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Abstract. We apply order statistics for sorting a set X of n potential deicison actions,
evaluated on p incommensurable performance criteria, into k quantile equivalence classes,
based on pairwise outranking characteristics involving the quantile class limits observed on
each criterion. Thus we may implement a weak ordering algorithm of complexity O(npk).
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1 K-Sorting on a single criterion

1.1 Sorting into a single category

A single criterion sorting category K is a (usually) lower-closed interval [mk;Mk[ on a real-valued
measurement scale. If x is a measured performance on this scale, we may distinguish three sorting
situations:

1. x < mk (and x < Mk): The performance x is
lower than category K;

2. x > mk and x < Mk: The performance x be-
longs to category K;

3. x > Mk (and x > mk) : The performance x is
higher than category K.

As the relation < is the dual of >, it will be suffi-
cient to check that x > mk as well as x 6> Mk are
true for x to be considered a member of category K.
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Upper-closed categories, like in old fashioned official statistics, may also be considered. In this
case it is sufficient to check that mk 6> x as well as Mk > x are true for x to be considered a
member of category K. It is worthwhile noticing that a category K such that mk = Mk is hence
always empty by definition.

In order to be able to properly sort over the complete range of values to be sorted, we will
need to use a special, two-sided closed last, respectively first, category.
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1.2 Sorting into quantile categories

Let K = {K1, ...,Kc} be a non trivial partition of the criterion’s performance measurement scale
into c ≥ 2 ordered categories Kk – i.e. lower-closed intervals [mk;Mk[ – such that mk < Mk,
Mk = mk+1 for k = 0, ..., c − 1 and Mc = +∞. And, let A = {a1, a2, a3, ...} be a finite set of not
all equal performance measures observed on the scale in question.

Property 1. For all performance measure x ∈ A there exists now a unique k such that x ∈ Kk.
If we assimilate, like in descriptive statistics, all the measures gathered in a category Kk to the
central value of the category – i.e. (mk +Mk)/2 – the sorting result will hence define a weak order
(complete preorder) on A.

Let Q = {Q0, Q1, ..., Qc} denote the set of c + 1 increasing order-statistical quantiles (per-
centiles) – like quartiles or deciles – we may compute from the ordered set A of performance
measures observed on a performance scale. If Q0 = min(X) we may, with the following intervals:
[Q0;Q1[, [Q1;Q2[, ..., [Qc−1; +∞[, hence define a set of c of lower-clased sorting categories. And,
in the case of upper-closed categories, if Qc = max(X), we would obtain the intervals ]−∞;Q1],
]Q1;Q2], ..., ]Qc−1;Qc]. The corresponding sorting of A will result, in both cases, in a repartition
of all x measures into the c quantile categories Kk for k = 1, ..., c.

Example 1. Let A = { a7 = 7.03, a15 = 9.45, a11 = 20.35, a16 = 25.94, a10 = 31.44, a9 =
34.48, a12 = 34.50, a13 = 35.61, a14 = 36.54, a19 = 42.83, a5 = 50.04, a2 = 59.85, a17 =
61.35, a18 = 61.61, a3 = 76.91, a6 = 91.39, a1 = 91.79, a4 = 96.52, a8 = 96.56, a20 = 98.42}
be a set of 20 performance measures observed on a given criterion. The lower-closed category
limits we would obtain with quartiles (c = 4) are: Q0 = 7.03 = a7, Q1 = 34.485, Q2 = 54.945
(median performance), and Q3 = 91.69. And the sorting into these four categories defines on A
a complete preorder with the following four equivalence classes: K1 = {a7, a10, a11, a10, a15, a16},
K2 = {a5, a9, a13, a14, a19}, K3 = {a2, a3, a6, a17, a18}, and K4 = {a1, a4, a8, a20}.

1.3 Sorting with imprecise and uncertain performance measures

Uncertainties, imprecision as well as measurement errors and inaccuracy may often affect the set
of given performance measures to sort. To take these into account we are going to introduce
performance discrimination thresholds.

Let x and y be two performance measurement with respect to a given criterion. Let 0 ≤ q <
p ≤ Mc represent the indifference (q), respectively the preference (p), discrimination threshold
observed when measuring with out loss of genericity performances on an increasing real-valued
scale in the range 0 to Mc. Both, these performance discrimination thresholds characterise a ho-
mogeneous double threshold ordering � on X in the following way:

r(x � y) =


+1 if x + q ≥ y

−1 if x + p ≤ y

0 otherwise.

(1)

+1 signifies that “x is performing at least as
good as y”,

−1 signifies that “x is not performing at least
as good as y”,

0 signifies that “it is unclear whether, on
criterion i, x is performing at least as
good as y”.

x − y

+1

0
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To assess now the sorting situation of a performance measure x with respect to a sorting
category Kk defined by the interval [mk;Mk[, we use a bipolar characteristic function r that is
defined as follows for all x ∈ X and Kk ∈ K:

r(x ∈ Kk) = r
(

(x � mk) ∧ (x 6�Mk)
)

(2)

= min
(
r(x � mk), r(x 6�Mk)

)
(3)

= min
(
r(x � mk),−r(x �Mk)

)
. (4)

We hence get r(x ∈ Kk) = +1 if and only if r(x � mk) = +1 and r(x 6�Mk) = +1, i.e. x appears
within the limits defining category Kk. If r(x ∈ Kk) or r(x � mk) equals −1, then x is certainly
situated outside the limits defining category Kk. With upper-closed categories, we would use the
rule: r(x ∈ Kk) = min

(
− r(mk � x), r(Mk � x)

)
.

It may happen that r(x ∈ Kk) = 0. This occurs when r(x � mk) or r(x 6� Mk) equals 0. In
this case the sorting result for performance x is indeterminate with respect to category Kk.

Example 2. Let us assume that on the previous set A of 20 performance measures (see Example 1)
we observe an indifference discrimination threshold of q = 2.5, and a preference discrimination
threshold of p = 5.0. In this case we observe that the difference between a10 and Q1 (|31.44 −
34.485| = 3.045) is in fact larger than the indifference threshold (2.5), but also smaller than the
preference threshold (5.0). Hence, r(a10 � Q1) = 0. As Q1 = M1 = m2, we may for sure conclude
that a10 is performing better than m1 = 7.03 and less performing than M1 = 50.04. However, we
are not sure whether a10 is in fact less performing than or at least as good performing as M1. As
a consequence, we both get r(a10 ∈ K1) = 0 and r(a10 ∈ K2) = 0. It is thus uncertain whether
a10 may be sorted in K1 or in K2. A similar situation happens when sorting measure a5.

Property 2. When K defines a partition of the performance scale, using Rule 4: r(x ∈ Kk) ≥ 0
for sorting a performance x into a category Kk , results in a sorting result where each perfor-
mance measure x is either sorted into one, or spread indeterminately over two or more adjacent
categories.

Example 3. Resorting again the previous 20 performance values into quartiles categories (see Ex-
ample 1), this time with discrimination thresholds q = 2.5 and p = 5.0, gives on A again four
equivalence classes:

K4 = {a1, a4, a6, a8, a20}.
K3 = {a2, a3,a5, a17, a18}

K2 = {a5, a9,a10, a12, a13, a14, a19}
K1 = {a7,a10, a11, a15, a16}

Performance measures a5 and a10 are indeed sorted indeterminately into categores K1 or K2,
respectively K2 or K3. Notice furthermore that measure a12 = 34.48, being now considered “at
least as good” as the upper limit M1 = 34.485 of K1, has consequently been upgraded from K1 to
K2.

2 Multiple criteria K-sorting

2.1 Overall performance comparison concordance

Let X be a finite set of objects to be sorted and let F = {1, ..., n} be a finite and coherent
family of n performance criteria. On each criterion i in F , the objects are evaluated on a real
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performance scale [0;M i], supporting an indifference threshold qi and a preference threshold pi
such that 0 ≤ qi < pi ≤ M i. The performance of object x on criterion i is denoted xi. Each
criterion i is thus characterising a marginal double threshold ordering �i on X as defined in
Equation 1.

Globally performing “at least as good as”:
Furthermore, each criterion i in F carries a rational significance wi such that 0 < wi < 1.0 and∑

i∈F wi = 1.0 which he contributes to the characterisation of a global “at least as good as”
relation a global � in the following way:

r(x � y) =
∑
i∈F

[
wi · r(xi �i yi)

]
(5)

r > 0 signifies x is globally performing at least as good as y,

r < 0 signifies that x is not globally performing at least as good as y,

r = 0 signifies that it is unclear whether x is globally performing at least as good as y.

Globally performing less than:
Each criterion i is characterising a marginal homogeneous double threshold ordering ≺i (less than)
on A in the following way:

r(xi ≺i yi) =


+1 if xi + pi ≤ yi

−1 if xi + qi ≥ yi

0 otherwise.

(6)

And, the global less than relation (≺) is defined as follows:

r(x ≺ y) =
∑
i∈F

[
wi · r(xi ≺i yi)

]
(7)

Property 3 (Bisdorff 2013). The global “less than” relation ≺ is the dual (6�) of the global “at
least as good as” relation �.

The property follows readily from the fact that the marginal relation ≺i is the dual of the
marginal �i relation (see Equations (1) and (6)). We also say that the global “at least as good
as” relation (�) verifies the coduality principle, in the sense that its asymmetric part, the strict
“better than” relation (�) is identical to the converse of the negation of it (?).

Let mk = (m1,k,m2,k, ...,mn,k) denote the lower limits and Mk = (M1,k,M2,k, ...,Mn,k) the
corresponding upper limits of category Kk on a family of n criteria.

Property 4. Similar to the single criterion case, that object x ∈ X belongs to lower-closed category
Kk may now, globally, be characterised as follows:

r(x ∈ Kk) = min
(
r(x �mk),−r(x �Mk)

)
(8)

If Kk is upper-closed the formula becomes:

r(x ∈ Kk) = min
(
− r(mk � x), r(Mk � x)

)
(9)
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2.2 Observing non compensable performance differences

In order to take into account large non-compensable marginal performance differences, we define
a single threshold order, denoted �i and which represents a marginal considerably less performing
situation observed on a criterion i, as follows:

r(x�i y) =


+1 if xi + vi ≤ yi

−1 if xi − vi ≥ yi

0 otherwise.

. (10)

And a corresponding dual considerably better performing situation �i characterised as:

r(x�i y) =


+1 if xi − vi ≥ yi

−1 if xi + vi ≤ yi

0 otherwise.

. (11)

Vetoes and counter-vetoes situations:
A global veto or counter-veto situation is now defined as follows:

r(x� y) = >i∈F r(x�i y) (12)

r(x� y) = >i∈F r(x�i y) (13)

where > represents the epistemic polarising (?) or symmetric maximum (?) operator:

r > r′ =


max(r, r′) if r > 0 ∧ r′ > 0,

min(r, r′) if r 6 0 ∧ r′ 6 0,

0 otherwise.

(14)

Let x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) be two multiple criteria performance measures.

1. r(x� y) = 1 iff there exists a criterion i such that r(xi �i yi) = 1 and there does not exist
otherwise any criteria j such that r(xj �j yj) = 1.

2. Conversely, r(x � y) = 1 iff there exists a criterion i such that r(xi �i yi) = 1 and there
does not exist otherwise any criteria j such that r(xj �j yj) = 1.

3. r(x� y) = 0 if either we observe no very large performance differences or we observe at the
same time, both a very large positive and a very large negative performance difference.

Property 5. r(6�)−1 is identical to r(�), i.e. relations � and � verify in fact the coduality prin-
ciple.

2.3 The bipolar global outranking relation %

Let again x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) be performance measures observed on a family
F of n performance criteria. From an epistemic point of view, we say that:

1. measure x outranks measure y, denoted (x % y), if
(a) a significant majority of criteria validates a global outranking situation between x and y,

and
(b) no considerable counter-performance is observed on a discordant criterion,

2. object x does not outrank object y, denoted (x 6% y), if
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(a) a significant majority of criteria invalidates a global outranking situation between x and
y, and

(b) no considerably better performing situation is observed on a concordant criterion.

Hence, the bipolar-valued characteristic r(%) is defined as follows:

r(x % y) =

{
0 if

[
∃i ∈ F : r(x�i y)

]
∧
[
∃j ∈ F : r(x�j y)

]
,[

r(x � y) >−r(x� y)
]
, otherwise.

(15)

And in particular,

r(x % y) = r(x � y) if no very large positive or negative performance differences are observed,
r(x % y) = 1 if r(x � y) > 0 and r(x� y) = 1,
r(x % y) = −1 if r(x � y) 6 0 and r(x� y) = 1.

We call weakly complete a binary relation R on A when its bipolar characteristic function
verifies r(xRy) < 0)⇒ r(yRx) > 0 for all (x, y) ∈ A2.

Property 6. The biplar outranking relation % defines on a given set A of multiple criteria perfor-
mance measures a weakly complete binary relation.

The property follwos directly from the facts that: i) the global at least as good relation � is weakly
complete, and ii) the polarization with considerable performance difference via Equation (2.3)
does not change any sign of the characteristic r-values. The bipolar outranking relation verifies
furthermore the coduality principle.

Proposition 1 (Bisdorff 2013). The dual (6%) of the bipolar outranking relation % is identical
to the strict converse outranking � relation.

Proof.

r(x 6% y) = −r(x % y) = −
[
r(x � y) >−r(x� y)

]
=
[
− r(x � y) > r(x� y)

]
=
[
r(x 6� y) >−r(x� y)

]
=
[
r(x ≺ y) > r(x 6� y)

]
= r(x � y).

Corollary 1. The bipolar characteristic of x belonging to a lower-closed sorting category Kk may
be assessed :

r(x ∈ Kk) = min
(
r(x % mk), r(x 6% Mk)

)
, (16)

repectively,
r(x ∈ Kk) = min

(
r(mk 6% x), r(Mk % x)

)
(17)

in the case of upper-closed sorting categories.

Example 4. Let us consider a set A = {a1, a2, a3, a4, a5} of decision actions randomly evaluated on
a coherent set F = {1, 2, 3}ofequisignificantcriteriasuchthatcriteria1 and 2 support an ordinal
performance measurement scale coded respectively as 0, 10, 20, ..., 100. The preference dicrimina-
tion threshold is supposed to be 1 and there is no indifference or veto threshold observed on these
criteria. Criterion 3 is, however, of cardinal type with a rational performance measurement scale
between 0.0 and 100.0 supporting an indifference discrimination threshold of 5.53, a preference
discrimination threshold of 8.93 and a veto threshold of 61.94. These discrimination thresholds
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are chosen so as to touch each one 10% of all performance differences observed on this criterion.

Random Performance Tableau
F ×A a1 a2 a3 a4 a5

1 60 60 30 40 80
2 80 50 20 70 90
3 65.82 24.89 27.02 9.21 75.51

Quintile performance limits per criterion
Quintiles criterion 1 criterion 2 criterion 3
] <; 0.20] ] <; 44] ] <; 54] ] <; 25.32]

]0.20; 0.40] ]44; 60] ]54; 74] ]25.32; 42.54]
]0.40; 0.60] ]60; 72] ]74; 86] ]42.54; 71.63]
]0.60; 0.80] ]72; 80] ]86; 90] ]71.63; 75.51]
]0.80; 1.00] ]80; 80] ]90; 90] ]75.51; 75.51]

Let us try to sort action a1’s performance measures into upper-closed quintiles. Following criterion
1, a1 belongs to quintile ]0.20; 0.40], whereas on criteria 2 and 3, it belongs to quintile ]0.40; 0.60].
If we compute the sorting characteristic function values for all the quintiles, we get the following
results:

x ∈ A ]mk;Mk[ r(x % mk) r(x 6% Mk) r(x ∈ Kk)
a1 ] <; 0.20] +1.0 −1.0 −1.0

]0.20; 0.40] +1.0 −0.33 −0.33
]0.40; 0.60] +0.33 +1.0 +0.33
]0.60; 0.80] −1.0 +1.0 −1.0
]0.80; 1.00] −1.0 +1.0 −1.0

And, indeed, until quintile ]0.40; 0.60], action a1’s performances positively outrank the lower limits
of the preceeding quintiles. Similarly, from quintile ]0.40; 0.60] on, action a1’s performances pos-
itively do not outrank the upper limits of the succeeding quintiles. Hence, quintile ]0.40; 0.60]
is the only class into which action a1 may be positively sorted: r(a1 % 0.40) = +0.33 and
r(a1 6% 0.60) = +1.0. Hence, r(a1 ∈]0.40; 0.60]) = min(+0.33,+1.0) = +0.33.

The complete sorting result for all the five actions in A is shown below:

Sorting results in descending order:
Quintile Sorted Actions

]0.80; 1.00] -
]0.60; 0.80] a5
]0.40; 0.60] a1
]0.20; 0.40] -
] <; 0.20] a2, a3, a4
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3 Multiple criteria quantiles sorting

3.1 The multicriteria K-Sorting algorithm

1. Input: a set A of n decision actions evaluated on a family of p criteria and a set K of k empty
lower-closed categories Kk with lower and upper limits mk and Mk.

2. For each action x ∈ A and each category Kk ∈ K
(a) r(x ∈ Kk) ← min

(
r(x % mk), r(x 6% Mk)

)
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(b) if r(x ∈ Kk) > 0 :
add x to category K

3. Output: K

1. The complexity of the K-Sorting algorithm is linear: O(nkp).

2. In case, K represents p partitions of the criteria measurement scales, i.e. the upper limits of the
preceding category correspond to the lower limits of the succeeding ones, there is a potential
for reducing the complexity even more.

3.2 Properties of K-Sorting result

1. Coherence: Each action is always sorted into a possibly empty subset of adjacent categories.

2. Weak Unicity : In case of non overlapping categories and the absence of indeterminate bipolar
outrankings, i.e. r 6= 0, every action is sorted into at most one category;

3. Unicity : If the categories represent a discriminated partition of the measurement scales on
each criterion and r 6= 0, then every action is sorted into exactly one category;

4. Independance: The sorting result for action x, is independent of the other actions’ sorting
results.

5. Monotonicity : If r(x % y) = 1, then action x is sorted into a category which is at least as high
ranked as the category into which is sorted action y.

6. Stability : If a category is dropped from K, the contents of the remaining categories will not
change thereafter.

Example 5. We consider again a set A of performance measures taken with respect to three equi-
significant criteria aupporting the discrimination thresholds shown in the table below. If we sort
these measures into twentiles, we obtain following results:
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Measure crit. 1 crit. 2 crit. 3
pref. 3.14 3.27 4.46
ind. 1.42 1.45 1.88
veto 54.35 56.61 53.35
a1 -46.64 21.60 65.87
a2 -82.98 32.00 43.99
a3 -60.33 56.38 71.92
a4 -79.58 57.36 66.46
a5 -32.92 14.59 71.84
a6 -43.71 30.29 76.31
a7 -83.18 27.88 35.07
a8 -29.18 50.01 26.08
a9 -73.25 85.37 79.76
a10 -48.97 81.57 79.95
a11 -22.82 83.95 42.69
a12 -28.30 30.48 61.18
a13 -45.28 58.32 56.17
a14 -45.55 52.32 43.06
a15 -48.96 72.86 87.40
a16 -65.87 62.77 18.98
a17 -57.16 26.90 25.81
a18 -29.76 30.57 69.81
a19 -84.56 62.07 50.83
a20 -29.92 61.66 70.16

Twentiles sorting results:
]0.95 - 1.00] []
]0.90 - 0.95] []
]0.85 - 0.90] []
]0.80 - 0.85] []
]0.75 - 0.80] [’a09’, ’a10’, ’a15’]
]0.70 - 0.75] [’a15’]
]0.65 - 0.70] []

]0.60 - 0.65] [’a16’, ’a19’]
]0.55 - 0.60] [’a03’, ’a16’, ’a19’]
]0.50 - 0.55] [’a03’, ’a20’]
]0.45 - 0.50] [’a04’, ’a20’]
]0.40 - 0.45] []
]0.35 - 0.40] [’a13’]
]0.30 - 0.35] [’a01’, ’a13’]
]0.25 - 0.30] [’a01’, ’a02’, ’a06’, ’a14’]
]0.20 - 0.25] [’a02’, ’a05’]
]0.15 - 0.20] [’a02’, ’a05’, ’a11’, ’a12’, ’a18’]
]0.10 - 0.15] [’a05’, ’a07’, ’a12’, ’a18’]
]0.05 - 0.10] [’a17’]
]< - 0.05] [’a08’]
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