there may be 

cases in which it is necessary to add expressivity to the definition 

of the linguistic terms, as there are problems in which it is useful to 

associate to the linguistic terms fuzzy sets that have different and 

irregular shapes, such as those shown in figure 2. Aggregating 

terms in those irregular sets, known as unbalanced term sets, 

requires a more complex aggregation procedure.  

 

Figure 2. Example of an unbalanced linguistic preference set  

 

 

For this purpose, we designed a new aggregation operator called 

ULOWA (Unbalanced LOWA) which enables the aggregation of 

fuzzy terms defined on an unbalanced fuzzy set. This operator is 

defined in [7] as follows: 

                 

 

 

 

In this expression W is the set of weights, β=wh/∑
n

2wh,h={2,…,n} 

and B={b1,…,bn}  is a permutation of the elements of A, such that 

B=σ(A)={aσ(1),…, aσ(n)}, where  aσ(j)≤aσ(i), j≤i. Cn is the convex 

combination operator of n labels. If              , wj=1 and               , 

k≠j, wk=0, then Cn{wi,bi,i=1,..,n}=bj. When n=2, with b1=sj and 

b2=si, sj,si S(j≥i) then   

 

 

such that k=argmaxi≤p≤j{Sim(sp,δ)}, where δ is an intermediate crisp 

number between sj and si defined as δ =(xk,xk,xk,xk), with 

xk=x*
si+w1(x

*
sj-x

*
si), x*

s being the x-component of the Center of 

Gravity of the label S. Sim(P,Q) calculates the similarity between 

two fuzzy numbers P and Q with the formula   

 

 

 

 

where each triangular or trapezoidal fuzzy set is represented in the 

usual way by four numbers. 

 

This work was later expanded in the definition of the IULOWA 

aggregation operator (Induced ULOWA) which supports the 

induction of the order of the arguments by taking into account the 

measures of fuzziness and specificity of the aggregating terms [13]. 

 

1

1
1 1 1

( ,..., ) · { , , 1,.., }

(1 ) { , , 2,.., }

T n
n k k

n
h h

ULOWA a a W B C w b k n

w b w C b h n

2
1 1{ , , 1,2} (1 )i i j i kC w b i w s w s s

4

4

1

( , ) 2 1i i

i

Sim P Q p q

nj ..1 nk ..1

109



4 Multi-criteria recommender system 

Many points of view or criteria define the alternatives that the RS 

aims to recommend. Those criteria can be categorical (e.g., the 

attribute “Climate” when defining a “Tourist destination” 

alternative) or numerical (e.g. the criteria “Population density” for 

the same case). 

The steps followed by the designed RS in order to give a 

recommendation to the user are as follows: 

 

1. Identify the set of possible alternatives that can be 

recommended to the user. 

2. Obtain a linguistic evaluation of each alternative. This is 

done by the following procedure: 

a) Obtain a numeric preference over the value of each 

numeric attribute by using the numeric preference 

function defined in the user profile (more details on 

section 7). 

b) Translate the numeric preference value to a linguistic 

one by mapping it in the linguistic fuzzy term 

domain. 

c) Obtain the value of preference over the value of each 

categorical attribute by observing the associated 

linguistic label in the user profile. 

d) Aggregate all the linguistic terms using the ULOWA 

aggregation operator. 

3. Sort all the alternatives by descending order according to 

the evaluation obtained through the aggregator. 

The first ranked alternatives are the ones that fit better the user 

interests, according to the information in the user profile. If the 

user selects an alternative that is not in the first position, it means 

the user preferences stored in the profile are not accurate enough 

and the preference learning algorithm explained on further sections 

comes into play. A graphical representation of the whole process 

can be seen in figure 3 . 

 

 

Figure 3. Architecture of the recommender framework 

 

5 Learning of linguistic preferences over 

categorical criteria 

As previously stated, preferences over categorical attributes are 

represented using a linguistic term scale, in which each term has an 

associated fuzzy set. Concretely, in the user profile each 

categorical value has a linguistic term of preference associated to 

it. To learn and adapt those values of preference, it is first 

necessary to identify when the RS has not been accurate enough. 

That occurs, as indicated above, when the user selects an 

alternative that is not the first one ranked by the RS. In this case, 

two pieces of feedback are extracted: the alternatives ranked above 

the selection (which are called the over ranked alternatives) and 

the selection itself. 

The main idea is to find attribute values repeated among the 

over ranked alternatives that do not appear on the selection, which 

will be the candidates for having his preference decreased. 

Similarly, the preference of the attribute values that appear on the 

selection and do not appear often on the over ranked alternatives is 

likely to be increased. The interested reader may find a more 

detailed explanation of the process of adaptation of linguistic 

preferences in [12]. 

The profile adaptation is conducted by two processes. The first 

one—called on-line adaptation—is executed every time the user 

asks the system for a recommendation, and it evaluates the 

information that can be extracted from the current ranked set of 

alternatives. The main goals of this stage are to decrease the 

preference of the attribute values that are causing non-desired 

alternatives to be given high scores and to increase the preference 

of the attribute values that are important for the user but are not 

well judged on the basis of the current user profile. For each 

recommendation made by the system, two sources of information 

are evaluated: the selected alternative, which is the choice made by 

the user, and the alternatives that were ranked above it. Values 

extracted from the over ranked alternatives have their level of 

preference decreased whereas the ones extracted from the user’s 

final selection that do not appear in the set of over-ranked 

alternatives have their preference increased. 

The second one—called off-line adaptation—is triggered after 

the recommender system has been used a certain number of times. 

It considers the information given by the history of the previous 

rankings of alternatives and the selections made by the user in each 

case, but considers that information separately. When the system 

faces cases in which the number of over ranked alternatives is not 

large enough for reliable conclusions to be extracted, it stores the 

small number of over ranked alternatives in a temporary buffer. 

After several iterations in which the number of over ranked 

alternatives has been insufficient for evaluation, the system will 

have recorded enough alternatives to start evaluating them. When 

there are enough saved over ranked alternatives, the values in their 

attributes will be analysed and their preference decreased. 

Moreover, user selections are also stored, and after a certain 

number of choices have been made, they are evaluated with the 

objective to increase the preference of the most repeated attribute 

values, since their repeated selection indicates that the user is really 

interested in them. 

6 Management of multi-valued categorical 

criteria 

The previous section considered the case in which categorical 

attributes could only take one single value. However there are 

cases in which many values for the same attribute may appear. An 

example can be the attribute “Types of food” in a restaurant. If a 

user has a “High” preference over “Asian food” restaurants and a 

“Low” preference over “Rice dishes”, we can argue that the 

preference we could assign to the “Type of food” attribute in a 

restaurant with both values should be “Medium” (an average of the 

two kinds). If another restaurant only offers “Asian food” then its 
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preference should be “High”, so this restaurant would have a 

higher ranking than the first one. The rationale of this procedure is 

that it seems more adequate to reward the alternatives that are more 

focused on the aspects the user really likes. This example 

represents an “average” preference aggregation policy; however, 

other policies could also be considered depending on the meaning 

of the attributes in a particular application. 

Since we cannot be sure which of the values listed in the 

attribute are the ones of interest for the user, it has been necessary 

to design a “relevance function” which indicates how relevant is a 

value found among the over ranked alternatives or in the selected 

alternative. Relevance is measured in a [0, 1] scale, with 1 meaning 

maximum relevance. To calculate how relevant a term t of the 

attribute j is among the over ranked alternatives we use this 

expression (the relevance value is 0 if it does not appear in the over 

ranked alternatives):  

 

 

   (1) 

 

 

Here, no represents the number of over ranked alternatives, nt 

the number of over ranked alternatives where t appears, and nvi
j the 

number of values that appear for the attribute j in the alternative i. 

In this equation we consider that every linguistic term that appears 

in the over ranked alternatives has a relevance which is inversely 

proportional to the number of other values for the same attribute 

that appear among the entire set of over ranked alternatives.  

To calculate the relevance of a term in the selection we use: 

 

 

   (2) 

 

 

Here nvj represents the number of values that appear for the 

attribute j in the selection, nl the total number of linguistic 

attributes, and tv the total number of linguistic values that appear in 

the selection. The relevance of a term in the selection is the mean 

between the importance of the term among the values that appear 

with it in the same attribute and the importance of each linguistic 

term that appears in the selection compared with the number of 

linguistic attributes. 

Finally, after calculating both partial relevancies for all the 

terms, the overall relevance Rj(t) is calculated as: 

 

   (3) 

 

In conclusion, considering a threshold γ to avoid making 

changes in the profile with low relevance, it can be deduced that: 

 

 If Rj(t)>γ, the preference over term t for the attribute j 

needs to be increased (moved to the next term). 

 If Rj(t)<γ, the preference over term t for the attribute j 

needs to be decreased (moved to the previous term). 

7 Learning preference functions over numerical 

criteria 

Preferences over numeric attributes are represented with a numeric 

preference function as the one represented graphically on figure 4. 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 4. Basic numeric preference function 

 

 

The ∆ value (or width) was considered to be a 10% of the 

domain of the numeric variable and vpref is the value of maximum 

preference for the user. The preference p over a numeric value x of 

the attribute a is calculated using Eq. (4). So, the task of the 

numeric learning algorithm in this basic case is to learn the correct 

vpref value for the user. 

 

    (4) 

 

 

The numeric adaptation of the user profile is inspired by 

Coulomb’s Law: “the magnitude of the electrostatic force of 

interaction between two point charges is directly proportional to 

the scalar multiplication of the magnitudes of charges and 

inversely proportional to the square of the distance between them”.  

The main idea is to consider the value stored in the profile 

(current preference) as a charge with the same polarity as the 

values of the same criterion on the over ranked alternatives, and 

with opposite polarity to the value of that criterion in the selected 

alternative [11]. Thus, the value of the profile is pushed away by 

the values in the over ranked alternatives and pulled back by the 

value in the selected alternative. Two stages have been considered 

in the adaptation algorithm. The first one, called on-line adaptation 

process, is performed each time the user asks for a 

recommendation. The other stage, called off-line process, is 

performed after a certain amount of interactions with the user. 

 

 

Figure 5. Attraction and repulsion forces 

 

 

For the on-line stage, the information available in each iteration 

is the user selection and the set of over ranked alternatives. In order 

to calculate the change of the value of preference in the user profile 

for each criterion it is necessary to study the attraction force done 

by the selected alternative and the repulsion forces done by the 

over ranked ones in each criterion, as represented in the example in 
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figure 5, in which the j-th value of the five over ranked alternatives 

o0, o1, o2, o3, and o4 causes a repulsion force Fo
j, and the value for 

the same criterion of the selected alternative, sj, causes an 

attraction force Fs
j. Both forces are applied on the j-th value of the 

profile, Pj. 

The attraction force Fs done by the selected alternative for each 

attribute j is defined as: 

 

 

 (5) 

 

 

 

In this equation, ∆j is the range of the criterion j, sj is the value 

of the criterion j in the selected alternative and Pj is the value of the 

same criterion in the stored profile P. The parameter α adjusts the 

strength of the force in order to have a balanced adaptation process. 

The repulsion force exerted by the over ranked alternatives for 

each criterion j is defined as a generalization of Eq.(5) as follows: 

  

 

 (6) 

 

 

Finally, both forces are summed up and the resulting force is 

calculated. 

The techniques designed for the on-line stage fail at detecting 

user trends over time since they only have information of a single 

selection. The off-line adaptation process gathers information from 

several user interactions. This technique allows considering 

changes in the profile that have a higher reliability than those 

proposed by the on-line adaptation process, because they are 

supported by a larger set of data. 

The off-line adaptation process can be triggered in two ways: 

the first one evaluates the user choices, while the second one 

analyses the over ranked alternatives discarded by the user in 

several iterations. The possibility of running the off-line process (in 

any of its two possible forms) is checked after each 

recommendation. In the first case, the system has collected some 

alternatives selected by the user in several recommendation steps, 

and it calculates the attraction forces (F’s) exerted by each of the 

stored selected alternatives over the values stored in the profile, 

using an adaptation of Eq. (5), that has as inputs the profile P, the 

past selections {s1,…,srs}, the criterion to evaluate j, and the 

strength-adjusting parameter α:  

 

 

 (7) 

 

 

The second kind of off-line adaptation process evaluates the set 

of over ranked alternatives that have been collected through several 

iterations and which were not used in the on-line adaptation 

process (because it did not have enough over ranked alternatives in 

a single iteration). When the stored over ranked alternatives reach a 

certain number, the off-line adaptation process calculates the 

repulsion forces over the profile values exerted by those 

alternatives (Fo), which are calculated with Eq. (6). 

 

This process, however, just adapts the value of maximum 

preference of the numeric preference function. Recently we have 

studied how to adapt more parameters associated to the preference 

function and not just that value. The new learning method relies on 

historic data about the user selections to approximate a more 

expressive preference function of the numeric attributes. With this 

approach, we have a new definition of the function of preference 

which now has 5 parameters (left and right slope, left and right 

width, and value of preference) instead of just the value of 

preference. The graphical representation of a preference function 

can be seen in the example in figure 6, where the left slope is a 

value under 1, the right slope is a value over 1, and the left width is 

greater than the right one. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Numeric preference function with 5 parameters 

 

With this new definition of the preference function, the 

numerical preference associated to a particular value x of attribute 

a is calculated as follows: 

 

 

 

 

 (8) 

 

 

 

 

 

 

 

In this expression ml and mr are the function slope values (for 

the left and right sides of the function) and ∆l and ∆r are the 

parameters which define the width of the function (also for the left 

and right sides).  

In order to learn all those new parameters, the first step is to 

obtain the more reliable values from the historic set of selections. 

This is done by extracting a percentage of the values closer to the 

value of preference (trust interval), normally of 90%. This filter is 

useful to get rid of outlier values. Then a probability distribution 

function, represented with a histogram, is calculated with those 

values.  

The sample or discretization step is a parameter, normally 

around 1% of the domain range. Delta values are then calculated 

by observing the width of the probability distribution. For example, 

if the first value different to 0 in the histogram is 3 and the last is 

56, and the value of higher preference (vpref) is 34, ∆l would be 31 

and ∆r would be 22.  

Afterwards, the algorithm generates preference functions with 

different combinations of values for the slope values (m) (in the 

range from 0 to 4 in steps of 0.2), and compares the distance 

between each preference function and the probability distribution. 

The function with the lower distance determines the chosen slope. 
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Finally, the new preference function is built with the new delta and 

slope values.  

8 Performance of the adaptation algorithms 

The performance of the preference learning algorithms has been 

tested in several domains such as tourist destinations, news articles 

(obtained from The Times3 newspaper) and restaurants (obtained 

from BCN Restaurantes4) [10,12]. The evaluation shown in this 

section has been done using a data file containing 3000 restaurants 

that were divided in groups of 15, giving a total of 200 different 

recommendations. The attributes considered were “Type of food” 

(multi-valued categorical with 15 possible values), “Atmosphere” 

(multi-valued categorical with 14 possible values), “Special 

characteristics” (multi-valued categorical with 12 possible values), 

“Average price” (numerical in a 20 to 60 € range) and “Distance to 

city centre”(numerical in a 0 to 5 km domain). 

Three random initial profiles were generated and an ideal profile 

was created manually. The objective is that, after the 200 

recommendations, the three random profiles are close to the ideal 

one by learning the user preferences through the analysis of the 

chosen (and over ranked) alternatives in each iteration. The 

evaluation process, executed independently for each initial profile, 

has the following steps, which are repeated 200 times: 

 

1) Select the next block of 15 alternatives. 

2) Rank those alternatives using the current user profile. 

3) Rank the alternatives using the ideal profile. The option 

that would be chosen by the user is the first one in this 

rank.  

4) Look for the position of the selection obtained in the 

previous step in the ranked list obtained in step 2 (i.e., 

simulate the user selection). The alternatives that are 

ranked above this item are considered over ranked and 

treated as feedback for the learning process. 

5) Identify the possible changes to the profile and perform the 

ones with greater reliability. 

At each iteration of the process, the distance between the current 

profile and the ideal one is calculated using a measure designed for 

this purpose. This measure gives a result in the [0,1] domain, 0 

meaning that both profiles are identical (optimal case) and 1 

meaning that both profiles are completely opposed.  

 

The distance between numeric attributes is calculated as 

    

 (9) 

 

where n is the numerical attribute, c is the current profile (the one 

being learned), i is the ideal profile, and ( )c i
n pref np v  is the value 

of preference of the vpref value for the attribute n in i using the 

preference function of the same attribute in the profile c. A 

distance 0 means that the vpref values in both profiles are equal. 

The equation to calculate the distance between categorical 

attributes is 

 

 

                                                                 
3 Website: http://www.thetimes.co.uk/tto/news/ 
4 Website: http://www.bcnrestaurantes.com/eng/ 

 

 

(10) 

 

 

where l is the categorical attribute, card(l) is the cardinality of the 

attribute l (i.e., the number of different linguistic values it can 

take), ( ( ))c
l kCoG p v and ( ( ))i

l kCoG p v are the x-coordinate of 

the centres of gravity of the fuzzy linguistic labels associated to the 

value of preference of vk in the profiles c and i, respectively, and 

min( )CoG s and max( )CoG s  are the centres of gravity of the 

minimum and maximum labels of the domain, respectively. 

Finally, the distance between two profiles is calculated as 

 

(11) 

 

 

where na is the total number of attributes. 

 

The average evolution of that distance can be seen in figure 7. As it 

can be observed, the distance between profiles decreases to 0.2 

after 50 recommendations. This performance can be better 

understood by observing figure 8, which represents the position of 

the alternative the user selects in the ranked set of alternatives (the 

lower the better). After about 50 iterations, the selected alternative 

is among the first three ones in 95% of the cases (and the first one 

in around 70% of the cases). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Distance evolution 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Position of the selected alternative 
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The interested reader can find in [12] a more detailed account of 

the influence of the different parameters of the adaptation 

algorithms in the final result. 

9 Conclusions and future lines of research 

The main objective of this paper is to present different techniques 

of profile learning to enable a Recommender System (RS) to 

automatically and dynamically adapt the user’s preferences to 

increase the accuracy of the recommendations. The alternatives (or 

set of possible solutions to the recommendation problem) are 

defined by multiple criteria that can be either numerical or 

categorical. Categorical attributes can be multi-valued. 

The algorithm combines the use of past and recent information 

to adapt the current user’s profile. This combination is set up with 

different parameters that permit to balance the adaptation towards 

past information or more recent one. As shown in the last section, 

the algorithm converges as the profile evolves over time. Some 

recent tests, not reported in this paper, also show a high confidence 

of the results when changes of the ideal profile are considered 

during the simulation. 

  

As more information has the algorithm, more and faster patterns 

can be inferred and the algorithm obtains more accurate results. As 

shown through the paper, the current proposal is a content-based 

one taking into account data collected from a single user. A next 

step is to use information from other users turning the algorithm 

into a collaborative-based one. If we can compare two different 

users, a possibility is to use selections made by one user and also 

combine them with selections made by similar users. With this 

approach, the learning curve of the user’s profile could potentially 

be diminished, although accuracy problems could appear as noticed 

in [18]. 
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An algorithm for active learning of lexicographic
preferences

Fabien Delecroix1, Maxime Morge2, Jean-Christophe Routier3

Abstract. At the crossroad of preference learning and multicrite-
ria decision aiding, recent researchs on preference elicitation provide
useful methods for recommendation systems. In this paper, we con-
sider (partial) lexicographic preferences. In this way, we can consider
dilemmas and we show that these situations have a minor impact in
practical cases. Based on this observation, we propose an algorithm
for active learning of preferences. This algorithm solve the dilem-
mas by suggesting concrete alternatives which must be ranked by the
user.

1 Introduction

At the crossroad of preference learning and multicriteria decision
aiding, recent researchs on preference elicitation provide useful
methods for recommendation systems [5]. Recommender systems
are aimed at helping users to deal with the problem of information
overload by facilitating access to relevant items [8] (web resources,
products, services, . . . ). These systems attempt to generate a model
of the user or user’s task and apply different heuristics to anticipate
what item may be of interest to the user. Recommender systems can
be collaborative, which build on similarities between users with re-
spect to the items, or content-based, which build on similarities be-
tween items that the user liked in the past. However, these approaches
make the assumption that we have prior information about the user
and they focus on how to use this information rather than how to get
it [6]. By contrast, we consider in our approach not having such data
on user but we aim at collecting proactively these data [3, 2]. In this
perspective, the main issue is the following one: “which question(s)
to ask to a decision-maker in order to identify a relevant item in a
user-friendly way?”

In this paper, we consider active learning of preferences (see [9]).
We aim at inferring the preferred alternative(s) from selected ob-
served situations. We focus here on multi-attribute decision making
where alternatives are mutually exclusive and attributes are indepen-
dent. Based on an ordinal approach of preferences, we are taking
into account situations of dilemmas. For this purpose, we consider
lexicographic preference orders which are partial. This model allows
us to express the relative importance of attributes and the dilemmas
due to the partial nature of preferences. In this paper, we show that
these dilemmas have a minor impact in practical cases. Based on this
observation, we propose an algorithm for active learning. This algo-
rithm solve the dilemmas by suggesting concrete alternatives which
must be ranked by the user.

1 Université Lille 1, Fabien.Delecroix@lifl.fr
2 Université Lille 1, Maxime.Morge@univ-lille1.fr
3 Université Lille 1, Jean-Christophe.Routier@univ-lille1.fr

The paper is organized as follows : we first introduce the notions of
preferences and choices in the background of this work (cf Section 2)
and we describe a multi-attribute decision-making problem using a
partial lexicographic order in Section 3. Section 4 evaluates the im-
pact of dilemmas due to the incomparabilities. Then, we propose an
active algorithm for learning preferences which aims at identifying a
preferred alternative (cf Section 5). Section 6 discusses some related
works. Section 7 concludes with some directions for future works.

2 Decision
Decision making is the cognitive process of selecting a plan of action
based on preferences. In a decision problem, the goal of the decision
maker is to choose within a set of alternatives, the ones which maxi-
mize the satisfaction of the decision-maker.

2.1 Preferences
In a decision problem, the decision-making must choose between
some alternatives. We suppose here that there is a preference relation
capturing the penchant of the decision-maker which allows to com-
pare the alternatives. We formalize here some well-known relations
of preference.

Notation 1 (Relation of preference). Let Alt be a set of alterna-
tives. We denote % ⊆ Alt×Alt the (weak) relation of preference
over Alt.
If x % y, we say that “the alternative x is at least as good as y”.

Each alternative is at least as good at itself.

Axiom 1. The weak relation of preference % over Alt is reflexive,
i.e. ∀ x ∈ Alt, x % x.

Axiom 2. The weak relation of preference % is transitive, i.e.
∀ (x, y, z) ∈ Alt3, x % y and y % z ⇒ x % z.

According to the axioms 1 and 2, a weak relation of preference
(cf. Notation 1) is a preorder (reflexive and transitive).

We can define the strong relation of preference and the equivalence
relation (called indifference) from the weak relation of preferences.

Definition 1 (Strong relation of preference). Let Alt be a set of al-
ternatives and % a weak relation of preference over Alt. The strong
relation of preference � ⊆ Alt × Alt is defined such that:
∀(x, y) ∈ Alt2, x � y ⇔ x % y and ¬ (y % x).
If x � y, we say that “x is strongly preferred to y”

Remark 1. Contrary to the weak relation of preference which is
reflexive (cf. Axiom 1), a strong relation of preference is irreflexive
and so, it is not a preorder.
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From the weak relation of preference, we can define a relation
of indifference in order to capture the insensibility of the decision-
maker with respect to some alternatives.

Definition 2 (Relation of indifference). Let Alt be a set of al-
ternatives and % a weak relation of preference over Alt. We de-
fine the relation of indifference ∼ ⊆ Alt × Alt such that:
∀(x, y) ∈ Alt2, x ∼ y ⇔ x % y and y % x.
If x ∼ y, we say that “the decision-maker is indifferent between x
and y”.

Since we consider the indifference as the absence of strong prefer-
ence, x ∼ y means that the decision-maker feels that, in a preference
sense, there is no real difference between x and y.

Remark 2. The relation of indifference is a relation of equivalence,
i.e. reflexive, symmetric and transitive.

From the weak relation of preference, we can define the relation
of incomparability in order to capture the inability of the decision-
maker to choose.

Definition 3 (Relation of incomparability). Let Alt be a set of al-
ternatives and % a weak relation of preference over Alt. We de-
fine the relation of incomparability ? ⊆ Alt × Alt such that:
∀(x, y) ∈ Alt2, x ? y ⇔ ¬(x % y) and ¬(y % x).
If x ? y, we say that “the alternatives x and y are incomparable”.

Two alternatives are incomparable if the decision-maker find diffi-
cult the comparison and he may decline to commit himself to a strong
preference judgment while not being sure that he regards x and y as
equally desirable (or undesirable).

The goal of the decision-maker is to select one of the best alterna-
tives.

Definition 4 (Optimality). Let Alt be a finite set of alternatives and
% a weak relation of preference over Alt. An alternative x ∈ Alt
is optimal over Alt iff: ∀y ∈ Alt, x % y.

Remark 3. If the relation of preference % is a total preorder, i.e.
∀x, y ∈ Alt2, (x % y) ∨ (y % x), there is an underlying as-
sumption such that all the alternatives are comparable and so, there
is at least one optimal alternative over Alt.

In the general case, when the preorder is partial, there is not always
an optimal alternatives over a given set. The non-dominance notion,
which is less restrictive, allows to distinguish the alternatives which
are not defeated by other ones.

Definition 5 (Non-dominance). Let Alt be a finite set of alterna-
tives and % a weak relation of preference over Alt. An alternative
x ∈ Alt is non-dominated over Alt iff: ∀y ∈ Alt, ¬(y � x).

Remark 4. The property of non-dominance is less restrictive that
the property of optimality. Indeed, any optimal alternative over Alt
is non-dominated over Alt but the reciprocal is not necessary true.

Remark 5. There is always at least one non-dominated alternative
over a given set of alternatives.

2.2 Choice
Contrary to the preferences of the decision-maker which are inacces-
sible, his decisions are observable. The choice function is the func-
tion used in the decision-making process in order to select a subset
of alternatives.

Definition 6 (Choice function). Let Alt be a finite set of alterna-
tives. The choice function c : 2Alt → 2Alt ∪ {θ} is defined
such that if B ⊆ E then:

1. c(B) ⊆ (B ∪ {θ});
2. and if B 6= ∅ then c(B) 6= ∅.

Contrary to the classical definition, our choice function can return
{θ}which represents the non-choice. Thus, we consider that the non-
choice is a decision, i.e. the result of the behaviour of the decision-
maker, and it is not an alternative ranked by the preferences.

The choice of the decision-maker is made in accordance with his
preferences. Indeed, an optimal choice consists of selecting an alter-
native which is (weakly) preferred to the other ones.

Definition 7 (Optimal choice). Let Alt be a finite set of alter-
natives, % a total relation of preference (cf. Section 2.1). The op-
timal choice function copt is a choice function defined on any set
B ⊆ Alt such that: copt(B) = {x ∈ B | ∀y ∈ B, x % y}.

The optimal choice function returns a subset of alternatives which
are optimal (cf. Def. 4).

Remark 6. An optimal choice function is a choice function (cf.
Def. 6). Indeed, since the relation % is transitive and total, there
exists at least one optimal alternative over B if B 6= ∅ and so,
copt(B) 6= ∅ if B 6= ∅.

If the underlying preferences are partial, then the notion of opti-
mal choice is useless. We need to define the non-dominated choice
function.

Let us consider a decision-maker dealing with a dilemma, i.e.
({x, y}, %) such that (x ? y). There is two ways to solve this
dilemma. Either the decision-maker adopts a laxist attitude and
c({x, y}) = {x, y}. Or the decision-maker adopts a rigorous atti-
tude and c({x, y}) = {θ}.

Definition 8 (Laxist non-dominated choice function). Let Alt be
a set of alternatives and % a preorder over the set of alternatives.
The laxist non-dominated choice function cNDL is choice function
defined with B ⊆ Alt such that:

cNDL(B) =
{
x ∈ B | @y ∈ B, y � x

}
Remark 7. If the relation % is total, cNDL(B) = copt(B).

If the decision-maker adopts a laxist non-dominated choice func-
tion, then an observer cannot infer the underlying relation of pref-
erence. Indeed, an observer cannot distinguish the indifference (cf.
Def. 2) and the incomparability (cf. Def. 3) between these alterna-
tives. Indeed,

cNDL({x, y}) = {x, y} ⇒ (x ∼ y) or (x ? y)

Definition 9 (Rigorist non-dominated choice). Let Alt be a set
of alternatives and % a preorder over the set of alternatives. The
rigorous non-dominated choice function cNDR is choice function
defined with B ⊆ Alt such that:

cNDR(B) =

{
cNDL(B) iff ∀(x, y) ∈ (cNDL(B))2, x ∼ y
{θ} else

}
If the decision-maker adopts a rigorous non-dominated choice

function, then an observer can distinguish the indifference and
the incomparability between two alternatives: cNDR({x, y}) =
{x, y} ⇒ x ∼ y and cNDR({x, y}) = {θ} ⇒ (x ? y).
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3 Multi-attribute decision
In a multiattribute decision problem, we make the assumption that
the alternatives are defined in the same space, i.e. a set of attributes
which is defined by a concept. In this way, the alternatives are in-
stances of this concept. Firstly, we define the notions of concept and
instance and some associated functions. Secondly, we define the lex-
icographic relation of preference.

3.1 Concept
A concept is a shape defined by a set of attributes.

Definition 10 (Concept). Let (Atti)i∈I be a family of sets in-
dexed by integers in I . A concept CI is the Cartesian product
CI =

∏
i∈I

Atti.

In a concept, each set, called attribute, is a domain of definition.
A subconcept is obviously a concept restricted to a subset of at-

tributes.

Definition 11 (Subconcept). Let (Atti)i∈I be a family indexed by
integers in I and CI =

∏
i∈I

Atti is the corresponding concept. Let

J ⊂ I , a subconcept of CI over J is the Cartesian product CJ

defined such that: CJ =
∏
j∈J

Attj .

3.2 Instance
An instance is a concrete object typed by a concept (cf. Def. 10).
An instance has values within the attributes defined by the associated
concept.

Definition 12 (Instance). Let CI =
∏
i∈I

Atti be a concept. An

instance xCI ∈ CI is a vector of values (v1, . . . , vn) where ∀i ∈
I, vi ∈ Atti.

We consider here that the attributes are the domains of definition
for the values. In this way, the alternatives are instances of a con-
cept. The set of alternatives AltCI is composed of instances of the
concept CI . This a subset of the Cartesian product AltCI ⊆ CI .
It is worth noticing that there is not necessary an instance for all the
possible values.

3.3 Projection and selection
In order to define multiattribute preferences, we first introduce some
functions to manipulate instances and set of instances.

In the following definitions, we consider a concept CI and a sub-
concept CJ with J ⊂ I (cf. Def. 10 and 11).

The projection of x over the attributes indexed by integers in I is
an element of the set CJ with the same instanciation as x for all the
attributes indexed by integers in J .

Definition 13 (Projection). Let xCI = (vi1 , . . . , vin) ∈ CI be an
instance where ik ∈ I . A projection of xCI over J with J ⊆ I
is the function πJ : CI → CJ defined such that: πJ(xCI ) =
(vj1 , . . . , vjm) ∈ CJ where jk ∈ J

According to this definition, the projection of an instance over a
set of attributes consists of the values of this instance for this set of
attributes without considering the other attributes.

As we have defined the projection of an instance, we can also de-
fine here the projection of a set of instances.

Definition 14 (Projection of a set). Let AltCI be a set of alterna-
tives with AltCI ⊆ CI . PJ : P(CI) → P(CJ) is the projection
of the set AltCI defined such that: PJ(AltCI ) = {πJ(x) | x ∈
AltCI}.

The projection of a set of instances is the set of the projections for
all these instances.

We define the selection of a set of alternatives AltCI with respect
to an instance xCJ of CJ as the set of elements of AltCI which are
projected on J and which are equals to xCJ .

Definition 15 (Selection with respect to an instance). Let AltCI

be a set of alternatives with AltCI ⊆ CI and xCJ ∈ CJ be an
instance of CJ with J ⊆ I . A selection of AltCI with respect to
xCJ is the function σx

CJ : P(AltCI ) → P(AltCI ) defined such
that: σx

CJ (AltCI ) = {xCI ∈ AltCI | πJ(xCI ) = xCJ }

In the same way we have defined the selection with respect to an
instance, we define the selection with respect to a set of instances.

Definition 16 (Selection with respect to a set of instances). Let
AltCI be a set of alternatives with AltCI ⊆ CI and AltCJ

be a set of subalternatives with AltCJ ⊆ CJ . The selection
of AltCJ with respect to AltCI is the function σAlt

CJ
:

P(AltCI ) → P(AltCI ) defined such that: σAlt
CJ

(AltCI ) =⋃
x
CJ ∈Alt

CJ
σx

CJ (AltCI )

The selection of a set of alternatives wit respect to a set of in-
stances is the union of the selections.

3.4 Multi-attribute preferences
In order to define the preferences over multi-attribute alternatives,
we consider the preference relation on attributes capturing their rela-
tive importance and a family of preference relations indexed on each
attribute capturing the penchant with respect to their values.

Preferences over multi-attribute alternatives can easily be defined
from preferences over attributes and preferences over values.

Definition 17 (Lexicographic preferences).
Let C =

∏
i∈I

Atti be a concept, %I the preference relation over

attributes and (%Atti
)i∈I the family of preference relations on each

attribute. The multi-attribute preference relation over instances of
C is the relation %C defined such as for each pair of alternatives
x = (x1, . . . , xn) and y = (y1, . . . , yn) :

• x �C y ⇔ ∃l ∈ I, x �Attl
y and ∀k ∈ I | ¬(Attl �I

Attk)⇒ (x %Attk
y)

• x ∼C y ⇔ ∀k ∈ I, y ∼Attk
x

Remark 8. If the preference relation over the set of attributes %I is
strong and complete and if the preference relations (%Atti

)i∈I are
complete then the preference relation over instances %C is complete.

Remark 9. If the preference relation over the set of attributes %I is
weak or partial then the preference relation over instances %C is not
necessarily complete.

4 Dilemma
A dilemma occurs when the preference relation of the decision-
maker is partial. If non-dominated alternatives cannot be compared,
then the rigorous choice function will return a non-choice.

We claim that theses dilemmas have a minor impact in most of the
practical situations. We discuss here this assumption.
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4.1 Protocol
In the following experiments, we consider a concept C with 10 at-
tributes having binary values. For each experiments, we randomize:

• a partial preference relation over the attributes (see line 0 in
Tab. 4). We control the incomparability ratio of the relation. More-
over, the preference relations over the values are total and indepen-
dent;

• a set of alternatives for which we control the filling ratio.

For each experiment, we look if the choice cNDR(Alt) returns an
alternative or a non-choice (i.e. θ).

In Fig. 1, we have tested different incomparability ratio (between
0 and 1) and different filling ratio for the set of alternatives (between
0.2 and 1). For each couple of ratio (a point in our graph) we run 1000
experiments and so, the total number of decision-making problems
we consider is 50 000.

4.2 Results
In Fig. 1, we observe that non-choice arises when few attributes are
comparable and when the number of available alternatives is low.
Indeed, it is likely to find an optimal alternative when they are a lot
of alternatives and/or they are not too much incomparabilities. Even
if the filling ratio is low, the non-choice rarely arises (in less than 20
% of the cases) if the ratio of incomparability is not too high (less
than 0.65). In conclusion, most of the dilemmas can be solved by
considering concrete alternatives.

5 Multi-attribute decision aid game
We model here the decision aiding process by a dialogue where an
analyst asks questions to a decision maker in order to collect and
deduce his preferences. The analyst suggests attributes and values
which can be chosen by the decision maker based upon his prefer-
ences. The analyst aims at finding a preferred alternative.

5.1 Oracles
In our multi-attribute decision aid game, we consider two oracles :

• c1 give the subset of the most important attributes in a set of pro-
posals ;

• c2 give the best instances of a concept (or subconcept) in a set of
proposals.

These oracles are choice functions as defined in section 2.2.

5.2 Multi-attribute decision aid algorithm
We now present our algorithm for multi-attribute decision aid based
on an active learning mechanism of lexicographic preferences. In our
approach, the analyst wants to infer a sufficient part of the prefer-
ences in order to find an alternative which satisfy his choice function.
For this purpose, the analyst queries the decision-maker with the help
of two oracles (See Section 5.1).

The algorithm 1 uses as inputs :

• C =
∏
i∈I

Atti, the concept;

• A = {Atti}i∈I , the set of attributes of this concept ;
• and AltC , the set of alternatives (i.e. available instances) defined

in C.

The loop variables are :

• Alttmp, the remaining alternatives (not excluded) ;
• Atmp, the attributes we did not already consider and on which

the remaining alternatives (Alttmp) have at learning two different
values;

• Amax, the set of predominant attributes in Atmp ;
• Altmax, the remaining alternatives on Amax.

Additionally we consider two oracles (See section 5.1):

• c1 (line 4 of the algorithm) selects the predominant attributes
(Amax) in the remaining attributes (Atmp).

• c2 (line 6 of the algorithm) selects the preferred tuples in the re-
maining alternatives (Alttmp) projected on the set of predomi-
nant attributes Amax (cf. Def. 14).

Algorithm 1: Algorithm for active learning mechanism of lexi-
cographic preferences

Data: A = {Atti}i∈I , C =
∏
i∈I

Atti, AltC ⊆ C

Result: Alt′ ⊆ AltC , preferred alternatives
Alttmp ← AltC ;1
Atmp ← {Atti ∈ A | card(π{i}(Alt

tmp)) > 1} ;2
while (Atmp 6= ∅) ∧ (|Alttmp| 6= 1) do3
Amax ← c1(Atmp) ;4
// NB : we suppose Amax 6= {θ};5
Altmax ← c2(PAmax(Alttmp)) ;6
if Altmax = {θ} then7

return {θ}8
end9
Alttmp ← σAltmax(Alttmp) ;10
// NB : set of ex-aequo on Amax;11
Atmp ← Atmp −Amax ;12
Atmp ← {Atti ∈ Atmp | card(π{i}(Alt

tmp)) > 1};13

end14
return Alttmp15

In the worst case, the algorithm needs |A| queries to c1 and |A|
queries to c2.

5.3 Example
In this section, we illustrate our algorithm with a toy example. Let
us consider a decision maker who wants to buy a car. We define the
concept Car with the attributes described in Table 1.

Attribute Values
Brand {Peugeot, Opel, Ford}
Price {Cheap, Moderate, Expensive}

Availability {Immediately, Later}
Motorization {Diesel,Petrol}

Table 1. Definition of the attributes of Car

The concept Car is the cartesian product of these attributes, i.e.
Car = Brand × Price × Availability ×Motorization. These
attributes are modelled with discrete values, in particular prices.

The alternatives for this problem, available instances of the con-
cept Car, are listed in Table 2.
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Id Brand Price Availability Motorization
a1 Peugeot Expensive Immediately Diesel
a2 Peugeot Cheap Immediately Petrol
a3 Ford Expensive Later Diesel
a4 Ford Moderate Immediately Petrol
a5 Opel Expensive Immediately Diesel
a6 Opel Moderate Later Diesel
a7 Opel Moderate Later Petrol

Table 2. The alternatives for the decision problem

We finish to describe our decision problem in considering the de-
cision maker having the preferences listed in Table 3.

Attribute set

Brand � Price
Brand �Motorization
Price � Availability

Motorization � Availability

Brand
Peugeot ∼ Opel
Opel � Ford

Peugeot � Ford

Price Cheap �Moderate
Moderate � Expensive

Availability Immediately � Later
Motorization Petrol � Diesel

Table 3. The preferences of the decision maker

In order to identify the preferable alternative(s), we follow the al-
gorithm 1. In Fig. 2, we focus on the trace of oracle calls and remain-
ing alternatives during the dialogue.

1. c1({Brand, Price,Availability,Motorization})
= {Brand}

2. c2({Peugeot,Opel, Ford})
= {Peugeot,Opel}
Alttmp = {a1, a2, a5, a6, a7}

3. c1({Price, Availability,Motorization})
= {Price,Motorization}

4. c2({(Expensive,Diesel), (Cheap, Petrol),
(Moderate,Diesel), (Moderate, Petrol)})
= {(Moderate,Diesel), (Cheap, )}
Alttmp = {a2, a6}

5. c2({Immediately, Later})
= {Immediately}
Alttmp = {a2}

Figure 2. Oracle calls

We can consider that the decision aiding dialogue starts with a
query about which attribute(s) is/are dominant. The decision maker
answers that the brand of the car is crucial for her (call #1) and she
prefers either a Peugeot or a Opel (call #2). The alternatives a3, a4

are then dominated and removed. Then we ask the decision maker
what is the next most important attribute(s). He answers that price
and motorization are both more important than the availability (call
#3). So, we propose the four available pair (cf. call #4). The decision
maker prefers pairs (Moderate,Diesel) and (Cheap, Petrol) but
can not choose. Since she is laxist, we ask her a last question
about her preferences about the only remaining attribute (call #5)
and finally the remaining alternative is a2, which is the only non-
dominated instance considering the decision maker preferences (cf.
Tab. 3).

5.4 Instantiations
In this section, we study different relations of preference and differ-
ent choice functions for the multi-attribute decision aid game.

We consider here strong relation on attributes (cf. Tab. 4). In other
words, we consider incomparability between attributes but we do not
envisage indifference.

• In the case #1, we consider strong and complete preferences over
the set of attributes and on each attribute. Therefore, the prefer-
ences over the set of instances is strict and total (cf. Section 3.4).
The decision-maker uses an optimal choice function for the at-
tributes and the instances. Therefore, the preference relation over
the instances is strong and complete, and there is a single optimal
alternative.

• The case #2 is quite similar. The preferences over the set of at-
tributes are no necessary strong but they are complete. In the gen-
eral case, preferences over instances are large and so, there may
be several optimal alternatives.

• In the case #3, we consider weak partial preferences on each at-
tribute. It means that some alternatives can be incomparable. The
optimal choice function is no suitable in this case so we assume
the decision-maker uses a laxist non-dominated choice function
(cf. Def. 8). Therefore, the preference relation over instances is
partial, and so there always is at least one non-dominated alterna-
tive.

• The case #4 make the same assumptions as case #3 on the pref-
erences and the decision-maker uses a rigorous non-dominated
choice function (cf. Def. 9). There can be zero, one or several
acceptable alternatives.

• In the case #5, we loss the completeness of the relation over the
set of attributes and we consider weak and complete preferences
over each attribute. Preferences over alternatives can be weak and
partial as in case #4. There always is at least one non-dominated
alternative as in case #3.

• The case #6 differs on #5 by the nature of the choice function
which is here rigorous. That is the reason why it is possible that
some alternatives are acceptable for the decision-maker.

6 Related Works
Preference learning has received increasing attention in Artificial In-
telligence in recent years. Fürnkranz and Hüllermeier propose in [5]
a typology which distinguishes label ranking, instance ranking and
object ranking. Our work is concerned by object ranking in an active
learning mode based upon a dialogue between a decision maker and
an analyst [7] rather than a given data set.

Among the works on learning ordinal preferences in multi-
attribute domains, Chevaleyre et al. [1] consider conditional pref-
erence networks (CP-nets). They study the learning of CP-nets in a

120



# �I c1 (%Atti
)i∈I %C c2 Solutions

0 (cf. section 4) strong partial strong complete lexicographic strong partial 1 ≥ |S| ≥ 0

1 strong complete copt strong complete lexicographic strict total copt |S| = 1

2 strong complete copt weak complete lexicographic weak total copt |S| ≥ 1

3 strong complete copt weak partial lexicographic weak partial cNDL |S| ≥ 1

4 strong complete copt weak partial lexicographic weak partial cNDR |S| ≥ 0

5 strong partial cNDL weak complete lexicographic weak partial cNDL |S| ≥ 1

6 strong partial cNDL weak complete lexicographic weak partial cNDR |S| ≥ 0

Table 4. Instantiations of multi-attribute decision aid game

Learning mode Preferences Input
Dombi et al. [4] passive and active total lexicographic order preferences over attributes
Chevaleyre et al. [1] passive and active CP-nets preferences over instances
Yaman et al. [10] passive total lexicographic order preferences over instances
Delecroix et al. active lexicographic order (total or partial) preferences over attributes and (sub-)instances

Table 5. Related works

passive mode and in an active mode. Contrary to our work, the CP-
net can translate the dependency relationships between attributes but
it cannot express the relative importance of attributes.

Dombi et al.[4] deal with learning preferences in a passive mode
and in an active mode in order to infer a lexicographic order on at-
tributes. In our case, we focus on finding one preferred alternative.
The alternatives are not input data of the problem in [4]. Our algo-
rithm depends on these alternatives. Moreover, we do not restrict our-
selves to a total lexicographic order. However, we envisage a partial
lexicographic order which allows us to model dilemmas. Finally, we
do not make any assumption about the preferences over the attribute
values.

In their work, Yaman et al. [10] address the problem of learn-
ing lexicographic preferences in a multiattribute domain based on
a democratic approximation. They propose two methods:

• variable voting consists of deducing the ranking of attributes
based on a series of observations. Then, the algorithm deduces the
preferences over alternatives with the help of a voting mechanism.

• model voting is based on a Bayesian approach. After having iden-
tify and weight a set of lexicographic preference orders which are
consistent with the observations, a vote is performed in order to
deduce the preferences over alternatives.

These methods use passive learning algorithms.
As stated in Tab. 5, we distinguish our work on two issues. On one

hand, we take into account the dilemmas and so, we make less as-
sumptions on the preferences. On the other hand, we distinguish our-
selves due to the interaction with the decision-maker. We ask ques-
tions about the relative importance of attributes and we ask questions
about preferences over tuples of values, and so we avoid to ask ques-
tions on complex instances.

7 Conclusion
In this paper, we have modelled the decision aiding process by a di-
alogue where an analyst asks questions to a decision maker in order
to collect and deduce his preferences. The analyst suggests attributes

and values which can be chosen by the decision maker based upon
his preferences. The analyst aims at finding a preferred alternative.
For this purpose, we make the assumption that the preferences of
the decision-maker can be captured by a lexicographic partial order.
Even if the incomparabilities between attributes can lead to dilem-
mas, most of the choices between the values of these attributes allow
to solve these situations. Based on this idea, we have proposed an
algorithm for active learning of (partial) lexicographic preferences.

In future work, we aims at evaluating our adaptive algorithm in a
theoretical and experimental way. Our practical objective is to iden-
tify a preferred alternative by asking few simple questions. For this
purpose, we need to introduce a metric for evaluating the size of
questions as done in [1].
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[6] Miquel Montaner, Beatriz López, and Josep Lluı́s De La Rosa, ‘A tax-
onomy of recommender agents on the Internet’, Artif. Intell. Rev., 19,
285–330, (June 2003).

[7] Wassila Ouerdane, Nicolas Maudet, and Alexis Tsoukiàs, ‘Argumen-
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