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Abstract

We develop Monte Carlo simulation techniques for taking into account
uncertain criteria significance weights and ensuring an a priori level of con-
fidence of the Condorcet outranking digraph, depending on the decision
maker. Those outranking situations that cannot be ensured at a required
level of confidence are assumed to be indeterminate. This approach allows
us to associate a given confidence degree to the decision aiding artifacts com-
puted from a bipolarly-valued outranking, which accounts for the essential
and unavoidable uncertainty of numerical criteria weights.

Keywords: Multiple criteria decision aid; Uncertain criteria weights; Stochastic
outranking relations; Confidence of the Condorcet outranking digraph.

1 Introduction

In a social choice problem concerning a very important issue like amending a
country’s Constitution, the absolute majority of voters is often not seen as sufficient
for supporting a convincing social consensus. A higher majority of voters, two
third or even three forth of them, may be required to support the bill in order to
take effective decisions. Sometimes, even unanimity is required; a condition that,
however, may generate in practice many indecisive situations. A similar idea is
sometimes put forward in multiple criteria decision aiding in order to model global
compromise preferences when the significance of the criterion are not known with
sufficient precision. In his seminal work on the Electre I method ([1], concerning
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a best unique choice problematique, Roy is clearly following this line of thought
by proposing to choose a sufficiently qualified majority of criterial support before
considering an outranking statement to be significant.

We are here proposing a different approach. The individual criteria significance
weights are considered to be random variables. The bipolarly valued characteristic
of the pairwise outranking situations [2, 6] appear hence to be sums of random
variables of which we may, by Monte Carlo simulation, sample the apparent dis-
tribution of possible characteristic values. From these empirical distributions, we
may assess the apparent likelihood of obtaining a positive weighted majority mar-
gin for each outranking situation. And depending on the seriousness of the decision
issue, we may hence recommend to accept only those outranking statements that
show a sufficiently high likelihood of 90% or 95%, for instance. We could also, in
the limit accept only those statements which appear to be certainly supported by
a weighted majority of criterial significance.

The paper is structured as follows. A first section is concerned with how to
model the uncertainty we face for assessing precise numerical criteria significance
weights. The second section illustrates how the likelihood of outranking situations
may be estimated. And, the last section introduces the concept of confidence level
of the valued outranking digraph.

2 Modelling uncertain criteria significances

We have already extensively discussed some time ago (see [3]) the operational
difficulty to numerically assess with sufficient precision the actual significance that
underlies each criterion in a multiple criteria decision aid problem. Even, when
considering that all criteria are equisignificant, it is not clear how precisely (how
many decimals ?) such a numerical equality should be taken into account when
computing the outranking characteristic values. In case of unequal significance of
the criteria, it is possible to explore the stability of the Condorcet digraph with
respect to the ordinal criteria significance structure (see [5] and [7]). One may
also use indirect preferential observations for assessing via linear programming
computations apparent significance ranges for each criterion (see [4]).

Here we propose instead to consider the significance weights of a family F
of n criteria to be independent random variables Wi, distributing the potential
significance weights of each criterion i = 1, ..., n around the mean value E(Wi)
with variance V ar(Wi).

We consider four different models for taking into account the uncertainty with
which we know the numerical significance weights: uniform, triangular, and two
models of beta(a, b) laws, one widespread and one very concentrated.

1. A continuous uniform law on the range 0 to 2 ∗ E(Wi).
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Thus Wi ∼ U(0, 2E(Wi)) and V ar(Wi) = 1
3
E(Wi)

2;

2. A Beta law with parameters a = 2 and b = 2.
Thus, Wi ∼ Beta(2, 2)× 2E(Wi) and V ar(Wi) = 1

5
E(Wi)

2.

3. A triangular law on the same range with mode E(Wi).
Thus Wi ∼ T r(0, 2E(Wi), E(Wi)) with V ar(Wi) = 1

6
E(Wi)

2;

4. A narrower Beta law with parameters a = 4 and b = 4.
Thus Wi ∼ Beta(4, 4)× 2E(Wi), V ar(Wi) = 1

9
E(Wi)

2

It is worthwhile noticing that the four uncertainty models models admit the same
expected value, E(Wi), however, with a standard deviation which goes decreasing
as shown in Fig. 1.

Figure 1: Four models of uncertain significance weights

3 Likelihood of an outranking situation

Now, r(x < y) =
∑

i Wi × r(x <i y) with r(x <i y) ∈ {−1, 0, 1} becomes a simple
sum of positive or negative independent random variables with known means and
variances. We know from the Central Limit Theorem (CLT) that such a sum of
random variables tends, with n getting large, to a Gaussian distribution Y with
E(Y ) =

∑
i E(Wi)× r(x < y) and V ar(Y ) =

∑
i V ar(Wi)× |r(x < y)|.
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Example 3.1. Let us consider two decision alternatives x and y being evaluated
on a family of 7 equi-significant criteria, such that four out of the seven criteria
positively support that x outranks y, and three criteria support that x does not
outrank y. In this case, r(x < y) = 4w−3w = w where Wi = w for i = 1, ..., 7 and
the outranking situation is positively validated. Suppose now that the significance
weights Wi appear only more or less equivalent and let us model this numerical
uncertainty with independent triangular laws: Wi ∼ T r(0, 2w,w) for i = 1, ...7.
The expected credibility of the outranking situation, E(r(x < y)) = 4w−3w = w,
will remain the same, however with a variance of 7× 3

18
w2. If we take a unit weight

w = 1, we hence obtain a standard deviation of 1.08. Applying the CLT we notice
that, under the given hypotheses, the likelihood of obtaining a negative majority
margin will be about 17%. A Monte Carlo simulation with 10000 runs empirically
confirms the effective convergence to a Gaussian: r(x < y) N (1.03, 1, 089) (see
Figure 2), with an empirical proportion of negative majority margins r(x < y) ≤
0.0 of indeed about 17% .

Figure 2: Distribution of outranking credibility r(x < y)

Example 3.2. The second example concerns two decision alternatives x and y
that are evaluated on a family of 7 criteria, denoted gi of unequal significance
weights wi for i = 1, ..., 7 (see Tab. 1). The performances on the seven criteria are
measured on a rational scale from 0 (worst) to 100 points (best). Let us suppose
that both decision alternatives are evaluated as shown in Tab. 1. A performance
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difference of 10 points or less is considered insignificant, whereas a difference of
20 points and more is considered to be significant. The overall bipolar outranking

Table 1: Pairwise comparison of two decision alternatives

gi g1 g2 g3 g4 g5 g6 g7
wi 7 8 3 10 1 9 7

x 14.09 71.41 87.92 38.73 26.50 93.00 37.15
y 64.03 87.51 67.04 82.24 80.84 80.82 10.64

x− y -49.94 -16.10 +20.88 -43.51 -54.34 +12.18 26.51
r(x <i y) −1 0 +1 −1 −1 +1 +1

credibility r(x < y) (see [6]) is given as follows:

r(x < y) =
7∑

i=1

r(x <i y)× wi = −7 + 0 + 3− 10− 1 + 9 + 7 = +1 ; . (1)

The outranking situation “(x < y)” is thus positively validated (see Eq. 1). How-
ever, in case the given criteria significance weights (see Tab. 1) are not known
with certainty, how confident can we be about the actual positiveness of r(x < y)?
If we suppose now that the random significance weights Wi are in fact indepen-
dently following a continuous triangular law on the respective ranges 0 to 2wi, the
CLT approximation will make r(x < y) tend to a Gaussian distribution with mean
equal to +1 and standard deviation equal to 6.94. The likelihood of r(x < y) > 0.0
equals thus approximately 1.0 − P ( z−1

6.94
6 0.0) = 1.0 − 0.43 ≈ 55.7%, a result

we can again empirically verify with a Monte Carlo sampling of 10000 runs (see
Fig. 3). Under the given modelling of the uncertainty in the setting of the criteria
significance weights, the credibility of the outranking situation between alterna-
tives x and y is neither convincingly positive, nor negative. Neither the relational
situation may hence be validated, nor invalidated.

By requiring a certain level of likelihood for all pairwise outranking situations’
credibility, we may thus enforce the actual confidence we may have in the bipolarly-
valued outranking digraph. If, for instance, we would require that an outranking
statement, to be validated, must admit a positive credibility with a high likelihood,
90% or more for instance, the first and, even more, the second outranking situation
discussed previously, will not be validated, nor invalidated with enough confidence.
We will set their characteristic values hence equal to the indeterminate value 0.0.
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Figure 3: Distribution of outranking credibility r(x < y)

4 Confidence level of the outranking digraph

Most of the MCDA decision aiding problematiques like best choice, ranking or
sorting recommendations exploiting a valued outranking digraph rely in fact on
the majority cut of the valued outranking digraph [2, 3, 8, 9, 6, 7]. The previ-
ous example gives the hint how we may appreciate the very confidence we may
have in a given majority when the criteria significance weights are not precisely
given. Knowing a priori the distribution of the significance weight of each criterion
will indeed be sufficient in practice for computing, with the so given means and
variances, the CLT based likelihood of the fact that a bipolar outranking charac-
teristics r(x < y) is positively validating, respectively negatively invalidating, the
outranking situation “(s < y)”.

Example 4.1. We may illustrate this approach with a small random performance
tableau (see Tab. 2) showing the performance evaluations of seven decision alter-
natives on the same family of performance criteria we used for Example 3.2. To
operate with a full outranking model, we furthermore consider that a large per-
formance difference of 80 points and more will trigger a veto situation (see [6]).
[ht] When using deterministic criteria significance weights, we obtain the following
bipolarly valued outranking relation (see Tab. 3): We recover the weakly positive
credibility (r(a01 < a02) = +1/45) of the outranking situation between alter-
native ‘a01’ and alternative ‘a02’ discussed in Example 3.2. Notice by the way
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Table 2: Random performance tableau

gi gi a01 a02 a03 a04 a05 a06 a07

g1 7.00 14.09 64.03 73.43 36.47 30.61 85.90 97.83
g2 8.00 71.41 87.51 61.90 84.67 60.41 54.46 45.77
g3 3.00 87.92 67.04 25.17 34.23 87.30 43.05 30.35
g4 10.00 38.73 82.24 94.06 86.05 34.05 97.23 72.21
g5 1.00 26.50 80.84 71.94 21.63 56.38 88.13 15.03
g6 9.00 93.00 80.82 23.21 57.24 81.39 16.57 93.03
g7 7.00 37.15 10.64 64.79 98.94 69.95 24.66 13.57

Table 3: Credibility of the deterministic outranking relation (range = [−45,+45])

r(x < y) a01 a02 a03 a04 a05 a06 a07

a01 - +1 −5 −11 +22 +9 0
a02 +16 - +21 0 +25 +14 +22
a03 +21 +5 - −3 +21 +34 +13
a04 +21 +45 +29 - +19 +19 +45
a05 +28 −7 +10 −5 - +9 +2
a06 +6 +5 +31 −3 +7 - +20
a07 +45 +11 +1 +0 +15 +13 -

the slightly negative credibility (−5/45) of the outranking situation between al-
ternative ‘a01’ and ‘a03’ . How confident are these deterministic statements, if
the significance weights are not precisely given. If we assume now that the poten-
tial criteria significances wi are distributed following independent triangular laws
T (0, 2wi, wi) for i = 1, ..., 7, we obtain the following CLT likelihoods (see Tab. 4):
If we, furthermore, require for each credibility degree (r(x < y) a likelihood of 0.90
and more for convincingly validating, respectively invalidating, the corresponding
outranking statement, we obtain the following result (see Tab. 5): We notice here
that the outranking situations between ‘a01’ and ‘a02’, respectively ‘a03’, with
credibility likelihoods lower than 90%, are all put to doubt. In total 15 pairwise
outranking statements out of the potential 7 × 6 statements are thus considered
not confident enough. Their credibility r(x < y) is put to the indeterminate value
0. It is worthwhile noticing that all outranking statements with a credibility less
than ±7/45 (a qualified majority of 57.8%) are thus put to doubt. However, the
outranking situation between ‘a01’ and ‘a06’, obtaining a deterministic credibility
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Table 4: CLT likelihood of r(x < y) > 0 or < 0

p-value a01 a02 a03 a04 a05 a06 a07

a01 - +0.56 +0.74 +0.94 +1.00 +0.88 +0.50
a02 +0.99 - +1.00 +0.50 +1.00 +0.99 +1.00
a03 +1.00 +0.74 - +0.65 +1.00 +1.00 +0.95
a04 +1.00 +1.00 +1.00 - +0.99 +1.00 +1.00
a05 +1.00 +0.82 +0.90 +0.74 - +0.88 +0.62
a06 +0.83 +0.74 +1.00 +0.65 +0.82 - +1.00
a07 +1.00 +0.95 +0.56 +0.50 +0.98 +0.97 -

Table 5: 90% confident outranking relation

r(x < y) a01 a02 a03 a04 a05 a06 a07

a01 - 0 0 −11 +22 0 0
a02 +16 - +21 0 +25 +14 +22
a03 +21 0 - 0 +21 +34 +13
a04 +21 0 +29 - +19 +19 +45
a05 +28 0 0 0 - 0 0
a06 0 0 +31 0 +7 - +20
a07 0 +11 0 0 +15 +13 -

of +9 (a majority of 60%), but with only a likelihood of 88%, appears as well not
confident enough.

The quality of the CLT convergence will, in general, depend, first, on the
number of effective criteria, i.e. non abstaining ones, involved in each pairwise
comparison and, secondly, on the more or less differences in shape of the individual
significance weight distributions. Therefore, with a tiny performance tableau, less
than 25 decision actions and less than 10 criteria, we may estimate the likelihood
of all pairwise outranking situations with a Monte Carlo simulation consisting of
a given number of independent runs. Indeed, the present computational power
available, even on modest personal computers, allow us to sufficiently sample a
given outranking digraph construction.

Example 4.2. For instance, if we sample 1000 MC simulations of the previous
outranking relation (see Tab. 3), by keeping the same uncertainty modelling of the
criteria significances with random weights distributed like T (0, 2wi, wi), we obtain
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very similar empirical likelihoods (see Tab. 6). We may thus verify again the very

Table 6: Empirical likelihoods of r(x < y) > 0 or < 0 with a sample of 1000 runs

p-value a01 a02 a03 a04 a05 a06 a07

a01 - +0.56 +0.73 +0.95 +1.00 +0.87 +0.5
a02 +0.99 - +1.00 +0.5 +1.00 +0.99 +1.00
a03 +1.00 +0.73 - +0.64 +1.00 +1.00 +0.95
a04 +1.00 +0.72 +1.00 - +0.99 +1.00 +1.00
a05 +1.00 +0.81 +0.90 +0.74 - +0.88 +0.62
a06 +0.83 +0.73 +1.00 +0.65 +0.82 - +1.00
a07 +1.00 +0.95 +0.57 +0.50 +0.99 +0.97 -

accurate convergence (in the order of ±1%) of the CLT likelihoods, a convergence
we already observed in Example 3.2, even with a small number of criteria.

5 Conclusion

When modelling preferences following the outranking approach, the sign of the
majority margins do sharply distribute validation and invalidation of pairwise out-
ranking situations. How can we be confident in the resulting outranking digraph,
when we acknowledge the usual imprecise knowledge of criteria significance weights
and a small majority margin? To answer this question, we propose to model the
significance weights as random variables following more less widespread distribu-
tions around an average weight value that corresponds to the given deterministic
weight. As the bipolarly valued random credibility of an outranking statement
results from a simple sum of positive or negative independent and similarly dis-
tributed random variables, we may apply the CLT for computing likelihoods that
a given majority margin is indeed positive, respectively negative. To test the ef-
fective convergence of the CLT likelihoods, we apply Monte Carlo simulations of
outranking digraph constructions. Our computational results confirm a satisfac-
tory convergence even for a random performance tableau with only seven criteria.

References
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